主变中性点接地方式(电力)
中性点接地

《电气工程基础》 电力系统中性点接地方式
第三节 中性点直接接地系统
定义:将电力系统中的部分或
全部变压器中性点直接接入大 地。
优点:过电压低,对绝缘要求
水平低,电力系统的电压越高 ,这一优点越突出。
缺点:当出现单相短路故障时
,单相短路电流很大,可靠性 差,在电气安全方面的问题比 较严重。
《电气工程基础》 电力系统中性点接地方式
缺点:
《电气工程基础》 电力系统中性点接地方式
第五节 中性点经电抗器接地
中性点经电抗器接地可以减少单向接地电流。 特别对于大接地电流的低阻值接地系统时效果更好 。因为低阻值的电阻器很笨重,降低接地电流的作 用小,电阻器上电压高;而电抗器可以减少有功功 率损耗,结构方面也比较简单,但接地设备的投资 大。 使用电抗器接地可以将接地电流限制到三相短 路电流的三分之一以上。
' UC
U C (U C ) 0
I C 3I C . A 3 3I C 0 3 I C 0
《电气工程基础》 电力系统中性点 接地方式
缺点:不接地系统发生单相短路接地并且接地电 流大于10A而小于30A时,有可能产生不稳定的 间歇性电弧,随着间歇性电弧的产生将引起幅 值较高的弧光接地过电压,其最大值不会超过 3.5倍相电压。对绝缘较差的设备、线路上的 绝缘弱点和绝缘强度很低的旋转电机有一定威 胁,在一定程度上对安全运行有影响。 优点:(1)简单,易于实现;(2)由于中性点 不接地配电网的单相接地电流很小,对邻近通 信线路、信号系统的干扰小。 应用:这种接地方式适用于接地电容电流不大的 场合,主要是低电压的系统中。
《电气工程基础》 电力系统中性点接地方式
第四节 中性点经电阻接地
10kV发电机组中性点经电阻接地方式

中性点经电阻接地方式——适宜于以电缆线路为主配电网的中性点接地方式一、前言三相交流电系统中性点与之间电气连接的方式,称为电网中性点接地方式。
中性点接地方式是一个综合性的、系统性的问题,既涉及到电网的安全可靠性、也涉及电网的经济性。
中性点接地方式直接影响到系统设备绝缘水平的选择、系统过电压水平及过电压保护元件的选择、继电保护方式、系统的运行可靠性、通讯干扰等。
在选择电网中性点接地方式时必须进行具体分析、全面考虑。
我国110kV及以上电压等级的电网一般都采用中性点直接接地方式,在中性点直接接地系统中,由于中性点电位固定为地电位,发生单相接地故障时,非故障相的工频电压升高不会超过1.4倍运行相电压;暂态过电压水平也相对较低;故障电流很大继电保护装置能迅速断开故障线路,系统设备承受过电压的时间很短,这样就可以使电网中设备的绝缘水平降低,从而使电网的造价降低。
这里对中性点直接接地系统不做过多的讨论,下面主要讨论6~35kV配电网的接地方式。
配电网中性点的接地方式主要可分为以下三种:●不接地●经消弧线圈接地●经电阻接地自1949年至80年代我国基本上沿用前联的规定,6~35KV电网均采用中性点不接地或经消弧线圈(谐振)接地方式。
近10多年来沿海一些大城市经济飞速发展,电网的容量和规模急剧扩大,配电线路逐步实现电缆化,系统电容电急剧增加、特别是近几年大规模城市电网改造,电缆线路逐步代替架空线路,电网结构大大加强。
在电缆线路为主的城市电网中采用不接地或经消弧线圈接地方式,因单相接地过电压烧坏设备的事故概率大大增加,为了解决这一矛盾,许多城市电力部门广泛考察了国外配电网的中性点接地方式,结合本地电网的具体情况,经过充分的分析、研究,发现采用中性点经低电阻接地方式是解决这一矛盾的有效措施,20世纪80年代后期开始在、试用、推广,并很快推广到其他城市(如、、、、、天津、、、工业园区、、讪头、、、等),同时,也在发电厂,机场、港口、地铁、钢厂、有色金属冶炼厂等行业被广泛采用。
35千伏变电站变压器中性点接地方式改造

35千伏变电站变压器中性点接地方式改造摘要:接地电阻是衡量地网合格的一个重要参数,因为接地主要是为了设备及人身的安全起作用的电位,目前在很多变电站在改造中,接地改造就是一项重要的技术难题。
本文结合具体工程实例对35kV变电站主变压器建设改造进行了深入的探讨。
关键词:变电站;35kV系统;中性点Abstract: The grounding resistance is an important parameter to measure ground network of qualified, because the ground is the main potential role for equipment and personal safety, in the transformation of many substations, grounding transformation is an important technical problems. In this paper, specific examples of projects conducted in-depth discussion on the 35kV substation main transformer construction and renovation.Keywords: substation; 35kV system; neutral point中图分类号:TM411文献标识码:A 文章编号:接地的实质是当变电站发生接地短路时,控制故障点地电位的升高,因为接地主要是为了设备及人身的安全,起作用的是电位而不是电阻,接地电阻是衡量地网合格的一个重要参数。
目前,国家电网中仍运行一些老旧35kV变电站,这些变电站存在很多缺陷,给电网的运行带来了极大的安全风险。
通过对变电站的技改,旨在彻底消除变电站的缺陷,而35kV变电站的改造中,技术难题是一个比较复杂的问题。
主变中性点接地方式的选择

主变中性点接地方式的选择刘治全【摘要】电网中变压器中性点接地方式的选择,对电网的安全经济运行具有重要的作用.它与电网的绝缘水平、保护配置、系统的供电可靠性、发生接地故障时的短路电流及分布等关系密切.对不同情况下变压器中性点的接地方式的选择进行了讨论.【期刊名称】《建材技术与应用》【年(卷),期】2008(000)001【总页数】2页(P20-21)【关键词】变压器;接地方式;中性点;零序保护【作者】刘治全【作者单位】广东省云浮硫铁矿企业集团公司,传媒中心,广东,云浮,527343【正文语种】中文【中图分类】TM732引言电网中变压器中性点接地方式的选择,是一个关系到电网安全运行的综合性问题。
它与电网的绝缘水平、保护配置、系统的供电可靠性、发生接地故障时的短路电流及分布等关系密切。
110 kV电压等级的电网经常采取变压器中性点直接接地的方式,称为大电流接地系统。
其特点是当系统发生接地故障,尤其是发生单相接地故障时,非故障相的对地电压不升高,接地相的故障电流较大。
在大电流接地电网中,接地电流的大小和分布以及零序电压的水平,主要取决于电网中性点直接接地变压器的分布。
在电网发生的故障中,接地故障占80 %以上。
因此,合理地选择主变中性点接地方式,快速切除故障,可提高系统供电的可靠性,同时还能减小故障电流对设备的危害,对电网的安全经济运行具有重要的作用。
1 变压器中性点接地方式1.1 220 kV主变110 kV侧的接地方式区域电网一般以220 kV变电站为主电源,以110 kV线路为骨架形成区域电网。
对于有单台主变的220 kV变电站,其主变的220 kV侧和110 kV侧中性点都直接接地。
而对于有2台主变的220 kV变电站,则有2种不同的主变中性点接地方式:方式1是其中1台主变的高、中压侧均接地,而另1台主变的高、中压侧均不接地;方式2是1台主变的高、中压侧均接地,但另1台主变只有中压侧接地。
为便于讨论,用模拟电网对这两种方式进行分析。
110kV主变中性点分级绝缘等级的选择

D I1.99ji n 10 —35 .02 增 刊 .3 O :0 36/ s .0 6 9 121 . s 02
1 引 言
变 压器在 正 常运行 时 , 中性 点 的位移 电压很 小 , 在 10k 1 V及 以上 电压 等级 中 , 经济 角 度考 虑 ,1 从 10 k V及 以上 主变 中性点 一般采 用 分级 绝缘 , 中性点 即 绝 缘低 于线 端 绝缘 。常见 的 10k 1 V主 变 中性 点 分 级 绝缘 有 4 V级和 6 v级 , 4k 6k 它们 的耐受 电压 分别 为 L20 C 5和 L35 C4 , 么 我 们 应 该 怎样 确 I5A 9 I2A 10 那 定 主变 中性 点 的分级绝 缘水 平 呢?本文从 主 变 中性 点接地 方式 、 中性 点 出现 的过 电压 及采 取 的保 护措 施 三个 方面进 行 考虑 。
性点采 用 6 V等 级 能满 足各 种 运 行 方 式 的 需要 , 6k 间隙 与避 雷器 的配 合也更 容 易 , 因此 推荐 10k 1 V主 变 中性 点分 级绝 缘采 用 6 V级 。 6k
参考文献 :
查棒 间隙距 离与雷 电冲击放 电电压关 系图, 棒
间隙 10nT 查 棒 间 隙 距 离 与 工 频 放 电 电压 关 系 4 zl i, 图, 工频放 电 电 压约 为 6 V, 配 合 系数 为 1 1, 0k 取 .5
间隙, 应在 中性 点装设 雷 电过 电压保护 装置 , 且宜 选 变压器 中性 点 金 属 氧 化 物 避 雷 器 ” 10 k , 1 V主 变 中
1 中性 点 直接接地 时 、
采用 Y .W一 216 15 7/8 型避雷器保护 , 雷电冲击
, ’ ’,
110kV变压器中性点接地方式与零序保护配置

110kV变压器中性点接地方式与零序保护配置(2008/01/28 21:18)摘要:在分析变压器零序保护配置的基础上,对110kV变压器中性点过电压问题、接地方式的控制以及目前厦门电网110kV变压器零序保护设计存在的安全隐患等进行了初步探讨,提出拆除部分中性点棒间隙,改善变压器零序保护配合的措施。
关键词:变压器;中性点;零序保护中图分类号:TM772文献标识码:B文章编号:1006-6047(1999)06-0064-031变压器零序保护配置厦门电网目前全部选用分级绝缘变压器,在多台变压器并列运行的变电站,主变中性点一般采用部分接地的运行方式。
对于中性点不接地的变压器,其外部故障的后备保护,过去采用零序互跳保护或中性点间隙保护两种方法。
1.1零序互跳保护变压器中性点零序过电流动作时先跳开中性点不接地变压器的保护方式,称为零序互跳。
如图1,2台主变并列运行,1号主变中性点接地,当K2点发生接地故障时,1号主变中性点零序过流保护动作,第一时限跳2号主变高低压侧开关,K2故障点被隔离,1号主变恢复正常运行。
如果故障点在K1处,当第一时限跳开2号主变后,零序过流保护第二时限跳本变压器,切除故障。
零序互跳保护显而易见的缺点是:①有选择性切除故障的概率只有50%;②母线故障时没有选择性,会扩大停电范围;③零序过流保护时间整定必须和主变相间保护配合,对保护整定配合不利;④必须在2台变压器同时停运时才能进行互跳试验,条件苛刻,二次接线容易错误。
来源:图2内桥接线变电站示意图为了节省投资、占地,节约110kV线路空中走廊等原因,新建设的110kV变电站较多采用线路-变压器组接线,而且1条线路可“T”接2台甚至3台变压器,变压器零序保护仅有中性点零序过电流保护,没有配置中性点间隙电流保护以及110kVTV开三角零序电压保护(主变110kV侧只有单相线路TV)。
由于零序保护配置不够完整,在多台“T”接的线路-变压器组接线中,各变压器中性点仍全部接地运行。
1号主变中性点接地刀闸操作指南

1、2号主变压器中性点接地刀闸操作指南1 主变压器中性点接地刀闸现地电手动分闸操作1.1检查电机电源正常;1.1 将主变压器中性点控制箱控制方式由“远方”切至“就地”;1.2 操作控制箱内的“分闸”按钮,即拉开主变压器中性点接地刀闸;1.3 确认主变中性点接地刀闸已拉开, 操作控制箱内的“停止”按钮;1.4 再将主变压器中性点控制箱控制方式由“就地”切至“远方”。
2 主变压器中性点接地刀闸现地纯手动分闸操作2.1 将操作把手操作孔套在接地刀闸操作装置上;2.2 逆时针旋转操作把手至接地刀闸完全分开.1 主变压器中性点接地刀闸现地电手动合闸操作1.1检查电机电源正常;1.1 将主变压器中性点控制箱控制方式由“远方”切至“就地”;1.2 操作控制箱内的“合闸”按钮,即合上主变压器中性点接地刀闸;1.3 确认主变中性点接地刀闸已合上, 操作控制箱内的“停止”按钮;1.4 再将主变压器中性点控制箱控制方式由“就地”切至“远方”。
2 主变压器中性点接地刀闸现地纯手动合闸操作2.1 将操作把手操作孔套在接地刀闸操作装置上;2.2 顺时针旋转操作把手至接地刀闸完全合上.2 注意事项2.1 变压器停、送电操作前均应将变压器中性点接地;2.2 变压器中性点进行倒换时,应先合上另一台主变压器中性点接地刀闸,然后拉开原来的变压器中性点接地刀闸;2.3 拉合主变中性点接地刀闸后,应以主变中性点实际机械位置为准;2.4 主变压器中性点接地方式发生变化时,其保护应作相应切换;2.4.1 当中性点直接接地时,保护压板投入零序过流保护;2.4.2 当中性点不接地时,保护压板投入零序电流电压保护;2.6 手动拉开主变中性点接地刀闸后,应在主变中性点控制箱上悬挂标示牌。
01.主变规程讲解

动力厂供电车间操作规程编号:RG/QF-05-1-13 版次A/0 页次1/8主变运行规程1. 概述本站主变规模为4台50MVA变压器,选用三相二卷式自冷变压器,室外布置。
主变压器型号:SZ10-50000/110主变压器容量:50000KVA电压比:110±8×1.25%/10.5KV接线组别:YN,d11容量比:100/100阻抗电压:14%主变压器中性点接地方式:高压侧:直接接地或经间隙、氧化锌避雷器接地低压侧:不接地。
调压方式:自动/手动有载调压2. 运行规定2.1 主变应在额定条件下运行;正常运行时,严禁过负荷,各侧的最大负荷电流不应大于其运行档位的额定电流;最大负荷电流110kV侧不应大于运行档位的额定电流,10kV侧不应大于2749.3A。
系统事故时允许短时间过负荷,但应根据变压器过负荷允许时间表加强监视,并及时与调度联系。
2.2 主变正常运行时,上层油温最高不超过85℃,监视温度应视负荷及环境温度而定,其温升在任何条件下也不应超过55℃,每台主变有2个温度表,可以用于远方监视,也可就地监视,用于监视主变的南、北侧油温。
2.3 主变为自冷运行方式2.4 主变在首次或大修后投入运行,应以额定电压进行冲击,冲击次数和试运行时间按有关规定或启动程序执行。
一般情况下新变压器投运前需冲击5次,大修后的变压器需冲击3次,第一次20分钟,以后每次5分钟,间隔2分钟。
变压器在充电前,应先合装有保护的电源侧开关后合负荷侧开关;停电时,则反之。
2.5 主变加油、滤油、瓦斯继电器检修工作时,需将本体重瓦斯、有载重瓦斯压板退出,运行中发现主变散热器阀门关闭需进行开启前,应将本体重瓦斯、有载重瓦斯压板退出,上述工作完毕经二小时试运行,确认瓦斯继电器无气体时,方可将重瓦斯压板投入,重瓦斯保护压板投入或退出均应经地调许可。
2.6 主变在停、送电、并解列前必须按调度命令,将中性点接地并投入接地零序保护,停电或投入运行后,再按调度命令改变中性点的接地方式。