高三数学第一轮复习模拟考试试卷及答案
高三 数学第一轮复习 试卷

高三数学试卷(理)一、选择题:1.已知等差数列{n a }满足a 2=2,a 6=0,则数列{n a }的公差为A .12B .2C .-12D .-2 2.已知R 是实数集,M ={x |2x <1},N ={y |y =2x -1},则(C R M )∩N = A .(-1,2) B .[-1,2] C .(0,2) D .[0,2]3.已知向量a r =(1,2),b r =(1,0),c r =(3,4),若λ为实数,(a r +λb r )∥c r ,则λ= A .2 B .1 C .12 D .-2 4.已知α∈(-4π,0),且sin2α=-2425,则sin α+cos α= A .-15 B .15 C .-75 D .755.若实数a ,b ,c ,d 成等比数列,且函数y =ln (x +2)-x 在x =b 处取到极值c ,则ad =A .-1B .-2C .1D .26.在等比数列{n a }中,a 2+a 3+…+a 8=8,21a +31a +…+81a =2,则a 5= A .2或-2 B .2 C .3或-3 D .37.已知函数f (x )=min{3-21log 2x ,2log x },其中min{p ,q}表示p ,q 两者中较小的一个,则满足f (x )<1的x 的集合为 A .(0B .(04,+∞)C .(0,2)D .(0,2)∪(16,+∞)8.直线y =12与曲线y =2sin (x +2π)cos (x -2π)在y 轴右侧的交点自左向右依次记为M 1,M 2,M 3,…,则|113M M uuuuuu r |等于A .6πB .7πC .12πD .13π9.已知数列{n a }的前n 项和n S =2n(n ∈N ﹡),则n ≥2时,21a +22a +…+2n a =A .1(41)3n - B .1(48)3n + C .21(21)3n - D .21(24)3n + 10.已知函数f (x )=23log (1)1,1032,x x x x x a ⎧⎨⎩-+-≤<-+0≤≤的值域是[0,2],则实数a 的取值范围是A .(0,1]B .[1,.[1,2] D .2]11.已知f (x )是定义在(0,+∞)上的单调递减函数,()f x '是其导函数,若()()f x f x '>x ,则下列不等关系成立的是A .f (2)<2f (1)B .3f (2)>2f (3)C .ef (e )<f (2e )D .ef (2e )>f (3e )12.定义域为R 的函数f (x )满足f (x +2)=4f (x ),当x ∈[0,2)时,f (x)=2,[0,1)1),[1,2)x x x x x ⎧⎪⎨⎪⎩-∈+∈.若x ∈[-2,0)时,对任意的t ∈[1,2)都有f (x )≥16t -28a t 成立,则实数a 的取值范围是 A .(-∞,2] B .[2,+∞) C .(-∞,6] D .[6,+∞)二、填空题:13.曲线yy =2x 所围成的图形的面积为____________.14.已知向量a r ,b r 满足|a r |=2|b r |≠0,且函数在f (x )=31132x +|a r |2x +(a r ·b r )x 在R 上有极值,则向量a r ,b r 的夹角的取值范围是_____________.15.下列四个命题:①函数f (x )=cosxsinx 的最大值为1;②命题“0x ∃∈R ,0x -2>0lg x ”的否定是“x ∀∉R ,x -2≤lg x ”;③若△ABC 为锐角三角形,则有sinA +sinB +sinC >cosA +cosB +cosC;④“a ≤0”是“函数f (x )=|2x -ax |在区间(0,+∞)内单调递增”的充分必要 条件.其中所有正确命题的序号为_______________.16.已知e 为自然对数的底数,函数f (x )=x e -x e -+)1x +,()f x '为其导函数,则()f e +()f e '+()f e --()f e '-=____________.三、解答题:17. 已知数列{n a }满足:a 1=23,a 2=2,且3(1n a +-2n a +1n a -)=2. (1)证明{1n a +-n a }是等差数列,并求{n a }的通项公式;(2)求使11a +21a +31a +…+1n a >52成立的最小的正整数n .18. 在用“五点法”画函数f (x )=Asin (ωx +ϕ)(ω>0,|ϕ|<2π)在某一周期内的图象时,列表并填入了部分数据,如下表(1)请将上表中①②③④处数据补充完整,并直接写出函数f (x )的解析式;(2)将y =f (x )图象上所有点的横坐标缩短为原来的23,再将所得图象向左平移π个单位,得到y =g (x )的图象,求g (x )在x ∈[-2π,2π]时的单调递增区间.19. 已知曲线f (x )=alnx -2bx 在点P (2,f (2))处的切线为y =-3x +2ln2+2.(1)求实数a ,b 的值;(2)若方程f (x )+m =0在[1e,e]上有两个不等实根(e 为自然对数的底数),求实数m 的取值范围.20. 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a ,b ,c 成公差为1的等差数列,C =2A .(1)求a ,b ,c 的值;(2)求AC uuu r 在CB uu r 方向上的投影.21. 设函数f (x )=x e -ax -1(a >0).(1)求函数f (x )的最小值g (a ),并证明g (a )≤0;(2)求证:n ∈N ﹡,都有11n ++12n ++13n ++…+1n n +<12(1)3n n ++成立.23 在平面直角坐标系xOy 中,l 是过定点P (4,2)且倾斜角为α的直线;以坐标原点O 为极点,以x 轴非负半轴为极轴,取相同的长度单位,建立极坐标系,曲线C 的极坐标方程为ρ=4cos θ.(1)写出直线l 的参数方程,并将曲线C 的极坐标方程化为直角坐标方程;(2)若曲线C 与直线l 相交于不同的两点M ,N ,求|PM |+|PN |的取值范围.24. 设函数f (x )=|x -4m|+|x +m | (m >0). (1)证明:f (x )≥4;(2)若f (2)>5,求m 的取值范围.。
2023届高三数学一轮复习模拟冲刺卷(二)(含答案)

2023届高三数学一轮复习模拟冲刺卷(二)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合U ={}0,1,3,5,6,8 ,A ={}3,5,8 ,B ={}2 ,则()∁U A ∪B =( ) A .{}0,1,2,6 B .{}0,3,6 C .{}1,2,5,8 D .∅2.已知a 是实数,a -i1+i是纯虚数,则a =( )A .1B .-1C .2D .-23.某地实行高考改革,考生除参加语文、数学、外语统一考试外,还需从物理、化学、生物、政治、历史、地理六科中选考三科,要求物理、化学、生物三科至少选一科,政治、历史、地理三科至少选一科,则考生共有多少种选考方法( )A .6B .12C .18D .24 4.陀螺指的是绕一个支点高速转动的几何体,是中国民间最早的娱乐工具之一.传统陀螺大致是木或铁制的倒圆锥形,玩法是用鞭子抽.中国是陀螺的老家,从中国山西夏县新石器时代的遗址中,就发掘了石制的陀螺.如图,一个倒置的陀螺,上半部分为圆锥,下半部分为同底圆柱,其中总高度为8 cm ,圆柱部分高度为6 cm ,已知该陀螺由密度为0.7 g/cm 3的木质材料做成,其总质量为70 g ,则最接近此陀螺圆柱底面半径的长度为( )A .2.2 cmB .2.4 cmC .2.6 cmD .2.8 cm5.从边长为1的正方体ABCD -A 1B 1C 1D 1的8个顶点中选取4个点,其中这4个点中任意两点间的距离都相等的概率为( )A .15B .17C .335D .1356.2020年我国832个贫困县全部“摘帽”,脱贫攻坚战取得伟大胜利.湖北秭归是“中国脐橙之乡”,全县脐橙综合产值年均20亿元,被誉为促进农民增收的“黄金果”.已知某品种脐橙失去的新鲜度h 与其采摘后的时间t (天)满足关系式:h =m ·a t .若采摘后10天,这种脐橙失去的新鲜度为10%,采摘后20天失去的新鲜度为20%,那么采摘下来的这种脐橙在多长时间后失去50%的新鲜度(已知lg 2≈0.3,结果四舍五入取整数)( )A .23天B .33天C .43天D .50天7.已知P 是边长为2的正三角形ABC 的边BC 上的一点,则AP → ·AB →的取值范围是( ) A .[2,6] B .[2,4] C .(2,4) D .(0,4)8.已知定义在R 上的奇函数f ()x 满足f ()π+x =f ()-x ,当x ∈()0,π 时,f ()x =sin xx 2-πx +π,则下列结论正确的是( )A .π是函数f ()x 的周期B .函数f ()x 在R 上的最大值为2C .函数f ()x 在⎝⎛⎭⎫-π2,π2 上单调递减 D .方程f ()x -12=0在x ∈()-10,10 上的所有实根之和为3π二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知双曲线的方程为x 216 -y 29=1,则下列说法正确的是( )A .焦点为(±7 ,0)B .渐近线方程为3x ±4y =0C .离心率e =54D .焦点到渐近线的距离为410.函数f ()x =A sin ()ωx +φ ()ω>0,A >0 的部分图象如图所示,则( )A .ω=π2 B .A =6C .φ=-π4D .f ()0 =-311.已知a >0,b >0,且a -b =1,则( ) A .e a -e b >1 B .a e -b e <1C .9a -1b≤4 D .2log 2a -log 2b ≥212.下列命题中,说法正确的是( )A .已知随机变量服从二项分布B (n ,p ),若D (X )=20,E (X )=30,则p =23B .将一组数据中的每个数据都加上同一个常数后,方差恒不变C .设随机变量ξ服从正态分布N (0,1),若P (ξ>1)=p ,则P (-1<ξ≤0)=12-pD .某人在10次射击中,击中目标的次数为X ,X ~B (10,0.8),则当X =8时概率最大 三、填空题:本题共4小题,每小题5分,共20分.13.向量a =(1,2),b =(x ,1).若(a +b )⊥(a -b ),则x =________.14.在各项都为正数的等比数列{}a n 中,已知0<a 1<1,其前n 项之积为T n ,且T 12=T 6,则T n 取最小值时,n 的值是________.15.过抛物线C :y 2=2px (p >0)的焦点F 的直线l 与C 相交于A ,B 两点,且A ,B 两点在准线上的射影分别为M ,N ,△AFM 的面积与△BFN 的面积互为倒数,则△MFN 的面积为________.16.过曲线y =x +1x(x >0)上一点P 作该曲线的切线l ,l 分别与直线y =x ,y =2x ,y 轴相交于点A ,B ,C .设△OAC ,△OAB 的面积分别为S 1,S 2,则S 1=________,S 2的取值范围是________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c 已知b (sin B +sin C )=a sin A -c sin C .(1)求角A 的大小.(2)若sin ⎝⎛⎭⎫C -π6 =1313,求tan B 的值.18.(12分)已知首项为32的等比数列{}a n 的前n 项和为S n (n ∈N *), 且-2S 2,S 3,4S 4成等差数列.(1)求数列{}a n 的通项公式;(2)证明:S n +1S n ≤136(n ∈N *).19.(12分)华为手机作为全球手机销量第二位,一直深受消费者喜欢.惠州某学校学习小组为了研究手机用户购买新手机时选择华为品牌是否与年龄有关系,于是随机调查了100个2021年购买新手机的人,得到如下不完整的列联表.定义用户年龄30岁以下为“年轻用户”,30(1)龄有关?(2)若从购买华为手机用户中采取分层抽样的方法抽出9人,再从中随机抽取3人,其中年轻用户的人数记为X ,求X 的分布列和数学期望.附:χ2=n ()ad -bc 2()a +b ()c +d ()a +c ()b +d .20.(12分)如图,在三棱柱ABC A 1B 1C 1中,侧面ABB 1A 1是菱形,∠BAA 1=60°,E 是棱BB 1的中点,CA =CB ,F 在线段AC 上,且AF =2FC .(1)证明:CB 1∥平面A 1EF ;(2)若CA ⊥CB ,平面CAB ⊥平面ABB 1A 1,求二面角F A 1E A 的余弦值.21.(12分)已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的离心率为22,焦距为2.(1)求椭圆C 的方程;(2)设A ,B 为椭圆C 上两点,O 为坐标原点,k OA ·k OB =-12,点D 在线段AB 上,且AD →=13 AB → ,连接OD 并延长交椭圆C 于E ,试问|OE ||OD | 是否为定值?若是定值,求出定值;若不是定值,请说明理由.22.(12分)已知函数f (x )=x e x .(1)求f (x )在x =-2处的切线方程;(2)已知关于x 的方程f (x )=a 有两个实根x 1,x 2,当-1e <a <-2e2 时,求证:|x 1-x 2|<(e 2+1)a +4.2023届高三数学一轮复习模拟冲刺卷(二)1.答案:A解析:由题设知:∁U A ={0,1,6},而B ={}2 , ∴()∁U A ∪B ={0,1,2,6}.故选A. 2.答案:A解析:a -i1+i =()a -i ·()1-i ()1+i ·()1-i=a -1-()a +1i 2 ,所以⎩⎪⎨⎪⎧a -1=0a +1≠0 ,a =1.故选A.3.答案:C解析:从六科中选考三科的选法有C 36 ,其中包括了没选物理、化学、生物中任意一科与没选政治、历史、地理中任意一科,这两种选法均有C 33 ,因此考生的选考方法有C 36 -2C 33 =18种.故选C. 4.答案:A解析:由题可得该陀螺的总体积为700.7=100 cm 3, 设底面半径为r ,则可得πr 2×6+13 πr 2×()8-6 =100,解得r = 15π≈2.2 cm.故选A.5.答案:D解析:从边长为1的正方体的8个顶点中选取4个点,共有C 48 =70种情况,满足4个点中任意两点间的距离都相等的有ACB 1D 1,BDA 1C 1这2种情况,所以4个点任意两点间的距离都相等的概率为135,故选D.6.答案:B解析:由题意可知⎩⎪⎨⎪⎧10%=m ×a 1020%=m ×a 20,∴⎩⎪⎨⎪⎧a 10=2,m =5%,∴50%=5%×a t , ∴a t=10,即2t 10=10,∴t =10log 210,∴t ≈33, 故选B. 7.答案:B解析:如图所示,D 为AB 的中点,AP → ·AB → =|AP → ||AB →|cos ∠BAP ,当P 在B 时,AP → 在AB →方向上的投影AB 最大, ∴(AP → ·AB →)max =2×2=4,当P 在C 时,AP → 在AB →方向上的投影AD 最小, (AP → ·AB →)min =2×1=2, ∴AP → ·AB →的取值范围是[2,4].8.答案:D解析:∵f ()x 是R 上的奇函数,∴f ()-x =-f ()x ,∵f ()π+x =f ()-x =-f ()x ≠f ()x ,故π不是函数f ()x 的周期,且f ()x +2π =-f ()x +π =f ()x ,故2π是函数f ()x 的周期,故A 错误;当x ∈⎝⎛⎭⎫0,π2 时,y =sin x >0且单调递增,y =x 2-πx +π>0且单调递减,则f ()x 单调递增,故C 错误;当x ∈⎝⎛⎭⎫π2,π 时,y =sin x >0且单调递减,y =x 2-πx +π>0且单调递增,则f ()x 单调递减;且f ()0 =f ()π =0,又f ()x 是奇函数且周期为2π,∴f ()x max=f ⎝⎛⎭⎫π2 =44π-π2 ≠2,故B 错误;由f ()π+x =f ()-x 可得f ()x 关于x =π2对称,方程f ()x -12 =0的根等价于y =f ()x 与y =12的交点的横坐标,根据f ()x 的单调性和周期可得,y =f ()x 与y =12 在()0,π 有两个关于x =π2 对称的交点,在()2π,3π 有两个关于x =5π2对称的交点,在()-2π,-π 有两个关于x =-3π2 对称的交点,所以方程f ()x -12=0在x ∈()-10,10 上的所有实根之和为π2 ×2+5π2×2+⎝⎛⎭⎫-3π2 ×2=3π,故D 正确.故选D.9.答案:BC解析:对A ,焦点为(±5,0),故A 错误;对B ,渐近线方程为x 216 -y 29=0⇒3x ±4y =0,故B 正确;对C ,e =c a =54,故C 正确;对D ,焦点到渐近线的距离为d =3×542+32 =3,故D 错误;故选BC.10.答案:ABD解析:由已知,T 2 =8.5-6.5=2,所以T =4=2πω ,解得ω=π2 ,所以f ()x =A sin ⎝⎛⎭⎫π2x +φ . 又f ()8.5 =f ()0.5 =0,所以A sin ⎝⎛⎭⎫π4+φ =0,则π4 +φ=k π,k ∈Z ,即φ=-π4+k π,k ∈Z ①. 又f ()5 =3 ,即A sin ⎝⎛⎭⎫5π2+φ =3 ,所以A cos φ=3 ②.由①②可得A =6 ,所以f ()x =6 sin ⎝⎛⎭⎫π2x -π4 .故f ()0 =6 sin ⎝⎛⎭⎫-π4 =-3 .故选ABD. 11.答案:ACD解析:对A ,由a >0,b >0,且a -b =1可得a >b >0,则e a -e b =e b ()e a -b -1 =e b ()e -1 ,∵b >0,∴e b>1,又e -1>1,∴e b()e -1 >1,即e a-e b>1,故A 正确;对B ,令a =2,b =1,则a e -b e =2e -1>1,故B 错误;对C ,9a -1b =⎝⎛⎭⎫9a -1b ()a -b =10-⎝⎛⎭⎫9b a +a b ≤10-2 9b a ·a b =4,当且仅当9b a =a b时等号成立,故C 正确;对D ,2log 2a -log 2b =log 2a 2b =log 2()b +12b=log 2⎝⎛⎭⎫b +1b +2 ≥log 2⎝⎛⎭⎫2 b ·1b +2 =2,当且仅当b =1b ,即b =1时等号成立,故D 正确.故选ACD.12.答案:BCD解析:A 选项:⎩⎪⎨⎪⎧np (1-p )=20np =30 ,两式相除得1-p =23 ,故p =13,故A 错误;B 选项:由D (aX +b )=a 2D (X )知,当a =1时D (X +b )=D (X ),故B 正确;C 选项:由ξ~N (0,1)可知P (ξ≤0)=12,且P (ξ≤-1)=P (ξ≥1)=p ,所以P (-1<ξ≤0)=P (ξ≤0)-P (ξ<-1)=12 -p ,故C 正确;D 选项:P (X =k )P (X =k +1) =C k 10 ×0.8k ×0.210-kC k +110×0.8k +1×0.29-k =k +14(10-k ),P (X =k )P (X =k -1) =C k 10 ×0.8k ×0.210-kC k -110 ×0.8k -1×0.211-k =4(11-k )k令⎩⎪⎨⎪⎧k +14(10-k )≥14(11-k )k ≥1 ,解得395 ≤k ≤445,又k ∈Z ,故k =8,故k =8时概率最大,故D 正确.故选BCD. 13.答案:±2解析:(a +b )=(1+x ,3),(a -b )=(1-x ,1),(a +b )⊥(a -b )=(1-x )(1+x )+3=1-x 2+3=4-x 2=0,所以x =±2. 14.答案:9解析:由T 12=T 6得T 12T 6=1,即a 7a 8a 9a 10a 11a 12=()a 9a 10 3=1故a 9a 10=1,因为a 1a 18=a 9a 10,则a 1a 18=1,由于0<a 1<1,得a 18>1,所以等比数列{}a n 是递增数列,故0<a 9<1<a 10, 则T n 取最小值时,n =9. 15.答案:2解析:设∠MAF =θ,||AF =a ,||BF =b ,由抛物线定义可得||AM =a ,||BN =b , 且180°-2∠AFM +180°-2∠BFN =180°,故∠AFM +∠BFN =90°, 故∠MFO +∠NFO =90°即MF ⊥NF .由余弦定理得||MF 2=2a 2(1-cos θ),||NF 2=2b 2(1+cos θ),S △MAF =12 a 2sin θ,S △NBF =12b 2sin θ因为△AFM 的面积与△BFN 的面积互为倒数, 所以有12 a 2sin θ·12b 2sin θ=1,即a 2b 2sin 2θ=4,所以(S △MFN )2=(14 ||MF 2 ||NF 2)=a 2b 2sin 2θ=4,所以△MFN 的面积为2.16.答案:2 (0,2)解析:由y =x +1x ,得y ′=1-1x 2 ,设P (x 0,x 0+1x 0 )(x 0>0),则y ′|x =x 0=1-1x 20,∴曲线在P 处的切线方程为y -x 0-1x 0 =(1-1x 20 )(x -x 0).分别与y =x 与y =2x 联立,可得A (2x 0,2x 0),B (2x 0x 20 +1 ,4x 0x 20 +1 ),取x =0,可得C (0,2x 0 ),又O (0,0),∴△OAC 的面积S 1=12 ×2x 0 ×2x 0=2;OA =4x 20 +4x 20 =22 x 0,点B 到直线x -y =0的距离 d =⎪⎪⎪⎪⎪⎪2x 0x 20 +1-4x 0x 20 +12 =2x 0x 20 +1 .∴△OAB 的面积S 2=12 ×22 x 0×2x 0x 20 +1 =2x 20 x 20 +1 =21+1x 20∈(0,2).17.解析:(1)因为b (sin B +sin C )=a sin A -c sin C , 所以由正弦定理,得b (b +c )=a 2-c 2, 即b 2+c 2-a 2=-bc .由余弦定理,得cos A =b 2+c 2-a 22bc =-12.又0<A <π,故A =2π3 .(2)由(1)知,C ∈⎝⎛⎭⎫0,π3 ,则C -π6 ∈⎝⎛⎭⎫-π6,π6 . 因为sin ⎝⎛⎭⎫C -π6 =1313 ,所以cos ⎝⎛⎭⎫C -π6 =23913 , 故tan ⎝⎛⎭⎫C -π6 =123因为A +B +C =π,所以tan B =tan ⎝⎛⎭⎫π3-C =tan ⎣⎡⎦⎤π6-⎝⎛⎭⎫C -π6 =tan π6-tan ⎝⎛⎭⎫C -π61+tan π6tan ⎝⎛⎭⎫C -π6 =13-1231+13×123=37 .18.解析:(1)设等比数列{}a n 的公比为q ,因为-2S 2,S 3,4S 4成等差数列,所以S 3 + 2S 2 =4S 4-S 3,即2a 4=-a 3,于是q =a 4a 3 =-12 ,又a 1=32,所以等比数列{}a n 的通项公式为a n =32 ×(-12 )n -1=(-1)n -1·32n .(2)由(1)得S n =1-(-12 )n ,所以S n +1S n =1-⎝⎛⎭⎫-12 n +11-⎝⎛⎭⎫-12n =⎩⎪⎨⎪⎧2+12n (2n +1),n 为奇数,2+12n (2n -1),n 为偶数,当n 为奇数时,S n +1S n 随n 的增大而减小,所以S n +1S n ≤S 1+1S 1 =136 ;当n 为偶数时,S n +1S n 随n 的增大而减小,所以S n +1S n ≤S 2+1S 2 =2512 ,故对于n ∈N *,有S n +1S n ≤136.19.解析:(1)列联表χ2=100×()12×36-24×28236×64×40×60=2524 ≈1.042<2.706,所以没有90%的把握认为购买手机时选择华为与年龄有关.(2)由9×1236 =3,9×2436 =6,即年轻用户抽取3人,非年轻用户抽取6人.所以X 所有可能的取值为0,1,2,3P ()X =0 =C 03 C 36 C 39 =521 ,P ()X =1 =C 13 C 26C 39 =1528 ,P ()X =2 =C 23 C 16 C 39 =314 ,P ()X =3 =C 33 C 06C 39=184 ,所以X 的分布列为:所以E ()X =0×521 +1×1528 +2×314 +3×184 =1所以X 的数学期望值为1.20.解析:(1)连接AB 1交A 1E 于点G ,连接FG .因为△AGA 1∽△B 1GE ,所以AG GB 1 =AA 1EB 1=2,又因为AF FC =2,所以AF FC =AGGB 1,所以FG ∥CB 1,又CB 1⊄平面A 1EF ,FG ⊂平面A 1EF ,所以CB 1∥平面A 1EF .(2)过C 作CO ⊥AB 于O ,因为CA =CB ,所以O 是线段AB 的中点.因为平面CAB ⊥平面ABB 1A 1,平面CAB ∩平面ABB 1A 1=AB ,所以CO ⊥平面ABA 1.连接OA 1,因为△ABA 1是等边三角形,O 是线段AB 的中点,所以OA 1⊥AB .如图以O 为原点,OA → ,OA 1,OC →分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,不妨设AB =2,则A (1,0,0),A 1(0,3 ,0),C (0,0,1),B (-1,0,0),F (13 ,0,23),由AA 1=BB 1,得B (-2,3 ,0),BB 1的中点E ⎝⎛⎭⎫-32,32,0 ,A 1E =⎝⎛⎭⎫-32,-32,0 ,A 1F =⎝⎛⎭⎫13,-3,23 . 设平面A 1FE 的一个法向量为n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧A 1F ·n 1=0A 1E ·n 1=0 ,即⎩⎨⎧x 13-3y 1+23z 1=0-32x 1-32y 1=0 , 得方程的一组解为⎩⎪⎨⎪⎧x 1=-1y 1=3z 1=5 ,即n 1=(-1,3 ,5).平面ABA 1的一个法向量为n 2=(0,0,1),则cos 〈n 1,n 2〉=n 1·n 2||n 1||n 2 =52929 , 所以二面角F A 1E A 的余弦值为52929. 21.解析:(1)依题意,⎩⎪⎨⎪⎧c a =222c =2a 2=b 2+c 2 ,解得⎩⎪⎨⎪⎧a =2b =1c =1, ∴椭圆C 的方程为x 22+y 2=1; (2)设点A (x 1,y 1),B (x 2,y 2),D (x 3,y 3), 由AD → =13 AB → 得⎩⎪⎨⎪⎧x 3=2x 1+x 23y 3=2y 1+y 23 ,设|OE ||OD | =λ,则结合题意可知,OE → =λOD → ,故E (λx 3,λy 3),将点E (λx 3,λy 3)代入椭圆方程可得λ2⎝⎛⎭⎫x 23 2+y 23 =1,即1λ2 =x 23 2 +y 23 =⎝ ⎛⎭⎪⎫2x 1+x 2322 +⎝ ⎛⎭⎪⎫2y 1+y 23 2, 整理可得,1λ2 =49 ⎝⎛⎭⎫x 21 2+y 21 +49 ⎝⎛⎭⎫x 1x 22+y 1y 2 +19 ⎝⎛⎭⎫x 22 2+y 22 , 又∵点A ,B 均在椭圆上,且k OA ·k OB =-12 , ∴⎩⎪⎨⎪⎧x 21 2+y 21 =1x 22 2+y 22 =1k OA ·k OB =y 1x 1·y 2x 2=-12 , ∴λ=355 ,即|OE ||OD | 为定值355. 22.解析:(1)∵f (x )=x e x ,f (-2)=-2e2 ,∴f ′(x )=(x +1)e x ,f ′(-2)=-1e 2 , 故x =-2时的切线方程是y =-1e 2 (x +2)-2e 2 , 即y =-1e 2 x -4e 2 ; (2)证明:由(1)知:f (x )在(-∞,-1)递减,在(-1,+∞)递增,∵f (-1)=-1e ,f (-2)=-2e 2 , 当-1e <a <-2e 2 时,方程f (x )=a 有2个实根x 1,x 2,则x 1,x 2∈(-2,0), 令g (x )=f (x )+1e 2 x +4e 2 (-2<x <0), 则g ′(x )=(x +1)e x +1e 2 , 令h (x )=g ′(x ),则h ′(x )=(x +2)e x >0,故g ′(x )在(-2,0)递增,故g ′(x )>g ′(-2)=0,故g (x )在(-2,0)递增,故g (x )>g (-2)=0,故g (x 1)>0,故a =f (x 1)=g (x 1)-1e 2 x 1-4e 2 >-1e 2 x 1-4e 2 , 故-(e 2a +4)<x 1,故x ∈(-2,0)时,x e x >x ,故a =f (x 2)>x 2,故|x 1-x 2|<a +e 2a +4=(e 2+1)a +4.。
人教版高三数学一轮复习练习题全套—(含答案)及参考答案

高考数学复习练习题全套(附参考答案)1. 已知:函数()()2411f x x a x =+-+在[)1,+∞上是增函数,则a 的取值范围是 .2. 设,x y 为正实数,且33log log 2x y +=,则11x y+的最小值是 . 3. 已知:()()()()50050A ,,B ,,C cos ,sin ,,αααπ∈. (1)若AC BC ⊥,求2sin α.(2)若31OA OC +=OB 与OC 的夹角.4. 已知:数列{}n a 满足()211232222n n na a a a n N -+++++=∈……. (1)求数列{}n a 的通项. (2)若n nnb a =,求数列{}n b 的前n 项的和n S .姓名 作业时间: 2010 年 月 日 星期 作业编号 002 1. 2275157515cos cos cos cos ++的值等于 .2. 如果实数.x y 满足不等式组22110,220x x y x y x y ≥⎧⎪-+≤+⎨⎪--≤⎩则的最小值是 .3. 北京奥运会纪念章某特许专营店销售纪念章,每枚进价为5元,同时每销售一枚这种纪念章还需向北京奥组委交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时该店一年可销售2000枚,经过市场调研发现每枚纪念章的销售价格在每枚20元的基础上每减少一元则增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为x 元(x ∈N *).(1)写出该特许专营店一年内销售这种纪念章所获得的利润y (元)与每枚纪念章的销售价格x 的函数关系式(并写出这个函数的定义域);(2)当每枚纪念销售价格x 为多少元时,该特许专营店一年内利润y (元)最大,并求出这个最大值.4. 对于定义域为[]0,1的函数()f x ,如果同时满足以下三条:①对任意的[]0,1x ∈,总有()0f x ≥;②(1)1f =;③若12120,0,1x x x x ≥≥+≤,都有1212()()()f x x f x f x +≥+成立,则称函数()f x 为理想函数.(1) 若函数()f x 为理想函数,求(0)f 的值;(2)判断函数()21xg x =-])1,0[(∈x 是否为理想函数,并予以证明;(3)若函数()f x 为理想函数,假定∃[]00,1x ∈,使得[]0()0,1f x ∈,且00(())f f x x =,求证00()f x x =.0.01频率组距姓名 作业时间: 2010 年 月 日 星期 作业编号 003 1. 复数13i z =+,21i z =-,则复数12z z 在复平面内对应的点位于第_______象限. 2. 一个靶子上有10个同心圆,半径依次为1、2、……、10,击中由内至外的区域的成绩依次为10、9、……、1环,则不考虑技术因素,射击一次,在有成绩的情况下成绩为10环的概率为 . 3. 某校从参加高一年级期末考试的学生中抽出60名学生,将其成绩(是不小于40不大于100的整数)分成六段[)50,40,[)60,50…[]100,90后:(1)求第四小组的频率,并补全这个画出如下部分频率分布直方图.(2) 观察频率分布直方图图形的信息,估计这次考试的及格率(60分及以上为及格)和平均分.4. 在ABC ∆中,c ,b ,a 分别是角A 、B 、C 的对边,,a (n ),C cos ,c b (m =-=→→2)A cos ,且→→n //m . (1)求角A 的大小;(2)求)23cos(sin 22B B y -+=π的值域.姓名 作业时间: 2010 年 月 日 星期 作业编号 0041. 如果执行下面的程序框图,那么输出的S =2.△ABC 中,︒=∠==30,1,3B AC AB ,则△ABC 的面积等于 __. 3. 如图,在正方体ABCD -A 1B 1C 1D 1中,E 、F 为棱AD 、AB 的中点. (1)求证:EF ∥平面CB 1D 1; (2)求证:平面CAA 1C 1⊥平面CB 1D 1.4. 已知数列{}n a 的首项1213a a ==,,前n 项和为n S ,且1n S +、n S 、1n S -(n ≥2)分别是直线l 上的点A 、B 、C 的横坐标,21n na AB BC a +=,设11b =,12log (1)n n n b a b +=++. ⑴ 判断数列{1}n a +是否为等比数列,并证明你的结论;⑵ 设11114n b n n n n c a a +-++=,证明:11<∑=nk k C .批阅时间 等级ADA B 1C 1D 1E课堂作业参考答案(1)1. 32a ≤;2. 23; 3. 解:(1)()()cos 5,sin ,cos ,sin 5AC BC αααα=-=-…………………………1分AC BC ⊥,∴()()cos cos 5sin sin 50AC BC αααα⋅=-+-=,即1sin cos 5αα+=………………………………………………………………4分 ∴()21sin cos 25αα+=, ∴24sin 225α=-………………………………………7分(2)()5cos ,sin OA OC αα+=+,∴(5OA OC +==……9分∴1cos 2α= 又()0,απ∈,∴sin α=, 1,22C ⎛ ⎝⎭,∴53OB OC ⋅=11分设OB 与OC 夹角为θ,则52cos 512OB OC OB OCθ⋅===⋅⋅,∴30θ︒= , OB 与OC 夹角为30︒……14分。
高三数学第一轮复习专题测试试题

〔1〕—集合与函数
〔2〕—数列
〔3〕—三角函数
〔4〕—平面向量
〔5〕—不等式
〔1〕—集合与函数
一、选择题:本大题一一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的.
1.设集合 ,那么满足 的集合B的个数是〔〕
[解法二]当 时, .
由 得 ,
令 ,解得 或者 ,
在区间 上,当 时, 的图像与函数 的图像只交于一点 ;
当 时, 的图像与函数 的图像没有交点.
如图可知,由于直线 过点 ,当 时,直线 是由直线
绕点 逆时针方向旋转得到.因此,在区间 上, 的图像
位于函数 图像的上方.
22.〔1〕∵ ,∴要使 有意义,必须 且 ,即
A.1B.3C.4D.8
2.集合M={x| },N={y|y=3x2+1,xR},那么MN=〔〕
A.B.{x|x1}C.{x|x1}D.{x|x1或者x0}
3.有限集合 中元素个数记作card ,设 、
① 的充要条件是card =card +card ;
② 的必要条件是card card ;
③ 的充分条件是card card ;
card card =0 .由 的定义知card card .
4.D. ,用数轴表示可得答案D.
5.A.∵ ∴ 即
∵ ∴ 即
∴函数 的反函数为 .
6.B.由 ,应选B.
7.B.在其定义域内是奇函数但不是减函数;C在其定义域内既是奇函数又是增函数;D在其定义域内不是奇
函数,是减函数;应选A.
8.C.利用互为反函数的图象关于直线y=x对称,得点〔2,0〕在原函数 的图象上,即 ,
高三数学第一轮复习试卷

一、选择题(每题5分,共50分)1. 若函数f(x) = ax^2 + bx + c在x=1时取得最小值,则下列选项中正确的是()A. a > 0, b = 0, c < 0B. a < 0, b = 0, c > 0C. a > 0, b ≠ 0, c > 0D. a < 0, b ≠ 0, c < 02. 下列各数中,无理数是()A. √3B. -√2C. 3/4D. 1.4143. 若复数z满足|z - 2i| = 3,则复数z在复平面内对应的点的轨迹是()A. 圆B. 线段C. 直线D. 双曲线4. 已知函数f(x) = log2(x - 1),则f(x)的定义域是()A. (1, +∞)B. (0, 1)C. (1, 2]D. (2, +∞)5. 若等差数列{an}的前n项和为Sn,且S3 = 9,S5 = 21,则该数列的公差d是()A. 2B. 3C. 4D. 56. 下列命题中,正确的是()A. 若两个函数的图像关于y轴对称,则这两个函数互为反函数B. 若两个函数的图像关于x轴对称,则这两个函数互为反函数C. 若两个函数的图像关于原点对称,则这两个函数互为反函数D. 若两个函数的图像关于直线y = x对称,则这两个函数互为反函数7. 已知函数f(x) = x^3 - 3x,若存在实数a和b,使得f(a) + f(b) = 0,则a + b的值为()A. 0B. 1C. -1D. 28. 下列方程中,无解的是()A. x^2 + 2x + 1 = 0B. x^2 + 2x - 1 = 0C. x^2 - 2x + 1 = 0D. x^2 - 2x - 1 = 09. 若不等式x^2 - 4x + 3 < 0的解集是()A. (1, 3)B. (-∞, 1) ∪ (3, +∞)C. (-∞, 1) ∩ (3, +∞)D. (1, +∞) ∪ (-∞, 3)10. 已知函数f(x) = (x - 1)/(x + 1),则f(-1)的值为()A. 0B. 1C. -1D. 不存在二、填空题(每题5分,共50分)11. 已知等差数列{an}的前n项和为Sn,若a1 = 2,d = 3,则S10 = ________.12. 若复数z = a + bi(a, b ∈ R),则|z|^2 = ________.13. 函数f(x) = log2(3 - 2x)的定义域为 ________.14. 若等比数列{an}的公比q = -2,且a1 = 3,则第5项a5 = ________.15. 已知函数f(x) = x^2 - 2x + 3,则f(-1) = ________.16. 若不等式x^2 - 4x + 3 ≤ 0的解集为A,则不等式x^2 - 4x + 3 > 0的解集为 ________.17. 已知函数f(x) = 2x - 1,则f(-3) + f(2) = ________.18. 若复数z满足|z - 2i| = 3,则复数z在复平面内对应的点的坐标是________.19. 已知函数f(x) = (x - 1)/(x + 1),则f(1)的值为 ________.20. 若等差数列{an}的前n项和为Sn,且S3 = 9,S5 = 21,则该数列的第4项a4 = ________.三、解答题(每题20分,共60分)21. (本题满分20分)已知函数f(x) = ax^2 + bx + c(a ≠ 0),若f(1) = 2,f(2) = 5,求a,b,c的值。
高三数学模考试卷及答案

一、选择题(每题5分,共50分)1. 函数f(x) = (x-1)^2在区间[0,2]上的单调性为:A. 单调递增B. 单调递减C. 先增后减D. 无单调性2. 已知等差数列{an}的首项a1=3,公差d=2,则第10项a10等于:A. 23B. 21C. 19D. 173. 在直角坐标系中,点P(2,3)关于直线y=x的对称点为:A. (2,3)B. (3,2)C. (3,-2)D. (-2,3)4. 若复数z满足|z-1|=|z+1|,则复数z的取值范围是:A. z=0B. z=1C. z=-1D. z=±15. 已知等比数列{bn}的首项b1=4,公比q=2,则第5项b5等于:A. 32B. 16C. 8D. 46. 若函数f(x) = ax^2 + bx + c在x=1时取得极值,则a、b、c之间的关系是:A. a+b+c=0B. a-b+c=0C. a+b-c=0D. a-b-c=07. 在三角形ABC中,∠A=60°,∠B=45°,则∠C的度数是:A. 75°B. 90°C. 105°D. 120°8. 已知函数f(x) = x^3 - 3x,则f(x)的图像关于原点对称的是:A. x=0B. x=1C. x=-1D. x=39. 若不等式2x-3<5,则x的取值范围是:A. x<2B. x<8C. x>2D. x>810. 在平面直角坐标系中,直线y=2x+1与y轴的交点坐标为:A. (0,1)B. (1,0)C. (0,-1)D. (-1,0)二、填空题(每题5分,共50分)11. 函数f(x) = (x-1)/(x+1)的图像与x轴的交点坐标是______。
12. 若等差数列{an}的通项公式为an = 3n-2,则该数列的前5项和为______。
13. 在三角形ABC中,若AB=AC,则角B和角C的度数分别为______和______。
高三数学一轮复习《函数的应用》综合复习练习题(含答案)

高三数学一轮复习《函数的应用》综合复习练习题(含答案)一、单选题 1.函数2ln y x x=-的零点所在的大致区间是( ) A .1(,1)eB .(1,2)C .(2,e)D .(e,)+∞2.已知函数()2sin 4f x x m π⎛⎫=++ ⎪⎝⎭在区间()0,π上有零点,则实数m 的取值范围为( )A .()2,2-B .(2,2⎤-⎦C .2,2⎡⎤-⎣⎦D .)2,2⎡-⎣3.已知函数()()32,0log ,0x x f x x k x +<⎧=⎨+≥⎩,则“(],3k ∈-∞”是“函数()()1F x f x =-有两个零点”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.中国是全球最大的光伏制造和应用国,平准化度电成本(LCOE )也称度电成本,是一项用于分析各种发电技术成本的主要指标,其中光伏发电系统与储能设备的等年值系数CRF I 对计算度电成本具有重要影响.等年值系数CRF I 和设备寿命周期N 具有如下函数关系()()CRF 0.05111NNr I r +=+-,r 为折现率,寿命周期为10年的设备的等年值系数约为0.13,则对于寿命周期约为20年的光伏-储能微电网系统,其等年值系数约为( ) A .0.03B .0.05C .0.07D .0.085.已知函数()f x 的图像如图所示,则该函数的解析式为( )A .3()e ex x x f x -=+B .3e e ()x xf x x -+=C .2()e e x x x f x -=-D .3e e ()x xf x x --=6.已知函数2ln ,0,()=2,0.xx f x x x x x ⎧>⎪⎨⎪+≤⎩,若()()g x f x a =-有3个零点,则a 的取值范围为( )A .()1,0-B .11,e ⎛⎫- ⎪⎝⎭ C .10,e ⎡⎫⎪⎢⎣⎭ D .{}10,1e ⎛⎫⋃- ⎪⎝⎭7.我国在2020年9月22日在联合国大会提出,二氧化碳排放力争于2030年前实现碳达峰,争取在2060年前实现碳中和.为了响应党和国家的号召,某企业在国家科研部门的支持下,进行技术攻关:把二氧化碳转化为一种可利用的化工产品,经测算,该技术处理总成本y (单位:万元)与处理量x (单位:吨)([120,500])x ∈之间的函数关系可近似表示为[)[]3221805040,120,1443120080000,144,5002x x x x y x x x ⎧-+∈⎪⎪=⎨⎪-+∈⎪⎩,当处理量x 等于多少吨时,每吨的平均处理成本最少( ) A .120B .200C .240D .4008.已知函数()232,1,42,1,x x x f x x x x ⎧--≤⎪=⎨+->⎪⎩则函数()()3y f f x =-的零点个数为( ) A .2B .3C .4D .59.若函数()2ln f x x x ax =-在区间()0,∞+上有两个极值点,则实数a 的取值范围是( )A .10,4⎛⎫ ⎪⎝⎭B .(],0-∞C .(]1,02⎧⎫-∞⋃⎨⎬⎩⎭D .10,2⎛⎫ ⎪⎝⎭10.已知定义在R 上的奇函数()f x 恒有()()11f x f x -=+,当[)0,1x ∈时,()2121x x f x -=+,已知21,1518k ⎛⎫∈-- ⎪⎝⎭,则函数()()13g x f x kx =--在()1,6-上的零点个数为( )A .4个B .5个C .3个或4个D .4个或5个11.已知函数()34,0,0x x x f x lnx x ⎧-≤=⎨>⎩,若函数()()g x f x x a =+-有3个零点,则实数a 的取值范围是( ) A .[)0,1B .[)0,2C .(],1-∞D .(],2-∞12.设函数()2sin()1(0,0)2f x x πωϕωϕ=+->的最小正周期为4π,且()f x 在[0,5]π内恰有3个零点,则ϕ的取值范围是( )A .50,312ππ⎡⎤⎧⎫⋃⎨⎬⎢⎥⎣⎦⎩⎭B .0,,432πππ⎡⎤⎡⎤⋃⎢⎥⎢⎥⎣⎦⎣⎦C .50,612ππ⎡⎤⎧⎫⋃⎨⎬⎢⎥⎣⎦⎩⎭D .0,,632πππ⎡⎤⎡⎤⋃⎢⎥⎢⎥⎣⎦⎣⎦二、填空题13.已知函数ln ,0()e 1,0xx x f x x ⎧>=⎨+≤⎩,且函数()()g x f x a =-恰有三个不同的零点,则实数a 的取值范围是______. 14.以模型()e0kxy c c =>去拟合一组数据时,设ln z y =,将其变换后得到线性回归方程21z x =-,则c =______.15.函数()sin ln 23f x x x π=--的所有零点之和为__________. 16.设随机变量(),1N ξμ,函数()22f x x x ξ=+-没有零点的概率是0.5,则()01P ξ<≤=_____________附:若()2,N ξμσ,则()0.6826P μσξμσ-<≤+≈,(22)0.9544P μσξμσ-<≤+≈.三、解答题 17.已知函数22()1=-f x x . (1)求()f x 的零点;(2)判断()f x 的奇偶性,并说明理由; (3)证明()f x 在(0,)+∞上是减函数.18.已知函数4()12x f x a a =-+(0a >且1a ≠)为定义在R 上的奇函数.(1)利用单调性的定义证明函数()f x 在R 上单调递增;(2)求不等式()22(4)0f x x f x ++->的解集.(3)若函数()()1g x kf x =-有零点,求实数k 的取值范围.19.对于定义域为D 的函数()y f x =,若同时满足以下条件:①()y f x =在D 上单调递增或单调递减;②存在区间[],a b D ⊆,使()y f x =在[],a b 上的值域是[],a b ,那么我们把函数()()y f x x D =∈叫做闭函数.(1)判断函数()()110g x x x=->是不是闭函数?(直接写出结论,无需说明理由) (2)若函数()()2111h x x m x m=-++>0为闭函数,则当实数m 变化时,求b a -的最大值. (3)若函数()1e ln 112xx x x k x φ⎛⎫=-+-≤≤ ⎪⎝⎭为闭函数,求实数k 的取值范围.(其中e 是自然对数的底数,e 2.7≈)20.已知函数32()f x x ax bx c =+++在点()1,2P 处的切线斜率为4,且在=1x -处取得极值. (1)求函数()f x 的解析式; (2)求函数()f x 的单调区间;(3)若函数()()1g x f x m =+-有三个零点,求m 的取值范围.21.已知函数()()24f x x x a x =-+∈R .(1)若(1,3)x ∈时,不等式2log ()1f x ≤恒成立,求实数a 的取值范围;(2)若关于x 的方程(21)(2)|21|80x x f a +++-+=有三个不同的实数解,求实数a 的取值范围.22.已知函数()ln f x x x =-. (1)求证:()1f x ≤-; (2)若函数()()()xxh x af x a e =+∈R 无零点,求a 的取值范围.23.辆高速列车在某段路程中行驶的速率v (单位:km /h )与时间t (单位:h )的关系如图所示.(1)求梯形OABC 的面积,并说明所求面积的实际含义;(2)记梯形OABC 位于直线()04t a a =<≤的左侧的图形的面积为()g a ,求函数()y g a =的解析式,并画出其图象.24.已知函数()ln 2f x x x =--.(1)求曲线()y f x =在1x =处的切线方程;(2)函数()f x 在区间(),1k k +()k N ∈上有零点,求k 的值;(3)记函数21()2()2g x x bx f x =---,设1212,()x x x x <是函数()g x 的两个极值点,若32b ≥,且12()()g x g x k-≥恒成立,求实数k 的取值范围。
高三数学第一轮复习题

高三数学第一轮复习题高三数学第一轮复习题高三学生即将面临着人生中最为关键的一年,他们需要经历一系列的考试来决定他们的未来。
而数学作为一门重要的学科,对于高三学生来说尤为重要。
为了帮助他们更好地复习数学知识,以下是一些高三数学第一轮复习题,希望能对他们有所帮助。
1. 一辆汽车以每小时60公里的速度行驶,行驶了3小时后,又以每小时80公里的速度行驶了2小时。
求这辆汽车行驶的总路程。
解析:根据题意,汽车在前3小时内以60公里/小时的速度行驶,所以行驶的距离为60 * 3 = 180公里。
接下来,汽车以80公里/小时的速度行驶了2小时,所以行驶的距离为80 * 2 = 160公里。
因此,汽车的总行驶距离为180 + 160 = 340公里。
2. 已知函数f(x) = 2x + 3,求f(4)的值。
解析:将x = 4代入函数f(x) = 2x + 3中,得到f(4) = 2 * 4 + 3 = 8 + 3 = 11。
所以f(4)的值为11。
3. 若a + b = 5,a - b = 3,求a和b的值。
解析:将两个方程相加,得到(a + b) + (a - b) = 5 + 3,化简得到2a = 8,所以a = 4。
将a = 4代入第一个方程中,得到4 +b = 5,所以b = 1。
因此,a的值为4,b的值为1。
4. 已知直角三角形的斜边长为10,一条直角边长为6,求另一条直角边的长度。
解析:根据勾股定理,斜边的平方等于两直角边的平方和。
所以10的平方等于6的平方加上另一条直角边的平方,即10^2 = 6^2 + x^2。
化简得到100 = 36+ x^2,再化简得到x^2 = 64,所以x = 8。
因此,另一条直角边的长度为8。
5. 若一个集合A有5个元素,集合B有8个元素,求A和B的交集元素个数。
解析:集合的交集是指两个集合中共有的元素。
因此,A和B的交集元素个数为集合A和集合B中共有的元素个数。
由题意可知,集合A有5个元素,集合B有8个元素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学模拟试题(满分150分)一、选择题(每小题5分,共40分)1.已知全集U ={1,2,3,4,5},集合M ={1,2,3},N ={3,4,5},则M ∩(U N )=( )A. {1,2}B.{4,5}C.{3}D.{1,2,3,4,5} 2. 复数z=i 2(1+i)的虚部为( )A. 1B. iC. -1D. - i3.正项数列{a n }成等比,a 1+a 2=3,a 3+a 4=12,则a 4+a 5的值是( )A. -24B. 21C. 24D. 48 4.一组合体三视图如右,正视图中正方形 边长为2,俯视图为正三角形及内切圆, 则该组合体体积为( )A. 23B.43π C. 23+43πD. 5434327π+5.双曲线以一正方形两顶点为焦点,另两顶点在双曲线上,则其离心率为( ) A. 22 B.2+1 C. 2 D. 16.在四边形ABCD 中,“AB =2DC ”是“四边形ABCD 为梯形”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件7.设P 在[0,5]上随机地取值,求方程x 2+px +1=0有实根的概率为( ) A. 0.2 B. 0.4 C. 0.5 D. 0.68.已知函数f (x )=A sin(ωx +φ)(x ∈R ,A >0,ω>0,|φ|<2π)的图象(部分)如图所示,则f (x )的解析式是( )A .f (x )=5sin(6πx +6π) B.f (x )=5sin(6πx -6π) C.f (x )=5sin(3πx +6π) D.f (x )=5sin(3πx -6π)二、填空题:(每小题5分,共30分)9.直线y =kx +1与A (1,0),B (1,1)对应线段有公 共点,则k 的取值范围是_______. 10.记nxx )12(+的展开式中第m 项的系数为m b ,若432b b =,则n =__________. 11.设函数31()12x f x x -=--的四个零点分别为1234x x x x 、、、,则1234()f x x x x =+++ ;12、设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ 11.211lim______34x x x x →-=+-. 14. 对任意实数x 、y ,定义运算x *y =ax +by +cxy ,其中x-5y O525a 、b 、c 为常实数,等号右边的运算是通常意义的加、 乘运算.现已知2*1=3,2*3=4,且有一个非零实数m , 使得对任意实数x ,都有x *m =2x ,则m = .三、解答题:15.(本题10分)已知向量a =(sin(2π+xx ),b =(sin x ,cos x ), f (x )= a ·b . ⑴求f (x )的最小正周期和单调增区间; ⑵如果三角形ABC 中,满足f (A)=2,求角A 的值.16.(本题10分)如图:直三棱柱(侧棱⊥底面)ABC —A 1B 1C 1中, ∠ACB =90°,AA 1=AC=1,,CD ⊥AB,垂足为D .⑴求证:BC ∥平面AB 1C 1; ⑵求点B 1到面A 1CD 的距离.17.(本题10分)旅游公司为4个旅游团提供5条旅游线路,每个旅游团任选其中一条. (1)求4个旅游团选择互不相同的线路共有多少种方法; (2)求恰有2条线路被选中的概率;(3)求选择甲线路旅游团数的数学期望.18. (本题10分) 数列{a n }满足a 1+2a 2+22a 3+…+2n -1a n =4n . ⑴求通项a n ;⑵求数列{a n }的前n 项和 S n .19.(本题12分)已知函数f (x )=a ln x +bx ,且f (1)= -1,f ′(1)=0, ⑴求f (x );⑵求f (x )的最大值; ⑶若x >0,y >0,证明:ln x +ln y ≤32xy x y ++-.20.(本题14分)设21,F F 分别为椭圆)0(1:2222>>=+b a by a x C 的左、右两个焦点,若椭圆C上的点A(1,2)到F 1,F 2两点的距离之和等于4. ⑴写出椭圆C 的方程和焦点坐标; ⑵过点P (1,14)的直线与椭圆交于两点D 、E ,若DP=PE ,求直线DE 的方程; ⑶过点Q (1,0)的直线与椭圆交于两点M 、N ,若△OMN 面积取得最大,求直线MN 的方程.21. (本题14分) 对任意正实数a 1、a 2、…、an ;求证 1/a 1+2/(a 1+a 2)+…+n/(a 1+a 2+…+a n )<2 (1/a 1+1/a 2+…+1/a n )09高三数学模拟测试答案一、选择题:.ACCD BAD A二、填空题:本题主要考查基础知识和基本运算.每小题4分,共16分. 9.[-1,0] 10.5 11.19 12. 2 13.1514. 3 三、解答题:15.本题考查向量、二倍角和合成的三角函数的公式及三角函数性质,要求学生能运用所学知识解决问题. 解:⑴f (x )= sin x cos xx = sin(2x+3π……… T=π,2 k π-2π≤2x+3π≤2 k π+2π,k ∈Z , 最小正周期为π,单调增区间[k π-512π,k π+12π],k ∈Z .…………………… ⑵由sin(2A+3π)=0,3π<2A+3π<73π,……………∴2A+3π=π或2π,∴A =3π或56π……………………16.、本题主要考查空间线线、线面的位置关系,考查空间距离角的计算,考查空间想象能力和推理、论证能力,同时也可考查学生灵活利用图形,建立空间直角坐标系,借助向量工具解决问题的能力.⑴证明:直三棱柱ABC —A 1B 1C 1中,BC ∥B 1C 1,又BC ⊄平面A B 1C 1,B 1C 1⊂平面A B 1C 1,∴B 1C 1∥平面A B 1C 1;……………… ⑵(解法一)∵CD ⊥AB 且平面ABB 1A 1⊥平面AB C,∴CD ⊥平面ABB 1A 1 ,∴CD ⊥AD 且CD ⊥A 1D , ∴∠A 1DA 是二面角A 1—CD —A 的平面角,在R t △,∴又CD ⊥AB ,∴AC 2=AD×AB∴AD=3,AA 1=1,∴∠DA 1B 1=∠A 1DA=60°,∠A 1B 1A=30°,∴A B 1⊥A 1D 又CD ⊥A 1D ,∴AB 1⊥平面A 1CD ,设A 1D ∩AB 1=P,∴B 1P 为所求点B 1到面A 1CD 的距离. B 1P=A 1B 1cos ∠A 1B 1cos30°=32.即点1B 到面CD A 1的距离为23.………………………………………………… (2)(解法二)由V B 1-A 1CD =V C -A 1B 1D =13×36,而cos ∠A 1CD=2×33, S △A 1CD =12×333,设B 1到平面A 1CD 距离为h ,则13×3h=6,得h =32为所求.⑶(解法三)分别以CA 、CB 、CC 1所在直线为x 、y 、z 轴建立空间直角坐标系(如图)则A (1,0,0),A 1(1,0,1),C (0,0,0),C 1(0,0,1), B (0,0),B 1(0,1),∴D (23,3,0)1CB =(0,1),设平面A 1CD 的法向量n =(x ,y ,z ),则1320n CD x n CA x z ⎧⋅=+=⎨⋅=+=⎩,取n =(1,,-1) 点1B 到面CD A 1的距离为d =1n CB n⋅23=…………………………………… 17.本题主要考查排列,典型的离散型随机变量的概率计算和离散型随机变量分布列及期望等基础知识和基本运算能力.解:(1)4个旅游团选择互不相同的线路共有:A 54=120种方法; …(2)恰有两条线路被选中的概率为:P 2=2454(22)285125C ⋅-= …(3)设选择甲线路旅游团数为ξ,则ξ~B(4,15)∴期望E ξ=np =4×15=45……………… 答: (1)线路共有120种,(2)恰有两条线路被选中的概率为0.224, (3)所求期望为0.8个团数.………………………18.本题主要考查数列的基础知识,考查分类讨论的数学思想,考查考生综合应用所学知识创造性解决问题的能力.解:(1)a 1+2a 2+22a 3+…+2n -1a n =4n ,∴a 1+2a 2+22a 3+…+2n a n +1=4n +1,相减得2n a n +1=3×4n , ∴a n +1=3×2n , 又n =1时a 1=4,∴综上a n =14(1)32(2)n n n -=⎧⎨⨯≥⎩为所求;……………………… ⑵n ≥2时,S n =4+3(2n -2), 又n =1时S 1=4也成立,∴S n =3×2 n -2………………12分19.本题主要考查函数、导数的基本知识、函数性质的处理以及不等式的综合问题,同时考查考生用函数放缩的方法证明不等式的能力.解:⑴由b = f (1)= -1, f ′(1)=a +b =0, ∴a =1,∴f (x )=ln x -x 为所求; ……………⑵∵x >0,f′(x )=1-1=1x -,∴f (x )在x =1处取得极大值-1,即所求最大值为-1; ……………⑶由⑵得ln x ≤x -1恒成立, ∴ln x +ln y =ln 2xy +ln ln 2x y +≤12xy -+112x y -+-=32xy x y ++-成立………20.本题考查解析几何的基本思想和方法,求曲线方程及曲线性质处理的方法要求考生能正确分析问题,寻找较好的解题方向,同时兼顾考查算理和逻辑推理的能力,要求对代数式合理演变,正确分析最值问题.解:⑴椭圆C 的焦点在x 轴上,由椭圆上的点A 到F 1、F 2两点的距离之和是4,得2a=4,即a=2.;又点A(1,2) 在椭圆上,因此22314 1.2b+=得b 2=1,于是c 2=3; 所以椭圆C 的方程为22121,(4x y F F +=焦点,……… ⑵∵P 在椭圆内,∴直线DE 与椭圆相交, ∴设D(x 1,y 1),E(x 2,y 2),代入椭圆C 的方程得x 12+4y 12-4=0, x 22+4y 22-4=0,相减得2(x 1-x 2)+4×2×14(y 1-y 2)=0,∴斜率为k =-1 ∴DE 方程为y -1= -1(x -14),即4x +4y =5;……… (Ⅲ)直线MN 不与y轴垂直,∴设MN 方程为my =x -1,代入椭圆C 的方程得 (m 2+4)y 2+2my -3=0, 设M(x 1,y 1),N(x 2,y 2),则y 1+y 2=-224m m +, y 1y 2=-234m +,且△>0成立. 又S △OMN =12|y 1-y 2|=12=24m +,设t 则S △OMN =21t t,(t +1t )′=1-t -2>0对t 恒成立,∴t 时t +1t取得最小,S △OMN 最大,此时m =0,∴MN 方程为x =1……………。