and
and作为连接词的用法

and作为连接词的用法1、and作并列连词,译为“和、并且”等,当连接三个以上的并列成分时,其放在最后一个成分之前,其余用逗号分开,例如:He bought a book and a pen.他买了一本书和一支笔。
2、名词+and+名词,若这种结构表示一个概念时,and+名词相当于介词with+名词,译为“附带、兼”的意思,例如:Noodle and egg is a kind of delicious food.(and egg=with egg)鸡蛋面是一种美味食物。
3、名词复数+and+同一名词的复数,强调连续或众多的含义。
例如:There are photos and photos.照片一张接着一张。
4、形容词+and+形容词,这种结构形似并列,实际并非并列结构。
例如:This roon is nice and warm(= nicely warm)。
5、用and连接动词的用法:and+动词作目的状语。
动词 go(come,stop等)+and+动词,此时,and+动词相当于in order to+动词,例如:I'll go and bring back your boots,(go and bring back=go in order to bringback)我去把你的靴子拿来。
6、用来补充语意起强调作用,例如,He can express his ideas in English and(that) effectiyely.他能用英语准确地表达自己的想法。
7、用来连接一句祈使句和一句陈述句,这里祈使句+and相当于if,例如:Persevere,and you will succeed.8、用于插入语中作为一种评语,例如:He has a somewhat swelled head,andI don't like this.9、表示对比,例如:Mary likes music and Jim is fond of sports.10、表示条件,例如:Use your head,and you'll find a way.11、表示因果关系,例如:He heard a cry for help,and he rushed ont of the house.12、表示先后顺序,例如:He read for an hour and went to bed.13、表示意义增补,例如:He is Jack of all trades and master of none.14、用and连接比较级,表示程度逐步增强,意思是“越来越”,例如:In winter the day is getting shorter and shorter.冬季,白天变得越来越短。
and_的用法【超全】

一、并列连词and所连接的分句在语义上的含义1.表示在动作或事物的前后,一般译为“然后、随即”。
She came in and sat down.她走了进来,随后就坐了下来。
I pulled the trigger and the gun went off.我扣动扳机,枪随即响了。
2.表示递进关系,一般可译为“甚至、何况、还”等。
Friction is not always undesirable and can be very useful.摩擦并不总是不好的,它甚至可能是有用的。
It was not easy to carry such a heavy load,and during the dog day.提那样的重物已经是够困难的了,何况是在三伏天。
3.表示意义上的转折或让步,可译为“虽然、尽管、但、却”等。
He tried hard and (yet) he failed to get the job.他努力尝试,却(仍然)没能得到那个工作。
You are not lazy,and still you are an idler.你并不懒,但多少有点游手好闲。
4.表示对照、对比关系,可译为“而、却”。
She bought me cakes,and I helped her do her homework.她买蛋糕给我吃,而我帮她做作业。
It can be difficult when you don’t think something is important and someone else does.如果你并不认为某事重要而某人却认为重要,这时情况就可能不大好办。
5.表示对前面所述事项的结论或看法,and后可加分句或名词组,and一般不译出。
You gave him a piece of your mind,and a very good thing too.你率直地批评他,这是件好事。
and的用法详解及不同理解

and的用法详解及不同理解and是英语中使用频率极高的连词,用来连接词、短语和句子。
笔者根据九年制义务教育初中英语新教材,试就and的用法进行归纳,以利于读者理解与掌握。
接下来,小编给大家准备了and的用法详解及不同理解,欢迎大家参考与借鉴。
and的用法详解及不同理解一、表示并列或对称的关系and可以用来连接语法作用相同的词、短语或句子,可译为“和”、“并”、“又”、“兼”等。
如:Lucy and I go to school five days a week. 我和露西每周上五天学。
(连接两个并列主语)You must look after yourself1 and keep healthy.你必须照顾自己并保持身体健康。
(连接两个并列谓语)They teach us Chinese and we teach them English.他们教我们汉语,我们教他们英语。
(连接两个简单句)如果连接两个以上的词语,通常把and放在最后一个词语前面;为了强调,可在两者之间分别加上and;把词语连接起来时,通常把较短的词语放在前面。
如:I like eggs,meat,rice,bread and milk.我喜欢鸡蛋、肉、米饭、面包和牛奶。
All that afternoon I jumped and sang2 and did3 all kinds ofthings.那天整个下午我又唱又跳,做各种各样的事情。
The apples are big and delicious4.苹果又大又好吃。
有些用and连接的词语,次序是固定的,不能随意改变。
如:men,women and children男人、妇女和儿童;fish and chips5 炸鱼加炸土豆片等。
二、表示目的在口语中,and常用在go,come,try等动词后连接另一个动词,表示目的。
此时and相当于 to,不必译出。
如:Go and see!去看看!Come and meet the famly.来见见这家人。
英语单词and用法总结

英语单词and用法总结:一、表示并列或对称的关系and可以用来连接语法作用相同的词、短语或句子,可译为“和”、“并”、“又”、“兼”等。
如:Lucy and I go to school five days a week. 我和露西每周上五天学。
(连接两个并列主语)You must look after yourself and keep healthy.你必须照顾自己并保持身体健康。
(连接两个并列谓语)They teach us Chinese and we teach them English.他们教我们汉语,我们教他们英语。
(连接两个简单句)如果连接两个以上的词语,通常把and放在最后一个词语前面;为了强调,可在两者之间分别加上and;把词语连接起来时,通常把较短的词语放在前面。
如:I like eggs,meat,rice,bread and milk.我喜欢鸡蛋、肉、米饭、面包和牛奶。
All that afternoon I jumped and sang and did all kinds of things.那天整个下午我又唱又跳,做各种各样的事情。
The apples are big and delicious.苹果又大又好吃。
有些用and连接的词语,次序是固定的,不能随意改变。
如:men,women and children男人、妇女和儿童;fish and chips 炸鱼加炸土豆片等。
二、表示目的在口语中,and常用在go,come,try等动词后连接另一个动词,表示目的。
此时and相当于to,不必译出。
如:Go and see!去看看!Come and meet the family.来见见这家人。
三、表示条件和结果在祈使句后,常用and连接一个简单句,表示条件与结果的关系,它们在语法上是并列关系,但在意义上却是主从关系,也可译为“如果……就……”。
如:Work hard and you will live happily.=If you work hard,you will live happily.如果你努力工作,你就会活得愉快。
and连接三个以上动词用法

and连接三个以上动词用法在英语中,我们经常使用 "and" 连接三个或更多的动词。
"And" 在这种情况下被用作一个并列连词,用于连接并列的动词或动词短语。
以下是 "and" 连接三个以上动词的几种常见用法。
1. 同一主语的三个动词:例如:She sings, dances, and acts in the school play.(她在校园剧中唱歌、跳舞并表演。
)在这个例子中,三个动词 sing(唱歌)、dance(跳舞)和 act(表演)都有相同的主语 she(她)。
2. 不同主语的三个动词:例如:He eats fruits, exercises daily, and reads books.(他吃水果、每天锻炼并阅读书籍。
)在这个例子中,三个动词 eat(吃)、exercise(锻炼)和 read(阅读)有不同的主语 he(他)。
3. 不同时间的三个动词:例如:I have studied, worked, and traveled around the world.(我学习过、工作过并周游世界。
)在这个例子中,三个动词 study(学习)、work(工作)和 travel(旅行)发生在不同的时间,并使用了完成时态。
4. 表示连续动作的三个动词:例如:She woke up, brushed her teeth, and took a shower.(她醒来、刷牙并洗澡。
)在这个例子中,三个动词 wake up(醒来)、brush(刷)和 take(洗)表示一系列的连续动作。
无论是以上哪种用法,使用"and" 可以使我们在句子中更清楚地表达多个动作。
请注意,"and" 连接的动词应该属于同一类别,以保持句子的平衡和语法正确性。
and发音规则

英语中的“and”发音规则引言在英语中,“and”是一个常见的连词,用于连接句子的不同部分或列举多个事物。
虽然“and”只有三个字母,但其发音却有一些规则和变化。
本文将详细介绍“and”在不同情况下的发音规则以及相关的特殊情况。
1. 基本发音规则在最基本的情况下,当“and”作为一个独立的单词时,其发音为/ænd/。
其中,“a”发音为长元音/æ/,类似于单词“cat”的发音;“n”发音为清辅音 /n/,类似于单词“no”的发音;而最后的“d”发音为浊辅音 /d/,类似于单词“dog”的发音。
2. 连读规则在实际的口语交流中,当“and”后面的单词以元音开头时,连读现象很常见。
连读是指两个相邻的音节在连在一起时,其中一个音节的元音发生变化。
在“and”后面接元音开头的单词时,连读规则可以分为以下几种情况:a) “and” + 元音当“and”后面直接接一个元音字母时,连读会导致“and”中的元音发生变化,发音变为 /ən/。
例如:•black and white(黑和白)发音为/blæk ən daɪt/•bread and butter(面包和黄油)发音为 /bred ən bʌtər/注意,在连读时,“d”发音会变得很轻,类似于浊辅音/ð/,而不是之前的浊辅音 /d/。
b) “and” + 双元音当“and”后面接一个以/y/音结束的核心元音字母时(即双元音),连读会导致“and”中的元音发生变化,发音变为 /ənd/。
例如:•time and again(一次又一次)发音为 /taɪm ənd əˈɡen/•try and buy(试试看和买)发音为 /traɪənd baɪ/在连读时,“nd”发音也会变得很轻,类似于单词“and”中的浊辅音 /d/。
c) “and” + 其他元音音标的字母当“and”后面接一个以其他元音音标的字母时,连读不会发生,两个音节分开发音。
and用在否定句的用法
and用在否定句的用法
and在否定句中的用法
在英语中,and通常用于连接两个肯定的句子或者单词。
然而,在否定句中,and有时被用于表示强调或者加强否定的意思。
一种常见的用法是在表示否定的句子中使用and来引入另一个否定的元素,以
强调否定的程度。
例如:
1. I don't like coffee, and I don't drink tea either.
(我不喜欢咖啡,也不喝茶。
)
在这个例子中,and连接了两个否定的句子,强调了对咖啡和茶的否定态度。
还有一种用法是在否定句中使用and来表示反义关系。
这种用法可以用来提供
更多的信息,增强语气或者改变可能的理解。
例如:
2. I didn't see John, and I didn't hear from him either.
(我没有见到约翰,也没有收到他的消息。
)
在这个例子中,and表示了两个不同的否定行为,强调了与约翰的接触和沟通
都未发生。
需要注意的是,当and在否定句中使用时,有时会产生双重否定的效果。
这种
情况下,and的使用可能会导致含义的混淆。
因此,在表达否定意思时,需要谨慎
使用and以避免造成歧义。
综上所述,and在否定句中的用法可以用来强调否定的程度或者表示反义关系。
然而,在使用时需要注意避免双重否定的产生,以确保清晰准确地表达所需的意思。
and做并列连词的用法
and做并列连词的用法
"and" 是一个并列连词,用于连接两个相似或相关的元素,使
句子更加连贯和完整。
它可以连接单词、短语或句子。
在句子中,"and" 通常用于列举、添加信息或表达递进关系。
1. 列举,"I like to read books and watch movies."
在这个例句中,"and" 用于列举两个我喜欢做的事情,读书和
看电影。
2. 添加信息, "She is intelligent and hardworking."
这个例句中,"and" 用于添加有关她的两个特点,聪明和勤奋。
3. 递进关系, "He studied hard and passed the exam."
在这个例句中,"and" 表示两个动作之间的递进关系,即他努
力学习,然后通过了考试。
总之,"and" 是一个非常常见的连词,它在英语中被广泛使用,使句子更加连贯,增加信息量,以及表达递进关系。
and中文翻译
and中文翻译作连词时,and中文翻译为和;与;同;又;而;加;加上;然后;接着;…为了;那么,于是;(表示结果)结果是;接连,又,愈来愈;与…不同,各有不同。
作名词时,and中文翻译为附加条件;附加细节。
and的例句如下:●It is quite possible that space and time are finite. 很有可能空间和时间是有限的。
●This chapter explores the linkage between economic development and theenvironment. 本章探讨的是经济发展与环境之间的关系。
●They offered him a post befitting his seniority and experience 他们给他提供了一个同他资历相当的职位。
●She's a mother and company director in one. 她既是母亲又是公司董事。
●The novel contains too much dialogue and not enough narrative. 这部小说对话过多,而叙述不足。
● 5 and 7 make 12. 5加7等于12。
●The size of the castle and its commanding position still impress the visitor today城堡很大,加上其居高临下的位置,至今仍让参观者赞叹不已。
●Look left and right before you cross the road. 左右看一看,然后再过马路。
●The lift rocked slightly, steadied, and the doors opened. 电梯微微一晃又稳了下来,接着门开了。
1/ 1。
and的用法和短语例句
and的用法和短语例句and有和;加;接着;那么等意思,那么你知道and的用法吗?下面跟着店铺一起来学习一下,希望对大家的学习有所帮助!and的用法大全:and的用法1:and用作连词,主要用来连接两个或两个以上的词、短语或句子。
and的用法2:and连接两个相同的词语可用以加强语气或表示动作的反复或一再发生。
and的用法3:常用and连接十位数和百位数。
and的用法4:两个名词被and连接,如前一名词带冠词,后一名词不带冠词,则整个结构表示一个整体。
and的用法5:and所连接的两个名词之前有each,every修饰时,其谓语动词用单数形式。
and的用法6:and连接两个相同的复数名词可以表示不同的种类或者用来加强语气。
and的用法7:and连接两个名词,其后共用一个介词时,以后一个名词决定使用什么介词。
and的用法8:and通常可代替动词不定式符号to,表示目的; and 连接两个动词不定式,后面的不定式符号to常省略。
and的用法9:and连接go,come,try等动词和另外一个动词,可表示动作的目的或意图。
and的常用短语:用作连词 (conj.)and alland so onand thatand thereforeand to spareand vice versaand what notand whichand的用法例句:1. Remember, keep a positive attitude and good things will happen.记住:保持乐观的心态,好事自然会发生。
2. The world breaks everyone, and afterward, many are stronger at the broken places.生活总是让我们遍体鳞伤,但到后来,那些受伤的地方会变得更坚强。
3. For what do we live, but to make sport for our neighbours, and laugh at them in our turn?我们活着是为了什么?不就是给邻居当笑柄,再反过来笑他们。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
1. Background The Barnes-Wall lattices define an infinite sequence of sphere packings in dimensions 2m , m ≥ 0, which include the densest packings known in dimensions 1, 2, 4, 8 and 16 [1], [13]. In dimensions 32 and higher they are less dense than other known packings, but they are still interesting for other reasons — they form one of the few infinite sequences of lattices where it is possible to do explicit calculations. For example, there is an explicit formula for their kissing numbers [13]. This talk will describe a beautifully simple construction for these lattices that we found in the summer of 1999. A more comprehensive account will appear elsewhere [20], [21]. Since Dave Forney is fond of the Barnes-Wall lattices (cf. [14], [15]) we hope he will like this construction as much as we do. This work had its origin in 1995 when J. H. Conway, R. H. Hardin and N. J. A. S. were studying packings in Grassmann manifolds — in other words, packings of Euclidean k -dimensional subspaces in n-dimensional space [12]. One of our nicest constructions was an optimal packing of 70 4-dimensional subspaces in
∗
Although at that time they were not recognized as the Clifford groups.
2
anticipated by Runge [24], [25], [26], [27]. In our two papers we clarify the connections with spherical t-designs and Sidelnikov’s work, and also generalize these results to the complex Clifford groups and doubly-even binary self-dual codes. Again the main result was first given by Runge. In recent years many other kinds of self-dual codes have been studied by a number of authors. Nine such families were named and surveyed in [23]. In [21] we give a general definition of the “type” of a self-dual code which includes all these families as well as other self-dual codes over rings and modules. For each “type” we investigate the structure of the associated “Clifford-Weil group” and its ring of invariants. Some of the results in [20], [21] can be regarded as providing a general setting for Gleason’s theorems [16], [19], [23] about the weight enumerator of a binary self-dual code, a doublyeven binary self-dual code and a self-dual code over
¡
p.
They are also a kind of discrete
analogue of a long series of theorems going back to Eichler (see for example [4], [25], [26], [27]), stating that under certain conditions theta series of quadratic forms are bases for spaces of modular forms: here complete weight enumerators of generalized self-dual codes are bases for spaces of invariants of “Clifford-Weil groups”. 2. A simple construction for the Barnes-Wall lattices There is a pair of Barnes-Wall lattices Lm and Lm in each dimension 2m , m ≥ 0. The two lattices are geometrically similar† and Lm is a sublattice of index 2k , k = 2m−1 , in Lm . In dimension 2 these lattices are shown in Fig. 1, where L1 consists of the points marked with solid circles and L1 consists of the points marked with either solid or hollow circles. Both are geometrically similar to the square lattice 2. √ Suppose we multiply the points of L1 by 2. Then the eight minimal vectors of L1 and √ 2 L1 now have the same length and form the familiar configuration of points used in the
A Simple Construction for the Barnes-Wall Lattices
Gabriele Nebe Abteilung Reine Mathematik Universitaet Ulm, 89069 Ulm, Germany and E. M. Rains and N. J. A. Sloane Information Sciences Research, AT&T Shannon Labs 180 Park Avenue, Florham Park, NJ 07932-0971, U.S.A. To Dave Forney, on the occasion of his sixtieth birthday ABSTRACT
A certain family of orthogonal groups (called “Clifford groups” by G. E. Wall) has arisen in a variety of different contexts in recent years. These groups have a simple definition as the automorphism groups of certain generalized Barnes-Wall lattices. This leads to an especially simple construction for the usual Barnes-Wall lattices. {This is based on the third author’s talk at the Forney-Fest, M.I.T., March 2000, which in turn is based on our paper “The Invariants of the Clifford Groups” Designs, Codes, Crypt., 24 (2001), 99–121, to which the reader is referred for further details and proofs.}
8
. The symmetry group this packing
(the subgroup of the orthogonal group O (8, ) that fixes the collection of subspaces) has order 5160960. Shortly afterwards, the same 8-dimensional group arose in the work of P. W. Shor and others on quantum computers (cf. [2], [18]). This astonishing coincidence — see [11] for the full story — drew attention to earlier work on the family to which this group belongs [5], [6], [7], [8], [32]. Following Wall, we call these Clifford groups, although these are not the groups usually referred to by this name [22]. Investigation of the representations of subgroups of these groups led to further constructions of optimal packings in Grassmann manifolds [9] and constructions of quantum error-correcting codes [10], [11]. Independently, and around the same time, these groups∗ also occurred in the work of V. M. Sidelnikov, in connection with the construction of spherical t-designs [17], [28], [29], [30], [31]. The complete account of our work [20], [21] describes the invariants of these Clifford groups and their connections with binary self-dual codes. Much of this work had been