5_YALMIP工具箱1

合集下载

matlab各种应用工具箱参考

matlab各种应用工具箱参考

2021/3/10
讲解:XX
11
二、通用工具箱
• Matlab主工具箱
• 前面课程所介绍的数值计算、符号运算、 绘图以及句柄绘图都是matlab主工具箱 的内容,是matlab的基本部分,也是我 们课程的重点。
• Matlab主工具箱位于:
c:\matlab\toolbox\matlab
• matlab主工具箱是任何版本的matlab都
simulink 的一般结构:
输入
系统
输出
2021/3/10
讲解:XX
27
仿真原理
• 当在框图视窗中进行仿真的同时,matlab 实际上是运行保存于simulink内存中s函数 的映象文件,而不是解释运行该m文件。
• s函数并不是标准m文件,它m文件的一种 特殊形式。
结构图创建方法
• 一个动态系统的创建过程,就是一个方框 图的绘制过程
rose - Angle histogram plot.
compass - Compass plot.
feather - Feather plot.
fplot - Plot function.
comet - Comet-like trajectory.
2021/3/10
讲解:XX
17
Graph annotation. title - Graph title. xlabel - X-axis label. ylabel - Y-axis label. text - Text annotation. gtext - Mouse placement of text. grid - Grid lines.
高阶谱分析工具箱
2021/3/10

yalmip使用说明综合版

yalmip使用说明综合版

1.介绍首先,yalmip是一个matlab的工具包,通过matlab实现各种操作和调用。

其次,它是一个建模工具,甚至可以称为一种“语言”,通过这种“语言”来描述模型,然后再调用其他求解器(如gurobi、cplex等)来求解模型。

相当于一个将“yalmip语言”转换成其他求解器“语言”的语言转换器。

不同的求解器有不同的专用语言,学习多个语言即冗余又浪费精力,所以,yalmip的珍贵之处就体现出来了。

更为可贵的是,yalmip真正实现了建模和算法二者的分离,它提供了一种统一的、简单的建模语言,针对所有的规划问题,都可以用这种统一的方式建模;至于用哪种求解算法,你只需要通过一次简单的参数配置指定就可以了,甚至不用你指定,yalmip会自动为你选择最适合的算法。

有了yalmip,你不再需要针对每一种工具包去学习特定的建模语言(比如用cplex要专门学习cplex的建模语言,用lingo要专门学习lingo的建模语言,还有GLPK、lpsolve、Matlab自带的求解器等等,如果每一种求解器都要学习新的建模语言的话,这个工作量是可想而知的)。

相反,如果你选择使用yalmip,那么你只需要学习yalmip一种建模语法,因为yalmip真正实现了建模和算法的分离,所有的问题都可以用统一的方法建模,如果需要使用不同的求解器,只需要一句简单的配置即可。

因此,yalmip不仅仅是一个线性规划求解器,更强大的地方在于,它提供了一个统一的建模平台,支持现有的几乎所有的求解算法。

有了yalmip,一切都变得简单起来。

2.安装官网下载https://yalmip.github.io/ 解压至matlab/toolboxmatlab中设置路径,注意:要将压缩包内的子文件夹都加入路径,选择“添加并包含子文件夹”来添加路径;检查是否配置成功:matlab中调用yalmitest命令,查看所有支持的求解器已经他们的安装状态。

matlab lmi工具箱使用实例

matlab lmi工具箱使用实例

MATLAB(Matrix Laboratory)是一款广泛应用于科学计算和工程领域的专业软件,其功能强大、灵活性高,并且具有丰富的工具箱支持。

LMI(Linear Matrix Inequality)工具箱是MATLAB中的一种工具箱,用于解决线性矩阵不等式相关的问题。

本文将介绍LMI工具箱的基本使用方法,并结合具体实例进行详细讲解。

一、LMI工具箱的安装1.确保已经安装了MATLAB软件,并且软件版本是R2015b及以上版本。

只有在这些版本中,LMI工具箱才会被自动安装。

2.在MATLAB的命令行中输入“ver”,可以查看当前安装的工具箱列表,确认LMI工具箱是否已经成功安装。

二、LMI工具箱的基本功能1. LMI工具箱主要用于解决线性矩阵不等式问题,例如矩阵的稳定性分析、最优控制问题等。

2. LMI工具箱提供了一系列的函数和工具,能够方便地构建和求解线性矩阵不等式问题,同时也包括了一些经典的稳定性分析方法和控制器设计方法。

三、LMI工具箱的基本使用方法1. 定义变量:在使用LMI工具箱时,首先需要定义相关的变量。

可以使用“sdpvar”函数来定义实数变量,使用“sdpvar”函数和“size”函数可以定义矩阵变量。

2. 构建约束:在定义变量之后,需要构建线性矩阵不等式的约束条件。

可以使用“sdpvar”变量的线性组合来构建约束条件,使用“>=”来表示大于等于关系。

3. 求解问题:构建好约束条件之后,即可使用“optimize”函数来求解线性矩阵不等式问题。

在求解问题时,可以指定优化的目标函数和一些额外的约束条件。

四、LMI工具箱的实例应用下面我们通过一个具体的实例来演示LMI工具箱的使用方法。

假设有一个线性时不变系统,其状态方程可以表示为:$\dot{x} = Ax + Bu$其中,A和B分别为系统的状态矩阵和输入矩阵。

我们希望设计一个状态反馈控制器K,使得系统在闭环下能够保持稳定。

yalmip语法

yalmip语法

yalmip语法YALMIP(Yet Another LMI Parser)是一种用于建模和求解优化问题的MATLAB工具箱。

它提供了一种简单而强大的语法,使用户能够轻松地定义线性矩阵不等式(LMI)和其他优化问题。

本文将介绍YALMIP的语法和一些常用的功能。

YALMIP的语法非常直观和易于理解。

用户只需使用MATLAB语言编写优化问题的数学表达式,然后使用YALMIP提供的函数将其转化为可求解的形式。

YALMIP支持各种类型的优化问题,包括线性规划、二次规划、半定规划等。

在YALMIP中,用户可以使用变量来表示问题中的未知量。

变量可以是标量、向量、矩阵或张量。

用户可以使用YALMIP提供的函数来定义变量的类型、大小和约束条件。

例如,用户可以使用sdpvar函数定义一个实数的标量变量:```matlabx = sdpvar(1, 1, 'real');```用户还可以使用矩阵变量来表示线性矩阵不等式(LMI)。

例如,用户可以使用sdpvar函数定义一个对称矩阵变量:```matlabP = sdpvar(n, n, 'symmetric');```在定义了变量之后,用户可以使用YALMIP提供的函数来构建优化问题的约束条件和目标函数。

例如,用户可以使用<=运算符来定义一个线性矩阵不等式约束:```matlabF = [A'*P + P*A <= -Q, P >= eye(n)];```其中,A、Q和n分别表示问题中的系数矩阵、常数矩阵和维度。

用户还可以使用YALMIP提供的函数来定义目标函数。

例如,用户可以使用trace函数来定义一个迹范数最小化的目标函数:```matlabobj = trace(P);```在定义了约束条件和目标函数之后,用户可以使用optimize函数来求解优化问题。

optimize函数将约束条件和目标函数作为输入参数,并返回最优解和最优值。

LMI工具箱介绍

LMI工具箱介绍

L M IL M IL M IL M I0NN x x L L L x L 110)( (1)NL L L ,,,10Nx x ,,1T1],,[N x x x N R11),,(),,(11n n X X R X X L1Lyapunov)(L )(R nX X ,,10XA X A T (2)21X221A22X3221x x x x X X321x x x X100001100001321x x x XA20400043300222321x x x (3) 21Lyapunov23323A n2)1(n n L M ILyapunov23XH0NID B D ICX BXC XA X A N TTTT TNDCBAT XXnnR RNI D B D I CX B XC XA X A X L TT TT ),(X 11),(X L ),(X L),(X L X),(X L BDIXA ,A.2L M IM X X R M NX X L N ),,(),,(1T 1T K KKX X ,,1N M)(L )(R 0XXX1KX X ,,12l m i s y s l m i s y sL M Il m i de m1446B A IC G 1)()(s s (4)/D543211000000000d d d d d d D(5)5D1)(s up 1DDG jX66R DD ST 44R0S XB XB SC C XA XA T T T (6) 0X (7) I S(8)l m i var l m it er m 6~8setlmis([])X=lmivar(1,[6 1]) S=lmivar(1,[2 0;2 1])% 1st LMIlmiterm([1 1 1 X],1,A,’s’) lmiterm([1 1 1 S],C’,C) lmiterm([1 1 2 X],1,B) lmiterm([1 2 2 S],-1,1) % 2nd LMI lmiterm([-2 1 1 X],1,1)% 3rd LMI lmiterm([-3 1 1 S],1,1) lmiterm([3 1 1 0],1) lmisys=getlmisl m i varX l m it er mge tl m i sl m i s ys l m i s y sSs et l m i sget l m i s s e tl m i s ge tl m i ssetlmis([])l m i s osetlmis(lmiso) lmisys=getlmisl m i s y sl m i varl m i varX=lmivar(type,struct)X Xt ype Xs t ruc tX Type =1rD D D 0000021s t ruc tjD 2r in 10),(n m miD 11n i D 0n iD 1niD Type =2s t ruc t = ),(n m Type =3X0nx s t ruc tnx nXs t ruc tnn x j i n x j i n j i j i ),(,),(,0),(,0),(X X X 221X X3X1X 332X 42 2213I X 0000055122I 22l m i varsetlmis([])X1=lmivar(1,[3 1]) X2=lmivar(2,[2 4]) X3=lmivar(1,[5 1;1 0;2 0])l m i term1 23X A T S CC T P X QXPQ 3L M Il m it er m0SXB XB S CC XA X A TT Tlmiterm([1 1 1 X],1,A,’s’) lmiterm([1 1 1 S],C’,C) lmiterm([1 1 2 X],1,B) lmiterm([1 2 2 S],-1,1)XB S CC XA XA T T S11mm -m m23[1 1 2 1]1223k k-k 1kX k X T k X X 12S l m it er m234's 'P X Q QP X T1 2l m it er m's 'l m it er mXA X A T3I13I S lmiterm([-3 1 1 S],1,1) lmiterm([3 1 1 0],1)l m i varnew l m il m it er m1setlmis([]) X=lmivar(1,[6 1]) S=lmivar(1,[2 0;2 1])BRL=newlmilmiterm([BRL 1 1 X],1,A,’s’) lmiterm([BRL 1 1 S],C’,C) lmiterm([BRL 1 2 X],1,B) lmiterm([BRL 2 2 S],-1,1) Xpos=newlmi lmiterm([-Xpos 1 1 X],1,1)Slmi=newlmi lmiterm([-Slmi 1 1 S],1,1) lmiterm([Slmi 1 1 0],1) lmisys=getlmisX SX BR L Xpo s Sl m i123-Xpo s2-XSXl m i e di tl m i ed itlmiedit1SRGl m i vars t ruc t2M ATLA B0IXB XBXA X A T T[A’*X+X*A X*B;B’*X -1]<0X Xl m i var /l m it er m v i ew co mm and sde s cr i be…l m i var /l m it er mM ATLA BM ATLA B s avel oadl m i var /l m it er m readde s cr i be t he m a t r i x var i ab l e s de s cr i be t he L M I s …l m i var /l m it er m wr it e crea t eM ATLA B m y l m i M ATLA B m y l m i m y l m il m it er m01l m i ed itl m it er m l m i ed it X (A*X+B)’*C+C’*(A*X+B)(A+B)’*X+X’*(A+B)l m it er m l m it er m1new l m i l m i varA.1l m i ed it1A.1l m i ed itA.3L M I l m ii nfo l m i nbr m a t nbrl m iin fol m ii nfol m ii nfolmiinfo(lmisys)l m i s y s ge tl m i sl m inb r mat nb rmatnbr(lmisys)A.4L M I xkX X ,,1NR x kX X ,,1)()(x B x Afea s px c xT m i ns .t . )()(x B x Am i ncxxm i ns .t . )()(x D x C (9))(x B 0(10) )()(x B x A (11)gevpfea s pfea s p[tmin,xfeas]=feasp(lmisys,options,target)fea s pt m i ns .t . I x B x A t )()( l m i s y st m i nfea s pt m i n <0l m i s y sl m i s y s fea s pxfea sdec2m a tl m i s y s fea s pt arge t t m i n t m i n <t arge tt arge t =0fea s pop ti on s5op ti on s (1)op ti on s (2)100 op ti on s (3)op ti on s (3)=R212R x N i ixfea sR910Rxop ti on s (4)J1%10Jt op ti on s (5)op ti on s (5)=1op ti on s (5)=0op ti on s (i )3IPP01T 1P A PA 1202T 2P A PA 13 03T 3P A P A 14.27.09.04.1,7.23.15.18.0,3121321A A A fea s psetlmis([]) P=lmivar(1,[2 1])lmiterm([1 1 1 P],1,A1,’s’) % LMI #1 lmiterm([2 1 1 P],1,A2,’s’) % LMI #2 lmiterm([3 1 1 P],1,A3,’s’) % LMI #3 lmiterm([-4 1 1 P],1,1) % LMI #4: P lmiterm([4 1 1 0],1)% LMI #4: Ilmis=getlmisfea s p[tmin,xfeas]=feasp(lmis)t m i n l m i sdec2m a t1363.3PP=dec2mat(lmis,xfeas,P)1.1554.1264.1268.270PPF roben i u s10t m i n1[tmin,xfeas]=feasp(lmis,[0,0,10,0,0],-1)t m i n1745.1P6912.9)(m axPm in cxm i ncx[copt,xopt]=mincx(lmisys,c,options,xinit,target)l m i s y s cxdefcxcm i ncxcop txop tdec2m a txop tx c Tm i ncx l m i s y sc x i n it xop tm a t 2decx i n itx i n itkX X ,,1t arge t t arge txxc T op ti on s 5op ti on s (1)cop t210op ti on s (2)100op ti on s (3)fea s pop ti on s (4)5JJx c T op ti on s (5)op ti on s (5)=1op ti on s (5)=0op ti on s (i)m i ncx4)(Trace m i n X Xs .t .0Q X XBB XA XA T T X36121231011,101,121123121Q B AS chur)(Trace m i n X Xs .t .0IXB XB Q XA XA TT )(Trace X Xm i ncxm i ncx1setlmis([])X=lmivar(1,[3 1]) % Xlmiterm([1 1 1 X],1,A,’s’)lmiterm([1 1 1 0],Q)lmiterm([1 2 2 0],-1)lmiterm([1 2 1 X],B’,1)LMIs=getlmisTrace X x c T x X2)(c X I Xc=mat2dec(LMIs,eye(3))defcx3m i ncx xop t cop t=c’*xop toptions=[1e-5,0,0,0,0][copt,xopt]=mincx(LMIs,c,options)1e-5cop tm i ncxSolver for linear objective minimization under LMI constraints Iterations : Best objective value so far12 -8.5114763 -13.063640*** new lower bound: -34.0239784 -15.768450*** new lower bound: -25.0056045 -17.123012*** new lower bound: -21.3067816 -17.882558*** new lower bound: -19.8194717 -18.339853*** new lower bound: -19.189417 8 -18.552558 *** new lower bound: -18.919668 9 -18.646811 *** new lower bound: -18.803708 10 -18.687324 *** new lower bound: -18.753903 11 -18.705715 *** new lower bound: -18.732574 12 -18.712175 *** new lower bound: -18.723491 13 -18.714880 *** new lower bound: -18.719624 14 -18.716094 *** new lower bound: -18.717986 15 -18.716509 *** new lower bound: -18.717297 16 -18.716695 *** new lower bound: -18.716873Result: feasible solution of required accuracy best objective value: -18.716695 guaranteed relative accuracy: 9.50e-006 f-radius saturation: 0.000% of R = 1.00e+009x c T x4m i ncxxop tXopt=dec2mat(LMIs,xopt,X)0771.62201.22046.22201.22855.65.88952046.28895.56.3542op tX gev pgevp[lopt,xopt]=gevp(lmisys,nlfc,options,linit,xinit,target)gevpl op tx xop t dec2m a tl m i s y s 16~88n l fcli n it =),(00x 0x i n it =gevpt arge tx ),(00x ),(00x ),(x t arge top ti on s5op ti on s (1)l op t210op ti on s (2)100op ti on s (3)fea s pop ti on s (4)JJ5op ti on s (5)op ti on s (5)=1op ti on s (5)=0op ti on s (i )gevp)()(x B x A)()(x B x A)(x B 0)(x B 00000)(,)()(11x B x B x BgevpY0000)(),(,)(1x B x B Y Y x A0)(),()(x B x B x Agevp53),3,2,1(),()(itt i x Ax3Lyapunov3)3,2,1(,i i A Px xx T)(VtVd)(d xm i ns.t. P IPP AP A1T1PP AP A2T2PP AP A3T3gevpsetlmis([]);P=lmivar(1,[2 1])lmiterm([1 1 1 0],1) % P>I: Ilmiterm([-1 1 1 P],1,1) % P>I: Plmiterm([2 1 1 P],1,A1,’s’) % LFC #1 (lhs)lmiterm([-2 1 1 P],1,1) % LFC #1 (rhs)lmiterm([3 1 1 P],1,A2,’s’) % LFC #2 (lhs)lmiterm([-3 1 1 P],1,1) % LFC #2 (rhs)lmiterm([4 1 1 P],1,A3,’s’) % LFC #3 (lhs)lmiterm([-4 1 1 P],1,1) % LFC #3 (rhs)lmis=getlmisgevp[alpha,popt]=gevp(lmis,3)a l pha =-0.1220.12264.1835.835.858.5Px m a t 2dec dec2m a tX1X2X3m a t 2dec321X X X xdec=mat2dec(lmisys,X1,X2,X3)l m i s y sl m i s y sm i ncx gevpm a t 2decx i n it321X X X xdecdec2m a tk2X2=dec2mat(lmisys,xdec,2)dec2m a t2l m i varm a t nbrdecnbr dec i nfoA.5L M I eva ll m is how l m i4m i ncxxop tevlmi=evallmi(LMIs,xopt) [lhs,rhs]=showlmi(evlmi,1)xop t1eig(lhs-rhs)ans=-2.0387e-04-3.9333e-05-1.8917e-07-4.6680e+01l h s-rh s xop t1A.6L M I de ll m i de l m var s e t m varDe ll m ide ll m i1l m i s y s Xnewsys=dellmi(lmisys,2)2new s y s12I S32new l m i1BR L Xpo s Sl m i Sl m inewsys=dellmi(lmisys,Xpos)2I Sd e l mvarde l m var0I B W B W XA X A T T TT X X44R42R Wsetlmis([]) X=lmivar(1,[4 1]) % X W=lmivar(2,[2 4]) % Slmiterm([1 1 1 X],1,A,’s’) lmiterm([1 1 1 W],B,1,’s’) lmiterm([1 1 1 0],1) lmisys=getlmisWnewsys=delmvar(lmisys,W)new s y sLyapunov0I XA X A Ts e t m vars etmvars e t m var11G1G D DD ST IS I S2Snewsys=setmvar(lmisys,S,2)2S32S I 2new s y s0IXB XB CC XA XA 22TT T0X I I 2newsys=dellmi(newsys,3) newsys =dellmi(newsys,Slmi) Sl m i new l m i 3 A.7l m i var 123 0n x n x n X X X X n X p p n n x x ,,1p n n x x ,,1X l m i var[X,n,sX]=lmivar(type,struct) n s X X nx x ,,1l m i var 621X X X00 X1X 2X 3223X 1 1X 2Xsetlmis([])[X1,n,sX1]=lmivar(2,[2 3]) [X2,n,sX2]=lmivar(2,[3 2])s X1s X2 1X 2X>>sX1sX1=1 2 3 4 5 6>>sX2sX2= 7 89 10 11 12 s X2(1, 1)=7(1, 1)7 2X 2Type 3X 1X 2X [X,n,sX]=lmivar(3,[sX1,zeros(2);zeros(3),sX2]) X>>sXsX= 1 2 3 0 0 4 5 6 0 0 0 0 0 7 8 0 0 0 9 10 0 0 0 11 12 733X 33Toep li z123212321y y y y y y y y y Y Y 33Y X Y 321n n n n XXsetlmis([]) [X,n]=lmivar(1,[3 1]) [X, n]2n =6Y Y=lmivar(3,n+[1 2 3;2 1 2;3 2 1])Y=lmivar(3,toeplitz(n+[1 2 3])) t oep lit zM ATLA B dec i nfo X Ylmis=getlmis decinfo(lmis,X) ans= 1 2 4 2 3 5 4 5 6decinfo(lmis,Y)ans= 7 8 9 8 7 8 9 8 78Y X Z00,00,00t x t z y x Z Y X tz y x X Y1 setlmis([])[X,n,sX]=lmivar(1,[1 0;1 0]) [Y,n,sY]=lmivar(1,[1 0;1 0])l m i var 3X Y),,,(4321x x x x ),,,(t z y x sX=1 0 0 2sY=3 0 04 l m i var 3Z[Z,n,sZ]=lmivar(3,[0 -sX(1,1);-sY(2,2) 0]) s X(1, 1)s Y(2, 2) 1x 4x 000041t x x x ZHer m iti an m a t r i x)(x L 0)(x L 0))(R e())(I m ())(I m ())(R e(x L x L x L x L X21X X X j 1X 2X A21A A A j 1A 2A 21X X 1221X X X X X21X X j 1221A A A A 21A A A j I X X X X M M H H , 122112211221T 1221X X X X M M M M X X X X M M M M I X X X X 1221 21M M M j 21X X X j i i X M 55C M M1=real(M), M2=imag(M) bigM=[M1 M2;-M2 M1] setlmis([])% declare bigX=[X1 X2;-X2 X1] with X1=X1’ and X2+X2’=0:[X1,n1,sX1]=lmivar(1,[5 1])[X2,n2,sX2]=lmivar(3,skewdec(5,n1)) bigX=lmivar(3,[sX1 sX2;-sX2 sX1])% describe the real counterpart of the complex LMI system: lmiterm([1 1 1 0],1) lmiterm([-1 1 1 bigX],1,1)lmiterm([2 1 1 bigX],bigM’,bigM)lmiterm([-2 1 1 bigX],1,1)lmis=getlmis b i gX =1221X X X X 1s X1n1 1X 1X 2s kewdec s kewdec(5,n1)n1+1, n1+2, ... 2X 5533s X1, s X2b i gX 1X 2Xm in cxx c Tm i ncxx c T x )(Trace X XX uu T u defcx c0T 0)(Trace Px x X X P l m i s y s 0x P X x 0 x0=[1 1] setlmis([])X=lmivar(1,[3 0]) P=lmivar(1,[2 1]) : :lmisys=getlmis 0T 0T )(Trace Px x X x c c n=decnbr(lmisys) c=zeros(n,1) for j=1:n,[Xj,Pj]=defcx(lmisys,j,X,P) c(j)=trace(Xj)+x0’*Pj*x0end 12for c 11j x x X P defcx defcx l m i s y s j X P X j Pj 2X =X j P =Pj j cc=3 1 2 1n=decnbr(LMI system) c=zeros(n,1) for j=1:n, [matrix values]=defcx(LMI system,j, matrix identifiers) c(j)=objective(matrix values) end A.8 系统模型描述)()()()()()(t t t t t t D u C x y B u A x x E (15) E D C B A ,,,,E 15)(),(),(t t t y u x E 15E 15 x y u kx x f x m 15 )(01)()(10)(10)(001t t y t u t f k t mT ])()([)(t x t x t 15M ATLA B S Y S TE MInf 00)(0n j D CB I E An L M I lti s y s lti ss S Y S TE M S Y S TE Msys=ltisys(-1,1,1,0)x y u x x , SYSTEM SYSTEM sys DC B A ,,, [A,B,C,D]=ltiss(sys) ltitf SYSTEM )()()(s d s n s G sys=ltisys(‘tf’,n,d) n d )(s G )(s n )(s d sinfo(sys)SYSTEM sys spol(sys)ssub SYSTEM G 123 G ssub(G,1,2:3) G G SYSTEM sinv )(s G )()(1s s G H )(s G D sbalancC B A ,,L M I SYSTEM SYSTEMg1g2SYSTEM sadd )(1s G )(2s G)(1s G )(2s G SYSTEM smult(g1,g2)SYSTEM 10 )()(12s s G G sdiag(g1,g2)SYSTEMS )}(),({d i ag )(21s s s G G G G 1(s )G 2(s )y r + 1 sloop r y SYSTEM slft SYSTEM 21w w 21z z G 1(s )G 2(s )w 1u z 1y w 2z 2 232,R R y u slft(g1,g2,2,3) H。

yalmip+cplex,implies的用法

yalmip+cplex,implies的用法

YALMIP 和 CPLEX 是数学建模和优化领域中常用的工具,它们可以帮助用户解决各种复杂的优化问题。

本文将介绍 YALMIP 和 CPLEX 的基本用法,并重点探讨了 implie 在优化问题中的应用。

1. YALMIPYALMIP 是一种专门为 MATLAB 和 Octave 设计的建模语言,用于求解各种优化问题。

它包含了一系列 MATLAB 工具箱,可以帮助用户将数学模型转化为可求解的优化问题。

YALMIP 支持线性规划、二次规划、整数规划、半定规划等多种优化问题的建模和求解。

YALMIP 的基本用法如下:1)定义变量:使用sdpvar 函数定义优化问题中的变量,可以是实数、整数或者矩阵;2)构建约束:使用 <=、==、>= 等符号构建优化问题的约束条件;3)定义目标函数:使用 objective 函数定义优化问题的目标函数;4)调用求解器:使用 optimize 函数调用相应的求解器进行求解。

2. CPLEXCPLEX 是一种商业化的数学优化软件,由 IBM 公司开发。

它提供了一套强大的优化算法,可以高效地求解线性规划、整数规划、混合整数规划等各种优化问题。

CPLEX 的特点是速度快、鲁棒性强、支持大规模问题的求解,并且具有良好的可扩展性。

CPLEX 的基本用法如下:1)导入数据:将优化问题的系数矩阵、约束条件、目标函数等数据导入 CPLEX;2)设置参数:根据实际情况设置 CPLEX 的求解参数,例如求解时间限制、精度要求等;3)调用求解器:使用 CPLEX 提供的接口函数调用相应的求解器进行求解;4)获取结果:从 CPLEX 中获取最优解、最优值等求解结果。

3. implie 的用法implie 是逻辑运算中常用的关键词,表示蕴含关系。

在 YALMIP 和CPLEX 中,implie 通常用于建模优化问题中的逻辑约束。

当某个变量的取值满足一定条件时,另一个变量的取值需要满足特定的约束条件。

yalmip调用gurobi写法

yalmip调用gurobi写法

YALMIP(Yet Another LMI Parser)是一个用于建模和求解凸优化问题的 MATLAB 工具箱。

它提供了一种高层的建模语言,使用户可以使用标准 MATLAB 语法来描述优化问题,并支持多种求解器,包括Gurobi、CPLEX 和 MOSEK 等。

在本文中,我们将重点讨论如何使用YALMIP 来调用 Gurobi 求解凸优化问题。

1. 安装 YALMIP 和 Gurobi要使用 YALMIP 调用 Gurobi,首先需要安装 YALMIP 和 Gurobi 这两个软件。

YALMIP 可以通过官方全球信息湾下载并安装,而 Gurobi 则需要从 Gurobi 官方全球信息湾获取安装文件,并按照相应的步骤进行安装和激活。

2. 在 MATLAB 中使用 YALMIP 调用 Gurobi安装完 YALMIP 和 Gurobi 后,就可以在 MATLAB 中使用 YALMIP 调用 Gurobi 求解优化问题了。

首先需要在 MATLAB 中添加 YALMIP 和 Gurobi 的路径:```matlabaddpath(genpath('path_to_yalmip'))addpath('path_to_gurobi')```其中 `path_to_yalmip` 和 `path_to_gurobi` 分别为 YALMIP 和Gurobi 的安装路径。

添加路径后,就可以使用 YALMIP 的建模语言来描述优化问题,并调用 Gurobi 求解了。

下面是一个简单的凸优化问题的示例:```matlab定义优化变量x = sdpvar(2,1);定义优化问题Constraints = [x >= 0];Objective = x(1)^2 + x(2)^2;调用 Gurobi 求解ops = sdpsettings('solver','gurobi');optimize(Constraints, Objective, ops);获取最优解optimal_x = value(x);optimal_value = value(Objective);```在这个示例中,我们首先用 `sdpvar` 定义了两个优化变量 `x`,然后定义了一个简单的约束条件 `x >= 0` 和目标函数 `x(1)^2 + x(2)^2`。

Matlabyalmip工具编写自动驾驶模型预测控制(MPC)代码

Matlabyalmip工具编写自动驾驶模型预测控制(MPC)代码

Matlabyalmip⼯具编写⾃动驾驶模型预测控制(MPC)代码⽬录前⾔在⽆⼈驾驶的运动控制中,模型预测控制(MPC)算法得到了⼴泛使⽤,龚建伟的《⽆⼈驾驶车辆模型预测控制》⼀书对MPC算法进⾏了细致的讲解,并提供了代码,⾮常值得参考和学习。

但书中各系数矩阵的推导对于初学者来说极难理解,代码结构也过于复杂,改动代码容易报错。

采⽤yalmip⼯具可以很⼤程度简化代码,利于初学者对应理解MPC公式与代码,代码修改起来也⾮常容易。

⼀、yalmip简介yalmip是由Lofberg开发的⼀种免费的优化求解⼯具。

它是⼀个建模⼯具,甚⾄可以称为⼀种“语⾔”,通过这种“语⾔”来描述模型,然后再调⽤其他求解器(如quadprog、gurobi、fmincon等)来求解模型。

其最⼤特⾊在于集成许多外部的优化求解器,形成⼀种统⼀的建模求解语⾔,提供了Matlab的调⽤API,减少学习者学习成本。

⼆、车辆模型1.车辆运动学模型2.离散化3.线性化这⾥使⽤针对状态轨迹的线性化⽅法(《⽆⼈驾驶车辆模型预测控制》(第⼆版)第五章代码所使⽤的⽅法),与第三、四章的存在参考系统的性线化⽅法略有不同,本质上区别不⼤,具体可以参考《⽆⼈驾驶车辆模型预测控制》(第⼀版)的介绍。

若使⽤较复杂的模型,可借助jacobian函数求解雅可⽐矩阵A,B三、MPC 优化问题定义程序⽬标是对轨迹进⾏跟踪,设计成本函数第⼀项:状态量与参考轨迹误差的平⽅,第⼆项:控制量的平⽅。

约束依次为初始状态约束,车辆运动学模型,控制量约束,控制增量约束。

优化问题如下所⽰:四、Matlab 代码本⽂编写的代码主要为了对标《⽆⼈驾驶车辆模型预测控制》(第⼆版)第四章的代码,主体参照S函数形式编写,便于结合Carsim 使⽤。

以下主要介绍yalmip编写的MPC计算函数:1.函数输⼊1syms x y phi delta v L T 2%x :横坐标;y :纵坐标;phi:航向⾓;delta :前轮偏⾓;3%v :速度;L :轴距;T :离散时间4kesi=[v*cos(phi);v*sin(phi);v*tan(delta)/L]*T+[x;y;phi];%离散化⽅程5X=[x,y,phi];%状态量6u=[v,delta];%控制量7A=jacobian(kesi,X)8B=jacobian(kesi,u)A,B:模型(系统)矩阵;Q,R:权重矩阵;N:控制步长;kesi:当前状态量和控制量;state_k1:下⼀时刻状态量;umin,umax,delta_min,delta_max:控制量和控制增量约束矩阵;Ref: 参考轨迹;MPC_solver:求解器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

YALMIP工具箱简介
东北大学数学系
王琪wangqimath@
YALMIP工具箱简介
•基于符号运算工具箱编写
•一种定义和求解高级优化问题的模化语言•用于求解线性规划、整数规划、非线性规划、混合规划等标准优化问题以及LMI •工具箱主页:
http://control.ee.ethz.ch/~joloef/wiki/pmwiki.php
YALMIP工具箱的安装•Add the following directories to MATLAB path •/yalmip
•/yalmip/extras
•/yalmip/demos
•/yalmip/solvers
•/yalmip/modules
•/yalmip/modules/parametric
•/yalmip/modules/moment
•/yalmip/modules/global
•/yalmip/modules/sos
•/yalmip/operators
路径设置
安装测试与示例
•测试YALMIP及已经存在的优化工具箱是否正常
•Yalmiptest
•示例及入门
•Yalmipdemo(学习该工具箱的最佳途径)
实型变量—sdpvar
•sdpvar是YALMIP的一种核心对象,它所代表的是优化问题中的实型决策变量。

•该种类型的变量可以通过如下方法产生:
ØP=sdpvar(n,m); %表示x为n*m的矩阵
ØP=sdpvar(n,n,’full’); %表示x为n*n的方阵
ØP=sdpvar(n,n,'symmetric');%表示x为n*n的对称方阵例:P=sdpvar(3,3);%方阵不带参数默认为对称方阵P可以像正常的矩阵一样进行各种运算及操作,如:v = trace(P)+P(1,1)+sum(sum(P))*5;
X = [P diag(P) v*eye(4)];
实型变量—sdpvar
•变量sdpvar到底是什么?
•它是符号型、未知的,但可以写为一组基矩阵的和
•P = P0+p1*P1+p2*P2+...+pn*Pn
•可以用see函数来了解sdpvar类型数据的构成
其它决策变量类型
•intvar——整型
如:P=intvar(3,4)
•binvar——0-1型
如:P=binvar(5,5)
约束条件—set
•set(集合)是YALMIP的另外一种关键对象,用它来囊括优化问题的所有约束条件。

•最常用的集合构造方法为采用set函数
例:
P = sdpvar(3,3);
F = set(P > 0);%唯一的不等式约束
对于存在上、下界的情况,也可以有如下的写法:F = set(0 < diag(P) < 5);
约束条件—set
•如果是等式约束,注意用“==”表示,如:F = set(diag(P) == zeros(3,1));%等式约束上式也可以写为F = set(diag(P) == 0);
•如果问题包含多个约束条件,可以将多个条件用“+”相连
F = set('P>0') + set(0 < diag(P) < 5);
约束条件的三种构造方法
•P = sdpvar(3,3);
•F1 = set(P>0)+set(sum(P.^2) <[5,6,7]);•F2 = set('P>0')+set('sum(P.^2) <[5,6,7]');•F3 = [P>0, sum(P.^2) <[5,6,7]];
•以上构造出的F1、F2、F3完全相同
求解函数—solvesdp
•函数solvesdp用来求解优化问题
•s=solvesdp(F);%求解可行解问题
•s=solvesdp(F, f);%求解一般优化问题,其中f为目标函数
•s=solvesdp(F, f, options); %设定选项,比如选择算法等
结果获得
•求解完成后,用P=double(P)提取解矩阵
示例求解下列线性规划问题ïîïíì³³³³£--++£+++-----57.2,678.0,32.3,0,62
54354242..)
342min(5432
154321543254321x x x x x x x x x x x x x x t s x x x x x
求解示例的源代码
f=-[2 1 4 3 1]'; A=[0 2 1 4 2; 3 4 5 -1 -1]; B=[54; 62]; Ae=[]; Be=[];
xm=[0,0,3.32,0.678,2.57]';
P=sdpvar(5,1);
g=f'*P;
F=set(A*P<=B)+set(xm<=P);
sol=solvesdp(F,g);
P=double(P)
整数规划
•将示例中的线性规划改为整数规划,则只需将程序中的变量定义部分稍做修改即可:
f=-[2 1 4 3 1]'; A=[0 2 1 4 2; 3 4 5 -1 -1];
B=[54; 62]; Ae=[]; Be=[];
xm=[0,0,3.32,0.678,2.57]';
P=intvar(5,1);
g=f'*P;
F=set(A*P<=B)+set(xm<=P);
sol=solvesdp(F,g);
P=double(P)
0-1规划
•如果将示例的问题变为0-1规划问题,源程序应该如何改动?
•binvar()
混合规划问题思考并实验:应该如何实现?。

相关文档
最新文档