高中数学统计与概率知识点
高中数学统计与概率

高中数学统计与概率1、概率的定义随机事件A的概率是频率的稳定值;频率是概率的近似值。
2、等可能事件的概率如果一次试验中可能出现的结果有n个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是1/n,如果某个事件A包含的结果有m个,那么事件A的概率为P(A)=m/n。
3、互斥事件不可能同时发生的两个事件叫互斥事件。
如果事件A、B互斥,那么事件A+B发生(A、B中有一个发生)的概率,等于事件A、B分别发生的概率和,即P(A+B)=P(A)+P(B)。
4.抽签法和随机数表法(1)抽签法①优点:简单易行;②缺点:当总体容量非常大时,操作比较麻烦;若抽取前搅拌不均匀,可能导致抽取的样本不具有代表性.(2)随机数表法随机数表是由水技术(通常为自然数)形成的数表,表中的每一位置出现的数都是随机的.随机数表法的一般步骤:第一步:对总体进行编号;第二步:任意指定一个开始选取的位置,位置的确定可以闭着眼用手指随机确定,也可以用其他方法;第三步:按照一定规则选取编号;第四步:按照得到的编号找出对应的个体.【注释】①规则一经确定,就不能更改;②选取过程中,遇到超过编号范围或已经选取了的数字,应该舍弃.5.分层抽样一般地,如果相对于要考察的问题来说,总体可以分为有明显差别的,互不重叠的几部分时,每一部分可称为层,在各层中按层在总体中所占比例进行随机抽样的方法称为分层随机抽样(简称分层抽样).【注释】分层抽样得到的样本,一般更具有代表性,可以更准确地反映总体的特征,尤其是在层内个体相对同质而层间差异较大时更是如此.分层抽样在各层中抽样时,还可根据各层的特点灵活选用不同的随机抽样方法.。
高中数学统计与概率知识点

高中数学统计与概率知识点一、统计学基础1. 数据收集- 普查与抽样调查- 数据的类型(定量数据与定性数据)2. 数据整理与展示- 频数分布表- 直方图- 饼图- 条形图3. 中心趋势的度量- 平均数(算术平均数)- 中位数- 众数4. 离散程度的度量- 极差- 四分位距- 方差与标准差5. 相关性分析- 相关系数- 散点图二、概率论基础1. 随机事件- 事件的定义- 必然事件与不可能事件- 互斥事件与独立事件2. 概率的计算- 单次试验的概率- 多次试验的概率- 条件概率- 贝叶斯定理3. 随机变量- 离散随机变量与连续随机变量 - 概率分布- 概率密度函数与概率分布函数4. 期望值与方差- 随机变量的期望值- 随机变量的方差5. 常见概率分布- 二项分布- 泊松分布- 正态分布三、统计与概率的应用1. 假设检验- 零假设与备择假设- 显著性水平- 第一类错误与第二类错误 - t检验与卡方检验2. 回归分析- 线性回归- 相关系数与决定系数3. 抽样与估计- 抽样误差- 置信区间- 最大似然估计四、综合练习题1. 选择题- 统计图表解读- 概率计算- 假设检验2. 填空题- 计算平均数、中位数、众数 - 计算方差、标准差- 概率分布的应用3. 解答题- 解释统计概念- 概率问题的求解- 应用统计方法解决实际问题五、附录1. 公式汇总- 统计学公式- 概率论公式2. 重要概念索引- 术语解释- 概念间的关系3. 参考资料- 推荐阅读书籍- 在线资源链接请根据需要对上述内容进行编辑和调整。
这篇文章是为了提供一个关于高中数学统计与概率的知识点概览,适用于教育目的。
每个部分都包含了关键的子标题和简短的描述,以便于理解和使用。
(最全)高中数学概率统计知识点总结

高中数学-概率与统计一、普通的众数、平均数、中位数及方差 1、 众数:一组数据中,出现次数最多的数。
2、平均数:①、常规平均数:12nx x x x n++⋅⋅⋅+=②、加权平均数:112212n n n x x x x ωωωωωω++⋅⋅⋅+=++⋅⋅⋅+3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。
4、方差:2222121[()()()]n s x x x x x x n=-+-+⋅⋅⋅+- 二、频率直方分布图下的频率1、频率 =小长方形面积:f S y d ==⨯距;频率=频数/总数2、频率之和:121n f f f ++⋅⋅⋅+=;同时 121n S S S ++⋅⋅⋅+=;三、频率直方分布图下的众数、平均数、中位数及方差 1、众数:最高小矩形底边的中点。
2、平均数: 112233n nx x f x f x f x f =+++⋅⋅⋅+ 112233n n x x S x S x S x S =+++⋅⋅⋅+ 3、中位数:从左到右或者从右到左累加,面积等于0.5时x 的值。
4、方差:22221122()()()n n s x x f x x f x x f =-+-+⋅⋅⋅+-四、线性回归直线方程:ˆˆˆybx a =+ 其中:1122211()()ˆ()nni i i i i i nni i i i x x y y x y nxybx x x nx ====---∑∑==--∑∑ , ˆˆay bx =- 1、线性回归直线方程必过样本中心(,)x y ;2、ˆ0:b>正相关;ˆ0:b <负相关。
3、线性回归直线方程:ˆˆˆy bx a =+的斜率ˆb 中,两个公式中分子、分母对应也相等;中间可以推导得到。
五、回归分析1、残差:ˆˆi i i ey y =-(残差=真实值—预报值)。
分析:ˆi e 越小越好; 2、残差平方和:21ˆ()ni i i y y=-∑, 分析:①意义:越小越好; ②计算:222211221ˆˆˆˆ()()()()ni i n n i y yy y y y y y =-=-+-+⋅⋅⋅+-∑ 3、拟合度(相关指数):22121ˆ()1()ni i i ni i y yR y y ==-∑=--∑,分析:①.(]20,1R ∈的常数; ②.越大拟合度越高;4、相关系数:()()nni i i i x x y y x y nx yr ---⋅∑∑==分析:①.[r ∈-的常数; ②.0:r >正相关;0:r <负相关③.[0,0.25]r ∈;相关性很弱; (0.25,0.75)r ∈;相关性一般; [0.75,1]r ∈;相关性很强; 六、独立性检验 1、2×2列联表: 2、独立性检验公式 ①.22()()()()()n ad bc k a b c d a c b d -=++++②.犯错误上界P 对照表3、独立性检验步骤①.计算观察值k :2()()()()()n ad bc k a b c d a c b d -=++++;②.查找临界值0k :由犯错误概率P ,根据上表查找临界值0k ;③.下结论:0k k ≥:即犯错误概率不超过P 的前提下认为: ,有1-P 以上的把握认为: ; 0k k <:即犯错误概率超过P 的前提认为: ,没有1-P 以上的把握认为: ;【经典例题】题型1 与茎叶图的应用例1(2014全国)某市为考核甲、乙两部门的工作情况,学科网随机访问了50位市民。
高中数学概率与统计知识点

高中数学概率与统计知识点1、概率的定义随机事件A的概率是频率的稳定值;频率是概率的近似值。
2、等可能事件的概率如果一次试验中可能出现的结果有n个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是1/n,如果某个事件A包含的结果有m个,那么事件A的概率为P(A)=m/n。
3、互斥事件不可能同时发生的两个事件叫互斥事件。
如果事件A、B互斥,那么事件A+B发生(A、B中有一个发生)的概率,等于事件A、B 分别发生的概率和,即P(A+B)=P(A)+P(B)。
4、对立事件对立事件是指两个事件必有一个发生的互斥事件。
例如:从1~52张扑克牌中任取一张抽到“红桃”与抽到“黑桃”互为互斥事件,因为其中一个不可能同时发生,但又不能保证其中一个必然发生,故不是对立事件。
而抽到“红色牌”与抽到“黑色牌”互为对立事件,因为其中一个必发生。
对立事件的性质:1)对立事件的概率和等于1:P(A)+P(Ä)=P(A+A)=1。
2)互为对立的两个事件一定互斥,但互斥不一定是对立事件。
5、相互独立事件事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。
两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(A·B)=P(A)·P(B)。
相互独立事件的性质:1)如果事件A与B相互独立,那么A与B,A与B,A与B也都相互独立。
2)必然事件与任何事件都是相互独立的。
3)独立事件是对任意多个事件来讲,而互斥事件是对同一实验来讲的多个事件,且这多个事件不能同时发生,故这些事件相互之间必然影响,因此互斥事件一定不是独立事件。
6、独立重复试验若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的。
如果在一次试验中某事件发生的概率为P,那么在n次独立重复试验中这个事件恰好发生k 次的概率:P…(k)=CP*(1-P)"-*7、两个事件之间的关系对任何两个事件都有P(A+B)=P(A)+P(B)-P(A·B)。
(完整版)高中数学统计与概率知识点归纳(全)

高中数学统计与概率知识点(文)的平均数就是中位数。
③求平均数时,就用各数据的总和除以数据的个数,得数就是这组数据的平 均数。
四、 中位数与众数的特点。
⑴中位数是一组数据中唯一的,可能是这组数据中的数据,也可能不是这组数据中的数据;⑵求中位数时,先将数据有小到大顺序排列,若这组数据是奇数个,则中间的数据是中位数;若 这组数据是偶数个时,则中间的两个数据的平均数是中位数; ⑶中位数的单位与数据的单位相同; ⑷众数考察的是一组数据中出现的频数;⑸众数的大小只与这组数的个别数据有关,它一定是一组数据中的某个数据,其单位与数据的单 位相同; (6) 众数可能是一个或多个甚至没有;(7) 平均数、众数和中位数都是描述一组数据集中趋势的量。
五、 平均数、中位数与众数的异同:⑴平均数、众数和中位数都是描述一组数据集中趋势的量; ⑵平均数、众数和中位数都有单位; ⑶平均数反映一组数据的平均水平,与这组数据中的每个数都有关系, 所以最为重要,应用最广;⑷中位数不受个别偏大或偏小数据的影响;⑸众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据。
六、 对于样本数据 X i , X 2,…,X n ,设想通过各数据到其平均数的平均距离来反映样本数据的分散 程度,那么这个平均距离如何计算?|X i - x| + |X 2- X| + L + |X n - x|思考4:反映样本数据的分散程度的大小,最常用的统计量是标准差, 一般用s 表示•假设样本数据X i , X 2,…,X n 的平均数为X ,则标准差的计算公式是:(X i - X)2 + (X 2 - x)2 + L +(x n - X)2七、简单随即抽样的含义一般地,设一个总体有 N 个个体,从中逐个不放回地抽取 n 个个体作为样本(n W N ),如果每次 抽取时总体内的各个个体被抽到的机会都相等,则这种抽样方法叫做简单随机抽样•八、 根据你的理解,简单随机抽样有哪些主要特点?一、 众数:一组数据中出现次数最多的那个数据。
高中数学统计与概率知识点

高中数学统计与概率知识点高中数学统计与概率知识点第一部分:统计一、众数众数是一组数据中出现次数最多的数据。
它反映了数据的集中趋势,但当数据大小差异很大时,众数的准确值难以判断。
此外,当众数出现次数不具明显优势时,用它来反映数据的典型水平是不可靠的。
二、中位数中位数是一组数据中位于最中间的数据,当数据为偶数个时,为最中间两个数据的平均数。
求中位数时,需要先将数据排序,然后根据数据的个数来确定中位数。
三、众数、中位数及平均数的求法众数由所给数据可直接求出;求中位数时,需要先排序,然后根据数据的个数来确定中位数;求平均数时,需要将各数据的总和除以数据的个数。
四、中位数与众数的特点中位数是一组数据中唯一的,可能是这组数据中的数据,也可能不是;众数考察的是一组数据中出现的频数,它的大小只与这组数据的个别数据有关,可能是一个或多个,甚至没有。
五、平均数、中位数与众数的异同平均数、中位数和众数都是描述一组数据集中趋势的量,都有单位。
平均数反映数据的平均水平,与每个数据都有关系,应用最广;中位数不受个别偏大或偏小数据的影响;众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据。
六、样本数据的分散程度对于样本数据x1,x2,…,xn,可以通过各数据到其平均数的平均距离来反映样本数据的分散程度。
平均距离的计算公式为12n。
本文介绍了统计学中常用的标准差,以及简单随机抽样的定义和特点。
其中,简单随机抽样的主要特点包括总体个体数有限、逐个抽取、不放回、公平性。
抽签法是一种简单易行的抽样方法,但在总体个数较多时可能会导致样本代表性差。
随机数表法是另一种常用的抽样方法,其步骤包括编号、选定起始位置和依次读取。
最后,对于从100个个体中抽取一个容量为10的样本,可以采用抽签法或随机数表法进行编号。
十三、系统抽样的一般步骤在使用系统抽样从总体中抽取样本时,首先需要将总体中的所有个体进行编号。
举例来说,如果要从605件产品中抽取60件进行质量检查,由于605件产品不能均衡分成60部分,因此需要先从总体中随机剔除5个个体,再均衡分成60部分。
(完整word版)高中数学统计与概率知识点归纳(全)

高中数学统计与概率知识点(文)一、众数: 一组数据中出现次数最多的那个数据。
众数与平均数的区别: 众数表示一组数据中出现次数最多的那个数据;平均数是一组数据中表示平均每份的数量。
二、.中位数: 一组数据按大小顺序排列,位于最中间的一个数据(当有偶数个数据时,为最中间两个数据的平均数)三 .众数、中位数及平均数的求法。
①众数由所给数据可直接求出;②求中位数时,首先要先排序(从小到大或从大到小),然后根据数据的个数,当数据为奇数个时,最中间的一个数就是中位数;当数据为偶数个时,最中间两个数的平均数就是中位数。
③求平均数时,就用各数据的总和除以数据的个数,得数就是这组数据的平均数。
四、中位数与众数的特点。
⑴中位数是一组数据中唯一的,可能是这组数据中的数据,也可能不是这组数据中的数据; ⑵求中位数时,先将数据有小到大顺序排列,若这组数据是奇数个,则中间的数据是中位数;若这组数据是偶数个时,则中间的两个数据的平均数是中位数; ⑶中位数的单位与数据的单位相同; ⑷众数考察的是一组数据中出现的频数;⑸众数的大小只与这组数的个别数据有关,它一定是一组数据中的某个数据,其单位与数据的单位相同;(6)众数可能是一个或多个甚至没有;(7)平均数、众数和中位数都是描述一组数据集中趋势的量。
五.平均数、中位数与众数的异同:⑴平均数、众数和中位数都是描述一组数据集中趋势的量; ⑵平均数、众数和中位数都有单位; ⑶平均数反映一组数据的平均水平,与这组数据中的每个数都有关系,所以最为重要,应用最广; ⑷中位数不受个别偏大或偏小数据的影响;⑸众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据。
六、对于样本数据x 1,x 2,…,x n ,设想通过各数据到其平均数的平均距离来反映样本数据的分散程度,那么这个平均距离如何计算?思考4:反映样本数据的分散程度的大小,最常用的统计量是标准差,一般用s 表示.假设样本数据x 1,x 2,…,x n 的平均数为x ,则标准差的计算公式是:七、简单随即抽样的含义一般地,设一个总体有N 个个体, 从中逐个不放回地抽取n 个个体作为样本(n≤N), 如果每次12||||||n x x x x x x n-+-++-L 22212()()()n x x x x x x s n -+-++-=L抽取时总体内的各个个体被抽到的机会都相等, 则这种抽样方法叫做简单随机抽样.八、根据你的理解,简单随机抽样有哪些主要特点?(1)总体的个体数有限;(2)样本的抽取是逐个进行的,每次只抽取一个个体;(3)抽取的样本不放回,样本中无重复个体;(4)每个个体被抽到的机会都相等,抽样具有公平性.九、抽签法的操作步骤?第一步,将总体中的所有个体编号,并把号码写在形状、大小相同的号签上.第二步,将号签放在一个容器中,并搅拌均匀第三步,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.十一、抽签法有哪些优点和缺点?优点:简单易行,当总体个数不多的时候搅拌均匀很容易,个体有均等的机会被抽中,从而能保证样本的代表性.缺点:当总体个数较多时很难搅拌均匀,产生的样本代表性差的可能性很大.十一、利用随机数表法从含有N个个体的总体中抽取一个容量为n的样本,其抽样步骤如何?第一步,将总体中的所有个体编号.第二步,在随机数表中任选一个数作为起始数.第三步,从选定的数开始依次向右(向左、向上、向下)读,将编号范围内的数取出,编号范围外的数去掉,直到取满n个号码为止,就得到一个容量为n的样本.简单随机抽样一般采用两种方法:抽签法和随机数表法。
高中数学统计与概率知识点归纳全

高中数学统计与概率知识点归纳全统计与概率是数学中重要的一部分,出现在中学数学和高中数学的教学中。
它涵盖了很多基本的概念和方法,并且在实际生活中有广泛的应用。
本文将全面归纳高中数学统计与概率的知识点,以帮助读者更好地理解和掌握这一领域的内容。
一、基本概念1. 数据与统计:数据是通过观察、测量或实验获得的信息,统计是对数据进行收集、整理、分析和解释的过程。
2. 总体与样本:总体是指研究对象的全体,样本是从总体中选取的一部分。
3. 参数与统计量:参数是描述总体的数值特征,统计量是根据样本数据计算得到的总体参数的估计值。
4. 随机事件与样本空间:随机事件是指一个结果不确定、以概率形式描述的事件,样本空间是随机事件可能发生的所有结果的集合。
5. 概率:概率是用来描述随机事件发生可能性大小的数值。
它可以通过实验、几何、统计推理等方法进行计算。
二、统计方法1. 数据收集与处理:包括数据的收集、整理和清洗,以及计算数据的频数、频率、中位数、平均数等。
2. 描述统计和推断统计:描述统计通过图表、图像和数值等形式展示数据的分布特征;推断统计则通过样本数据进行参数估计、假设检验等,从而对总体进行推断。
3. 频数分布与频率分布:频数分布是指将数据按照取值范围划分成若干组,并统计每组中数据出现的频数;频率分布则是统计每组数据出现的频率。
三、概率相关知识1. 事件的概率:事件A发生的概率记为P(A),它满足0≤P(A)≤1。
2. 基本事件与复合事件:基本事件是样本空间中的单个事件,复合事件由一个或多个基本事件组成。
3. 互斥事件与相对事件:互斥事件是指两个事件不可能同时发生,相对事件是指两个事件都能够发生,或者都不能发生。
4. 概率的计算:通过等可能原理、频率法、古典概型等方法计算事件的概率。
5. 条件概率与独立事件:条件概率是指在已知事件B发生的条件下,事件A发生的概率,记为P(A|B);独立事件是指事件A和事件B的发生与否互不影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应
用
最
广
;
⑷中位数不受个别偏大或偏小数据的影响;
⑸众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数
据
。
六、对于样本数据 x1,x2,…,xn,设想通过各数据到其平均数的平均距离来反映样本数 据的分散程度,那么这个平均距离如何计算?
| x1 x | | x2 x |
| xn x |
第一部分:统计
高中数学统计与概率知识点(文)
一、什
么
是
众
数
。
一组数据中出现次数最多的那个数据,叫做这组数据的众数。
众
数
的
特
点
。
①众数在一组数据中出现的次数最多;②众数反映了一组数据的集中趋势,当众数出现
的次数越多,它就越能代表这组数据的整体状况,并且它能比较直观地了解到一组数据的
大致情况。但是,当一组数据大小不同,差异又很大时,就很难判断众数的准确值了。此
第一步,将这 600 件产品编号为 1,2,3,…,600. 第二步,将总体平均分成 60 部分,每一部分含 10 个个体. 第三步,在第 1 部分中用简单随机抽样抽取一个号码(如 8 号). 第四步,从该号码起,每隔 10 个号码取一个号码,就得到一个容量为 60 的样本.(如 8,18,28,…,598)
数
据
的
单
位
相
同
;
(6)众数可能是一个或多个甚至没有;
(7)平均数、众数和中位数都是描述一组数据集中趋势的量。
1 / 10
五.平均数、中位数与众数的异同:
⑴平均数、众数和中位数都是描述一组数据集中趋势的量;
⑵平均数、众数和中位数都有单位;
⑶平均数反映一组数据的平均水平,与这组数据中的每个数都有关系,所以最为重要,
如果每次抽取时总体内的各个个体被抽到的机会都相等, 则这种抽样方法叫做简单随机抽 样.
八、根据你的理解,简单随机抽样有哪些主要特点? (1)总体的个体数有限; (2)样本的抽取是逐个进行的,每次只抽取一个个体; (3)抽取的样本不放回,样本中无重复个体; (4)每个个体被抽到的机会都相等,抽样具有公平性.
九、抽签法的操作步骤? 第一步,将总体中的所有个体编号,并把号码写在形状、大小相同的号签上. 第二步,将号签放在一个容器中,并搅拌均匀 第三步,每次从中抽取一个号签,连续抽取 n 次,就得到一个容量为 n 的样本.
2 / 10
十一、抽签法有哪些优点和缺点? 优点:简单易行,当总体个数不多的时候搅拌均匀很容易,个体有均等的机会被抽
简单随机抽样每个个体入样的可能性都相等,均为 n/N,但是这里一定要将每个 个体入样的可能性、第 n 次每个个体入样的可能性、特定的个体在第 n 次被抽到的可 能性这三种情况区分开来,避免在解题中出现错误.
3 / 10
解题应用 如果从 600 件产品中抽取 60 件进行质量检查,按照上述思路抽样应如何操作?
n 思考 4:反映样本数据的分散程度的大小,最常用的统计量是标准差,一般用 s 表示.假
设样本数据 x1,x2,…,xn 的平均数为 x ,则标准差的计算公式是:
s (x1 x)2 (x2 x)2 n
(xn x)2
七、简单随即抽样的含义 一般地,设一个总体有 N 个个体, 从中逐个不放回地抽取 n 个个体作为样本(n≤N),
外,当一组数据的那个众数出现的次数不具明显优势时,用它来反映一组数据的典型水平
是
不
大
可
靠
的
。
3.众数与平均数的区别。
众数表示一组数据中出现次数最多的那个数据;平均数是一组数据中表示平均每份的数
量
。
二
、
.
中
位
数
的
概
念
。
一组数据按大小顺序排列,位于最中间的一个数据(当有偶数个数据时,为最中间两
个数据的平均数)叫做这组数据的中位数。
简单随机抽样一般采用两种方法:抽签法和随机数表法。 思考: 如果从 100 个个体中抽取一个容量为 10 的样本,你认为对这 100 个个体进行怎样 编号为宜?
解法 1:(抽签法)将 100 件轴编号为 1,2,…,100,并做好大小、形状相同的号 签,分别写上这 100 个数,将这些号签放在一起,进行均匀搅拌,接着连续抽取 10 个 号签,然后测量这个 10 个号签对应的轴的直径。 解法 2:(随机数表法)将 100 件轴编号为 00,01,…99,在随机数表中选定一个起 始位置,如取第 21 行第 1 个数开始,选取 10 个为 68,34,30,13,70,55,74, 77,40,44,这 10 件即为所要抽取的样本。
小结、 简单随机抽样是一种最简单、最基本的抽样方法,简单随机抽样有两种选取个体
的方法:放回和不放回,我们在抽样调查中用的是不放回抽样,常用的简单随机抽样 方法有抽签法和随机数法.
抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方 便, 如果标号的签搅拌得不均匀,会导致抽样不公平,随机数表法的优点与抽签法 相同,缺点上当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种 方法只适合总体容量较少的抽样类型.
三
.众数、中位数及平均数的求法。
①众数由所给数据可直接求出;②求中位数时,首先要先排序(从小到大或从大到小),
然后根据数据的个数,当数据为奇数个时,最中间的一个数就是中位数;当数据为偶数个
时,最中间两个数的平均数就是中位数。③求平均数时,就用各数据的总和除以数据的个
数,得数就是这组数据的平均数。
四、中位数与众数的特点。
⑴中位数是一组数据中唯一的,可能是这组数据中的数据,也可能不是这组数据中的数
据
;
⑵求中位数时,先将数据有小到大顺序排列,若这组数据是奇数个,则中间的数据是中
位数;若这组数据是偶数个时,则中间的两个数据的平均数是中位数;
⑶中位数的单位与数据的单位相同;
⑷众数考察的是一组数据中出现的频数;
⑸众数的大小只与这组数的个别数据有关,它一定是一组数据中的某个数据,其单位与
中,从而能保证样本的代表性. 缺点:当总体个数较多时很难搅拌均匀,产生的样本代表性差的可能性很大.
十一、 利用随机数表法从含有 N 个个体的总体中抽取一个容量为 n 的样本,其抽样步 骤如何?
第一步,将总体中的所有个体编号. 第二步,在随机数表中任选一个数作为起始数. 第三步,从选定的数开始依次向右(向左、向上、向下)读,将编号范围内的数取 出,编号范围外的数去掉,直到取满 n 个号码为止,就得到一个容量为 n 的样本.