《六足仿生机器人》
六足仿生机器人PPT课件

1:制作六足机器人的3D模型,设计结构:张晓强,王旭 阳,盛文涛 2:设计电路:吴斌斌 3:编辑控制程序:王新春2021/3/7CHENLI15
谢谢观赏
2021/3/7
CHENLI
16
• 二.5月进行三维模型绘制,cad图纸制作, 软件中进行装配,运动仿真,大体实现运动效 果
• 三.6月进行中期检查合格后,开始进行零件 制作,进行小部件拼接。另一方面,开始购买 相应的电子元件,传感器设备,计算性能数据。
•
2021/3/7
CHENLI
13
• 四.七、八月实体加工大零件,并对零件进行 检测。此期间,由于零部件较多,所以需要分 两部分进行:七月制作机器人的腿部零件并组 装,八月制作身体零件并组装。之后将两者组 装。
• 应用仿生学原理,模拟生物的运 动形式,就成为机器人领域研究 的热点之一。
2021/3/7
CHENLI
2
随着机器人在现代化各个行业中的广泛应用,社会对机器人的要求不断提高。 由于机器人应用范围的不断扩展,一些特殊工作环境对于机器人提出了特殊的要求, 但在任何环境下作业的机器人要完成特定的任务,
2021/3/7
• 1.机器人穿越障碍的能力将会有更大的提高。
• 2.机器人六足之间的协作及配合能力应高于六足 机器人。
• 3.机器人能实现更多的动作,而且实现同一动作 应有不同的实现方式,已解决在某些情况下, 某些过程无法实现的弊端。
2021/3/7
CHENLI
11
设计方案
• 承载装置:底盘——安装单片机支撑舵机整体 机身;
2021/3/7
CHENLI
5
2021/3/7
基于此项的六足机器人
六足移动式微型仿生机器人的研究

六 足 移 动 式 微 型 仿 生 机 器 人 的 研 究
徐 小 云 颜 国正 丁 国 清 刘 华 付 轩 吴 岩
( 上海交通 大学信 息检测技术及仪器 系 上海 2 0 3 ) 0 0 0
摘 要 : 文 描 述 了 一 种 微 型 六 足 仿 生 机 器 人 的 结 构 与 控 制 , 析 了 这 种 微 型 六 足 仿 生 机 器 人 的 移 动 原 理 . 本 分 该 机 器 人 基 于 仿 生 学 原 理 , 构 独 特 、 单 、 颖 , 方 便 地 实 现 前 进 和 后 退 , 样 机 外 形 尺 寸 为 : 3 rm , 结 简 新 能 其 长 0 a 宽
t xpe i e a e uls s he e r m nt lr s t how ha he r botha od m obiiy. t tt o s go lt
Ke wo d :h x p d r b t i n c r b t i k c r e a l s a t y rs e a o o o ,b o i o o ,l u v ta ,g i n
六足仿生机器人实验室开放项目结项报告

EA/VPP:当/EA保持低电平时,则在此期间为外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器读取外部ROM数据。注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,单片机读取内部程序存储器。(扩展有外部ROM时读取完内部ROM后自动读取外部ROM)。在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。
XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。
XTAL2:来自反向振荡器的输出。
3.2
开关三极管电路利用三极管工作于截止区和饱和区,相当于电路的切断和导通的特性,被广泛应用于各种开关电路中,如常用的开关电源电路、驱动电路、高频振荡电路、模数转换电路、脉冲电路及输出电路等。本次设计用两个NPN型小功率三极管s8050构成三极管开关电路,能够有效地隔绝恒流源电路对单片机芯片的损害。
淮北师范大学实验室开放项目
总结报告
基于STC12C5A60S2单片机的六足机器人
学院:物理与电子信息学院
负责人:韩润
小组成员:史浩东史良东陆家双
张莹莹康强强
指导老师:方振国
一 、项目重述
1.1项目名称:智能六足机器人
1.2项目背景及意义:
背景:在社会迅速发展的今天,单片机的的运用已经渗透到我们生活的每个角落,也似乎很难找到哪个领域没有单片机的足迹。智能仪表、医疗器械,导弹的导航装置,智能监控、通讯与数据传输,工业自动化过程的实时控制和数据处理,广泛使用的各种智能IC卡,汽车的安全保障系统,动控制领域的机器人,数码像机、电视机、全自动洗衣机的控制,电话机以及程控玩具、电子宠物等等,这些都离不开单片机。
l六足昆虫机器人机械原理

l六足昆虫机器人机械原理一、基本原理本项目的机器人,传动系统还是继续利用“摆动曲柄滑块机构”原理,把减速电机的旋转运动转换为驱动腿迈步的往复摆动运动,再结合简单的连杆结构,协调六条腿按照昆虫的步态规律实现爬行运动。
1、运动方式本项目机器人是模仿拥有六条腿的昆虫的爬行运动。
昆虫爬行想必大家都是见过的,但是由于昆虫的六条腿还是多了些,而且一般昆虫的动作都比较迅速,观察起来有点眼花缭乱,所以可能很多人并不是很了解昆虫爬行时这六条腿是如何协调动作的。
而要做好六足爬行机器人,就要清晰的了解这六条腿的每个阶段的步伐状态,也就是我们常说的“步态”。
实际上,一般六条腿的昆虫,是以三条腿为一组、共两组交叉进行协调运动的。
同一时间内,有一组也就是三条腿着地,另外一组的三条腿是离开地面的,然后两组交替切换往前爬行。
我们都知道,三点可以确定一个平面,即三条腿可以保证整个身体的平衡,这也许就是很多昆虫都是长了六条腿的主要原因吧。
以下是六足昆虫爬行步态的分解,以前进方向为例进行说明:1、静止时六条腿都是同时着地;2、前进时,先迈出第1组三条腿(左前、右中、左后),第2组三条腿着地(右前、左中、右后);3、第1组三条腿(左前、右中、左后)往前迈出着地后保持不动,然后换第2组三条腿(右前、左中、右后)往前迈出;4、第2组三条腿(右前、左中、右后)往前迈出着地后保持不动,再换第1组……如此循环往复,同一时间都保证有一组三条腿着地以保持身体的平衡,并不断往前进。
2、驱动机理本项目机器人是采用六足爬行的方式运动,对于六足的驱动力量也是有一定要求的,所以与前几个仿生类机器人项目一样都是借助减速电机所具有的“低转速、高扭矩”的特性来实现的。
与PVC-Robot 11号、PVC-Robot 12号机器人驱动双臂以及与PVC-Robot 13号驱动双足类似,本项目机器人六足中的中间两足是主动足,是由减速电机直接驱动的,而采用的减速电机同样也必须要满足两个条件:1、拥有足够的动力,能够支撑双足行走;2、减速电机左右两侧同轴输出。
六足仿蜘蛛机器人的结构设计与仿真分析

六足仿蜘蛛机器人的结构设计与仿真分析一、概述随着科技的飞速进步,机器人技术已经逐渐渗透到各个领域,特别是在仿生机器人领域,其研究与应用更是取得了显著的成果。
六足仿蜘蛛机器人作为仿生机器人的一种,其结构设计与仿真分析是当前研究的热点之一。
六足仿蜘蛛机器人是一种模拟蜘蛛行走方式的机器人,具有适应性强、稳定性高、运动灵活等优点。
通过模拟蜘蛛的六足行走机制,该机器人能够在复杂环境中实现高效、稳定的运动,具有重要的应用价值。
在结构设计方面,六足仿蜘蛛机器人需要考虑多个因素,包括机械结构、驱动方式、运动学分析等。
机械结构是机器人的基础,需要合理设计各部件的尺寸、形状和连接方式,以实现机器人的稳定行走和灵活运动。
驱动方式的选择直接影响到机器人的运动性能和效率,常见的驱动方式包括电机驱动、液压驱动等。
运动学分析则是研究机器人运动规律的重要手段,通过对机器人运动学模型的建立和分析,可以预测和优化机器人的运动性能。
在仿真分析方面,通过建立六足仿蜘蛛机器人的虚拟样机,可以在计算机环境中进行各种实验和测试,以验证机器人设计的合理性和有效性。
仿真分析可以帮助研究人员快速发现设计中存在的问题,并进行相应的优化和改进。
仿真分析还可以为机器人的实际制造和测试提供重要的参考依据。
本文旨在探讨六足仿蜘蛛机器人的结构设计与仿真分析方法,为该类机器人的研究和应用提供有益的参考和借鉴。
1. 机器人技术的发展趋势随着科技的飞速进步,机器人技术正迎来前所未有的发展机遇。
从简单的自动化操作到复杂的智能决策,机器人技术正逐步渗透到我们生活的方方面面。
在当前的科技浪潮中,机器人技术的发展趋势呈现出以下几个显著特点。
人工智能技术的深度融合是机器人技术发展的重要方向。
随着深度学习、神经网络等技术的不断发展,机器人逐渐具备了更强的感知、理解和决策能力。
这使得机器人能够更好地适应复杂多变的环境,实现更高级别的自主操作。
机器人技术的集成化趋势日益明显。
传统的机器人往往只具备单一的功能,而现代机器人则更倾向于将多种功能集成于一体,实现一机多用。
六足机器人设计参考

摘要六足机器人有强大的运动能力,采用类似生物的爬行机构进行运动,自动化程度高,可以提供给运动学、仿生学原理研究提供有力的工具。
本设计中六足机器人系统基于仿生学原理,采用六足昆虫的机械结构,通过控制18个舵机,采用三角步态和定点转弯等步态,实现六足机器人的姿态控制。
系统使用RF24L01射频模块进行遥控。
为提高响应速度和动作连贯性,六足机器人的驱动芯片采用ARM Cortex M4芯片,基于μC/OS-II操作系统,遥控器部分采用ARM9处理器S3C2440,基于Linux系统。
通过建立六足机器人的运动模型,运用正运动学和逆运动学对机器人进行分析,验证机器人步态的可靠性。
关键字:六足机器人,Linux,ARM,NRF24L01,运动学AbstractBionic hexapod walking robot has a strong ability of movement, the use of similar creatures crawling mechanism movement, high degree of automation, can be provided to the kinematics, the principle of bionics research provides powerful tool. Six feet in the design of this robot system based on bionics principle, the mechanical structure of the six-legged insect, through 18 steering gear control, use the gait, such as triangle gait and turning point to control the position ofsix-legged robot. Remote control system use RF24L01 rf modules. In order to improve the response speed and motion consistency, six-legged robot driver chip USES the ARM architecture (M4 chip, based on mu C/OS - II operation system, remote control part adopts ARM9 processorS3C2440, based on Linux system. By establishing a six-legged robot motion model, using forward kinematics and inverse kinematics analysis of robot, verify the reliability of the robot gait.KEYWORD:Bionic hexapod walking robot;Linux,ARM,NRF24L01;Kinematics目录1. 绪论2. 六足机器人的硬件搭建3. 操作系统的搭建4. 六足机器人的步态分析与实现5. 总结与展望1. 绪论1.1 多足机器人的发展状况目前,用于在人类不宜、不便或不能进入的地域进行独立探测的机器人主要分两种,一种是由轮子驱动的轮行机器人,另一种是基于仿生学的步行机器人。
可遥控仿生六足机器人之研制

机器人是由125"精确的微型RC伺服马达所驱动,它 们可控制6条腿.每条腿有水平旋转及垂直升降2个自 由度(DOF)。透过89C51单芯片对12个伺服马达的精 确控制,可模拟及研究六足动物的行走步态。六足机 器人有遥控及自走功能,遥控功能是利用无线电来遥 控六足机器人进行前进、后退、停止及左右转弯等动 作。自走功能则是利用六足机器人前方所装设的微动 开关及反射型红外线传感器来侦测障碍物,若行进间 遇到障碍物时则进行转弯避障等动作。
收电路扳之实体照。
当机构设计完成后便开始利用铣床、钻床及销丁 来)3EIT3mm厚的铝台金板,图4为加工完成之六足机
器人的底板,图5(a)为六足机器人之脚的所有零件,
图5(b侧为完成机构组装之“六足机器人”的脚。
可翮
囤4“六足机器^1之雇板
_…簟・’一
OUT,3 …琶}IN
vo
囤7电三转换电路接脚圉
图8电源转换与遥控接收电路板
图9遥控发射电路围
r
一个迷你埠!f_J服马达内部包括了
个小型直流
5达;一组变速齿轮组;一个回授可调电位训;及
块电子控制板。其中,高速转动的直流马达提供r原 始动力,带动减速齿轮组,使之产串高扭力的输出, 齿轮组的变速比愈大,1_J服马达的输出扭力也愈大,
也就是说越能承受更大的币量,但转动的速度也愈
厂】
本六足机器人设计有无线电遥控系统,操作者可
在100公尺的范围内以无线遥控柬操作机器人。图9为 遥控发射电路图,74C922可作为键盘}{描之用.4位
的控制信号及8化之设定密码经编码Ic HT一12E编码 载波后,再由无线电发射模块TWS一315将信号发射出
去。图10为无线电功率放人电路.IC gPCI677C可将
仿生六足机器人研究报告

项目研究报告北京理工大学机电学院 20081043 吴帆——小型仿生六足探测机器人一、课题背景:仿生运动模式的多足步行机器人具有优越的越障能力,它集仿生学原理、机构学理论、自动控制原理与技术、计算机软件开发技术、传感器检测技术和电机驱动技术于一体。
不论在何种地面上行走,仿生六足机器人的运动都具有灵活性与变化性,但其精确控制的难度很大,需要有良好的控制策略与精密的轨迹规划,这些都是很好的研究题材。
二、项目创新点:作为简单的关节型伺服机构,仿生六足机器人能够实现实时避障,合理规划行走路线。
简单的关节型机器人伺服系统不仅具有可批量制造的条件,作为今后机器人群系统的基本组成,也可以作为探索复杂伺服机构的研究对象。
三、研究内容:1.仿生学原理分析:仿生式六足机器人,顾名思义,六足机器人在我们理想架构中,我们借鉴了自然界昆虫的运动原理。
足是昆虫的运动器官。
昆虫有3对足,在前胸、中胸和后胸各有一对,我们相应地称为前足、中足和后足。
每个足由基节、转节、腿节、胫节、跗节和前跗节几部分组成。
基节是足最基部的一节,多粗短。
转节常与腿节紧密相连而不活动。
腿节是最长最粗的一节。
第四节叫胫节,一般比较细长,长着成排的刺。
第五节叫跗节,一般由2-5个亚节组成﹔为的是便于行走。
在最末节的端部还长着两个又硬又尖的爪,可以用它们来抓住物体。
行走是以三条腿为一组进行的,即一侧的前、后足与另一侧的中足为一组。
这样就形成了一个三角形支架结构,当这三条腿放在地面并向后蹬时,另外三条腿即抬起向前准备替换。
前足用爪固定物体后拉动虫体向前,中足用来支持并举起所属一侧的身体,后足则推动虫体前进,同时使虫体转向。
这种行走方式使昆虫可以随时随地停息下来,因为重心总是落在三角支架之内。
并不是所有成虫都用六条腿来行走,有些昆虫由于前足发生了特化,有了其他功用或退化,行走就主要靠中、后足来完成了。
大家最为熟悉的要算螳螂了,我们常可看到螳螂一对钳子般的前足高举在胸前,而由后面四条足支撑地面行走。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 应用仿生学原理,模拟生物的运 动形式,就成为机器人领域研究 的热点之一。
编辑课件
2
随着机器人在现代化各个行业中的广泛应用,社会对机器人的要求不断提高。 由于机器人应用范围的不断扩展,一些特殊工作环境对于机器人提出了特殊的要求, 但在任何环境下作业的机器人要完成特定的任务,
编辑课件
3
步行是人类及有腿动物所具有的独特的运动方式,也是自然界中最为灵活的移
编辑课件
9
特色与创新
• 一.实现了仿生动物机器人的制作, 并一定程度上实现了机器人的运动 机制
• 二.运动方向上,可以进行简单 的变化,前后,左右,上下
• 三.负载一定的载荷,并实现平 稳的运送和放置到一定的高度
编辑课件
10
• 六足机器人具有更大的灵活性及具有更多的控 制性,相比较与传统的四足机器人,本机构在 完成之后应该具有以下几个特色:
• 五.九月份上半月进行电控元件和传感器元件 的嵌入组装,同时在十月份学习单片机编程控 制知识。十一月份至月末,实现零件与系统的 成功组装。
• 六.九月份下半月份进行机体整体测试,多次 实体运动测试,记录测试效果,进行改进。
• 七.十月份进行结题报告制作和答辩准备。
编辑课件
14
成员分工
• 组长:张晓强 • 分工:
编辑课件
5
基于此项的六足机器人
在救援中,很多地方人员无法进 入,本来可以拯救更多的人,如 果有一种机器人能代替人员进行 探查,那就可以弥补很多的遗憾 和损失。于是我们的课题就是从 这里而来。
编辑课件
6
作品工作原理
• 由电机带动蜗杆从来带动6个机械脚,当 遇到墙壁等障碍是,前面的导向轮触碰 到行程开关,关闭电机。
编辑课件三角步态示意图
7
编辑课件
8
推广和应用
• 在此基础上可以进行推广。安装各种附 件可以进行不同功能的改变。如:机械 手,可以进行搬运和障碍排除。安装各 种传感器可以检测各种环境,人不适宜 进入的
• 随着科技的发展,机器人正逐渐走进我 们的生活,各种机器人活动蓬勃开展, 越来越多的人步入了机器人爱好者的行 列。
• 1.机器人穿越障碍的能力将会有更大的提高。
• 2.机器人六足之间的协作及配合能力应高于六足 机器人。
• 3.机器人能实现更多的动作,而且实现同一动作 应有不同的实现方式,已解决在某些情况下, 某些过程无法实现的弊端。
编辑课件
11
设计方案
• 承载装置:底盘——安装单片机支撑舵机整体 机身;
• 运动控制装置:12个舵机——控制机器人的左 右及上下运动;
动方式,步行机是以模拟这种方式来实现自身运动的一类特殊的机器人。随着机器
人技术的不断发展及其在各个领域的广泛应用,各类不同功能的机器人研制就具有
很大的现实意义。
编辑课件
4
Байду номын сангаас
美国研制出的ODEX I-IV型六足机,能自如通过狭窄门洞、转弯、上下 楼梯、避障等,腿结构为改进的缩放式,用于核电站的维修工作。
• 三.6月进行中期检查合格后,开始进行零件 制作,进行小部件拼接。另一方面,开始购买 相应的电子元件,传感器设备,计算性能数据。
•
编辑课件
13
• 四.七、八月实体加工大零件,并对零件进行 检测。此期间,由于零部件较多,所以需要分 两部分进行:七月制作机器人的腿部零件并组 装,八月制作身体零件并组装。之后将两者组 装。
1:制作六足机器人的3D模型,设计结构:张晓强,王旭 阳,盛文涛 2:设计电路:吴斌斌 3:编辑控制程序:王新春
编辑课件
15
谢谢观赏
编辑课件
16
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
• 运动装置:六个机械足——运动的支持; • 整体控制装置:单片机——程序控制机器人的
运动; • 动力装置:7.2伏锂电池——为机器人提供能量。
编辑课件
12
进度安排
• 一.4月制定立项报告,对小组人员进行分工, 计划时间。
• 二.5月进行三维模型绘制,cad图纸制作, 软件中进行装配,运动仿真,大体实现运动效 果
六足仿生机器人
编辑课件
1
立项背景
• 远古时代,人们就发明了轮子作 为移动机械和地面相互作用的运 动体。轮子的
• 发明不仅造福于我们的祖先,而 且在推动现代工业的发展中也发 挥着不可估量的作
• 用。尽管如此,由于轮子本身的 弱点,必须在地面平坦、土质较 硬及摩擦大的地面
• 上移动。对于地形复杂、土质松 软的环境,轮子的移动就显示出 很大的不足。因此,