气相色谱仪

合集下载

气相色谱仪 测试范围

气相色谱仪 测试范围

气相色谱仪测试范围气相色谱仪是一种广泛应用于化学、医药、环保、食品等领域的重要分析仪器。

它能够分离和检测复杂样品中的各种成分,具有高分辨率、高灵敏度、高重复性等优点。

以下是气相色谱仪的测试范围:一、适用范围气相色谱仪适用于各种气体、挥发性有机物、芳香烃、醇类、酯类、酮类、卤代烃等有机化合物,以及农残、添加剂、催化剂、表面活性剂等复杂化合物。

同时,它还可以用于分析空气、水质、食品、药品等中的有害物质和杂质。

二、测试范围1.气体分析气相色谱仪可以用于分析各种气体,如氢气、氧气、氮气、二氧化碳等。

这些气体在工业生产、环境保护、医学诊断等领域都有广泛的应用。

例如,在医学上,气相色谱仪可以用于检测血液中的氧含量、二氧化碳含量等。

1.有机化合物分析气相色谱仪可以用于分析各种有机化合物,如烃类、醇类、酯类、酮类、卤代烃等。

这些化合物在化工生产、药品制造、环保监测等领域都有广泛的应用。

例如,在药品制造中,气相色谱仪可以用于检测药品的纯度和杂质含量。

1.环境监测气相色谱仪可以用于监测空气、水质、土壤等环境中的有害物质和杂质。

例如,在环保监测中,气相色谱仪可以用于检测空气中的PM2.5、甲醛等有害物质。

1.食品检测气相色谱仪可以用于检测食品中的添加剂、农药残留等有害物质。

例如,在食品检测中,气相色谱仪可以用于检测食品中的防腐剂、甜味剂等添加剂的含量。

1.其他应用除了以上应用领域,气相色谱仪还可以用于分析燃料油、润滑油、塑料、橡胶等各种材料中的有机化合物。

例如,在燃料油分析中,气相色谱仪可以用于检测燃料油中的烃类、醇类等有机化合物的含量。

三、总结气相色谱仪是一种非常强大的分析仪器,其测试范围广泛,可以应用于化学、医药、环保、食品等领域。

通过对气体、有机化合物、环境、食品等各种样品的成分进行分析,气相色谱仪可以为科学研究、工业生产、环境保护、医学诊断等领域提供重要的数据支持。

同时,随着技术的不断进步和应用需求的不断变化,气相色谱仪的测试范围还将不断扩大和完善。

气相色谱仪用途及功能

气相色谱仪用途及功能

气相色谱仪用途及功能气相色谱仪(Gas Chromatograph,简称GC)是一种化学分离与分析仪器,广泛应用于化学、药学、环境保护、食品安全、材料科学等领域。

它利用样品在高温下汽化,与载气混合进入色谱柱,通过样品分子在固定相和流动相之间的相互作用,实现样品分离和定量分析。

1.化学分析和定性鉴定:气相色谱仪可以对物质进行分离和鉴定。

它可以根据物质在色谱柱中的停留时间(保留时间)以及样品的峰形、峰高等参数,来确定物质的组分和含量。

2.定量分析:气相色谱仪可以通过计算样品峰面积或峰高与标准品的对比,进行定量分析。

可以用于检测环境中的污染物、食品中的添加剂、药品中的药物成分等。

3.成分分析和研究:气相色谱仪可以分析多组分的混合物,并确定每个组分的含量以及它们之间的分子比例。

可以用于确定其中一种物质的化学成分,研究样品的组成和构成。

4.毛细管柱和毛细管电泳:气相色谱仪可以与毛细管柱联用,进行毛细管电泳分析,提高分离效果和分析灵敏度。

5.样品前处理:气相色谱仪可以进行样品的前处理,如萃取、浓缩、洗脱等,以提高分离和检测的效果。

6. 质量谱联用:气相色谱仪可以与质谱仪(Mass Spectrometer,MS)进行联用,将气相色谱仪分离的物质进一步进行鉴定和结构分析,提高分析的准确性和灵敏度。

7.可以对非挥发性样品进行分析:通过样品的衍生化、萃取和浓缩等方法,可以将非挥发性样品转化为挥发性样品,从而进行分析。

8.自动化和高通量分析:气相色谱仪可以与自动进样器、自动注射器等设备联用,实现样品的自动化处理和高通量分析,提高工作效率。

气相色谱仪以其高效、准确、灵敏的分析能力,广泛应用于科学研究、工业品质检测、法医学鉴定、环境监测、食品安全检测等领域。

凭借其高分辨率和定量能力,气相色谱仪已成为现代化学分析的重要工具之一,对许多领域的研究和发展起到了至关重要的作用。

气相色谱仪的原理及应用方法

气相色谱仪的原理及应用方法

气相色谱仪的原理及应用方法一、气相色谱仪的原理气相色谱仪(Gas Chromatograph,简称GC)是一种分离和分析化合物的仪器。

它基于样品在气相和固定相之间相互分配的原理,通过柱和载气的选择实现对样品中各种化合物的分离。

1.1 采集样品在开始实验之前,需要准备样品,并采用适当的方法将需要分析的化合物转化为气态。

这可以通过蒸馏、热解、溶剂提取等方法完成。

1.2 柱的选择选择适当的柱是实现有效分离的关键。

柱的选择取决于需要分离的化合物的性质和分析目的。

常见的柱类型包括填充柱和毛细管柱。

填充柱常用于高分子化合物的分离,而毛细管柱适用于低分子量有机物的分离。

1.3 载气的选择载气在气相色谱中起到推动样品通过柱的作用。

常用的载气有氮气、氢气和惰性气体等。

载气的选择取决于对分子扩散速率和分离效果的要求,以及实验室中的安全性和成本等因素。

1.4 分离原理分离原理是气相色谱仪的核心。

它基于化合物在液相和固相之间的分配系数不同,使得样品中的各种化合物在柱上以不同的速率通过。

在样品通过柱的过程中,化合物会被分离出来,并形成不同的峰。

1.5 检测器的作用在分离完成后,需要通过检测器对分离出来的化合物进行定量或定性分析。

常见的检测器包括气体放大器检测器、火焰光度检测器和质谱检测器等。

二、气相色谱仪的应用方法气相色谱仪在各个领域中都有广泛的应用,以下列举几个主要的应用方法。

2.1 环境监测气相色谱仪在环境监测中起到非常重要的作用。

它可以用于检测大气中的有害气体和有机污染物,从而评估环境质量和监测污染源。

通过气相色谱仪的应用,我们可以及时发现和控制环境污染,保护人类的健康和生态环境。

2.2 化学分析气相色谱仪广泛应用于化学分析领域。

它可以对物质进行成分分析、结构鉴定和定量分析。

在药物分析、食品安全检测和石油化工等领域,气相色谱仪都是不可或缺的分析工具。

它可以高效地分离复杂的混合物,提高分析的准确性和灵敏度。

2.3 药物筛查气相色谱仪也被广泛应用于药物筛查。

气相色谱仪的工作原理

气相色谱仪的工作原理

气相色谱仪的工作原理气相色谱仪(Gas Chromatograph,GC)是一种利用气相色谱技术对混合物中各组分进行分离、检测和定量的仪器。

气相色谱仪的核心部分是色谱柱,色谱柱内充填有吸附剂或分子筛,用于分离混合物中的各个组分。

仪器主要由进样系统、分离柱、检测器、数据处理系统和控制系统等组成。

工作原理如下:1. 进样系统:混合物通过进样系统插入气相色谱仪。

进样系统可以通过不同的方法将样品引入色谱柱中,如气相进样、液相进样、固相进样等。

样品进入色谱柱前,通常需要进行前处理,如稀释、浓缩、提取等。

2. 色谱柱:样品进入色谱柱后,被色谱柱内充填物质吸附或分离。

色谱柱内的填充物通常是具有高度选择性的固定相,例如液体或固体吸附剂。

不同组分在填充物上的亲和力不同,因此会以不同的速度通过色谱柱,实现组分分离。

3. 检测器:色谱柱中的分离组分通过移动相(也称为载气)带出柱后进入检测器进行检测。

常见的检测器包括热导检测器(Thermal Conductivity Detector,TCD)、火焰离子化检测器(Flame Ionization Detector,FID)、氮磷检测器(Nitrogen Phosphorus Detector,NPD)等。

不同的检测器对不同类型的分析物具有不同的灵敏度和选择性。

4. 数据处理系统:检测器会输出电信号,表示各组分的信号强度。

这些信号经过放大、滤波和转换等处理后,传送到数据处理系统进行电子信号的分析和处理。

数据处理系统可以绘制出色谱图,即通过峰的面积或高度计算各组分的相对含量。

5. 控制系统:控制系统用于控制进样系统、分离柱温度、检测器温度和流动相流速等参数,以保证分析的准确性和稳定性。

综上所述,气相色谱仪通过利用色谱柱对混合物中的组分进行分离,并通过检测器对分离后的组分进行检测和定量,最后通过数据处理系统进行数据分析,实现对不同组分的分析和定量。

气相色谱仪作业指导书

气相色谱仪作业指导书

气相色谱仪作业指导书一、引言气相色谱仪(Gas Chromatography, GC)是一种广泛应用于化学分析领域的仪器,其原理基于对物质在气相中的分离和测量。

气相色谱仪可用于各种化学样品的分离、定性和定量分析,因此在实验室中被广泛使用。

本指导书将介绍气相色谱仪的基本原理、操作步骤和安全注意事项,旨在帮助操作人员正确高效地使用气相色谱仪进行实验。

二、仪器和仪器备件1. 气相色谱仪主机:包括色谱柱、进样口、检测器等组成部分。

2. 色谱柱:选择合适的色谱柱对于实验的成功至关重要。

根据需要选择适合的柱型、长度和内径。

3. 进样口:用于注入样品进入色谱柱,常用的有手动进样口和自动进样口。

4. 检测器:气相色谱仪常用的检测器有火焰离子化检测器(FID)、热导检测器(TCD)和质谱检测器等。

三、实验操作步骤1. 准备工作1.1 检查仪器和备件,确保一切正常运作。

1.2 根据样品性质和分析要求选择合适的色谱柱。

1.3 准备样品溶液,保证其浓度适当。

2. 仪器开机和预热2.1 打开气源,确保气源正常供应。

2.2 打开气相色谱仪主机电源,开启仪器电源。

2.3 打开色谱柱炉电源,将色谱柱炉温度设定为预定温度,预热至稳定。

3. 样品进样3.1 准备进样针,涂抹样品溶液,并将进样针插入进样口。

3.2 将进样针插入进样口后迅速注射样品,并保持一定时间,使样品蒸发均匀。

4. 开始分析4.1 打开色谱软件,设置合适的进样体积、分析时间等参数。

4.2 启动进样,开始分析。

4.3 监控色谱仪运行状态和数据输出。

5. 数据处理和分析5.1 根据色谱仪输出的柱图进行峰面积计算或定性分析。

5.2 利用标准曲线进行定量分析,计算样品中分析物的含量。

四、安全注意事项1. 在操作气相色谱仪时应戴上适当的防护眼镜和实验手套,避免直接接触有毒或腐蚀性样品。

2. 在操作过程中注意维持实验室的通风良好,以防止样品挥发物对操作人员的危害。

3. 操作人员应严格按照实验室规章制度进行操作,杜绝随意浪费试剂和设备。

简述气相色谱仪操作规程

简述气相色谱仪操作规程

简述气相色谱仪操作规程气相色谱仪(Gas Chromatograph, GC)是一种常用的分析仪器,广泛应用于化学、生物、环境等领域的分析实验中。

使用气相色谱仪需要遵守一定的操作规程,以下简述气相色谱仪的操作规程。

一、准备工作1. 检查仪器是否正常,包括气路系统、进样系统、柱箱等。

2. 打开电源,启动仪器,预热目标温度,一般建议预热至180℃-220℃。

3. 检查气源,确保气源的压力充足,并检查气源是否干燥。

二、注射样品1. 准备好待测样品,并确保样品完全溶解或均匀悬浮。

2. 设置进样器温度,一般为室温或稍微高于室温。

3. 打开进样器盖板,将样品注入进样器,并记下样品注射量。

4. 关闭盖板,注意不要用力过大,以免损坏仪器。

三、柱箱温度设定1. 根据待测物的性质和柱子的选择,设定柱箱温度。

温度的设定对分离效果有重要影响。

2. 建议在分析前进行柱子的条件热洗,以保证准确的结果和延长柱子的寿命。

四、气路系统1. 确定检测器种类,并调整检测器的温度以使其稳定工作。

2. 打开气源,调整气源压力和流量。

一般情况下,载气流量为1-10毫升/分钟。

3. 设定载气温度和流速,并调整检测器的流量控制器,以保持稳定的气流。

五、测试1. 打开仪器的进样器和柱箱温度,等待柱温和检测器稳定后开始测试。

2. 记录柱子温度和检测器输出的信号,以便后续数据分析。

3. 注意样品的进样量、进样速度和注射器的温度对测试结果的影响。

4. 注意观察测试过程中的任何异常现象,并及时调整相应的设置。

六、测试结果处理1. 根据检测器输出信号的曲线和峰高,可以判断待测物的存在及其浓度。

2. 对于定性分析,可以通过比较峰的保留时间和峰的形状来确定待测物的化学性质。

3. 对于定量分析,可以通过建立峰高与浓度之间的标准曲线来确定待测物的浓度。

4. 记录测试结果并进行数据分析,包括计算相应的峰的相对保留时间、相对峰面积等指标。

七、仪器维护1. 每次使用完毕后,关闭气源,清洁进样器和柱箱,保持仪器干净整洁。

气相色谱仪的组成和作用

气相色谱仪的组成和作用

气相色谱仪的组成和作用气相色谱仪是一种多功能的仪器,具有广泛的应用领域,尽管其型号繁多,但其基本结构相似,主要由以下几个组成部分构成:1. 气路系统:气路系统是气相色谱仪的基础,包括气源、净化干燥管、载气流速控制和气体化装置。

它的主要功能是提供稳定、纯净的载气,如氢气、氮气、氩气,其纯度要求在99%以上,同时要具备化学惰性以避免与待分析物相互反应。

载气的选择需考虑其对分离效果、分析对象和检测器的影响。

2. 进样系统:进样系统用于引入样品进入分析系统,其组成包括进样器和气化室。

进样器类型根据样品状态的不同而异,液体样品通常使用微量注射器,气体样品使用推拉式六通阀或旋转式六通阀,而固体样品则需要先溶解后使用微量注射器进样。

气化室通过加热将液体或固体样品瞬间气化成气体状态,确保进入色谱柱前的气化过程不会导致分解。

3. 分离系统:分离系统是气相色谱仪的核心部分,由柱室、色谱柱和温度控制系统组成。

色谱柱分为填充柱和毛细管柱,其材料包括金属、玻璃、融熔石英和聚四氟等。

分离效果受柱的长度、直径、填充物特性和操作条件的影响。

4. 检测系统:检测器将分离后的组分的浓度或质量转换成电信号,经过信号处理,生成色谱图。

检测器分为浓度型和质量型两类,如热导检测器和氢焰离子化检测器。

检测器的性能直接影响分析结果的准确性。

5. 温度控制系统:温度控制对气相色谱仪至关重要,它直接影响柱的分离效果、检测器的灵敏度和稳定性。

温度需要控制在气化室、色谱柱和检测器中。

可采用恒温或程序升温方式,具体选择取决于分析需要。

6. 记录系统:记录系统用于记录检测器的信号并进行定量数据处理。

通常使用自动平衡式电子电位差计进行记录,生成色谱图。

一些仪器配备电子计算机,可自动处理分析数据,提供更准确的定量分析结果。

气相色谱仪的各个组件和系统协同工作,可用于分离、检测和定量分析化合物,广泛应用于化学分析领域。

气相色谱仪原理及操作步骤

气相色谱仪原理及操作步骤

气相色谱仪原理及操作步骤
一、气相色谱仪的原理
用色谱柱先将混合物分离,然后利用检测器依次检测已分离出来的组分。

色谱柱的分离原理在于惯用的具有吸附性的色谱柱填料,使得混合物中各组分在色谱柱中的两相间进行分配。

由于各组分的吸附能力不同,因此各组分在色谱柱中的运行速度就不同,经过一定的柱长后,便彼此分离,按顺序离开色谱柱进入检测器,产生的离子流讯号经放大后,在记录器上描绘出各组分的色谱峰。

二、气相色谱仪的操作步骤如下:
1. 准备工作:检查仪器安全阀是否处于开启状态,确认分析柱安装正确,温度设定在操作手册规定的温度范围内,并检查各部份是否连接完好。

2. 样品溶解:将样品加入溶剂中,采用高速搅拌混匀,以确保样品完全溶解,得到浓缩的溶液。

3. 溶液导入:将溶液加入检测器中,控制流量大小,确保流量的稳定性。

4. 调零:使用空白样品进行调零,确保实验数据准确性。

5. 开始实验:按照实验要求逐次放入样品,并监测色谱图及色谱曲线。

6. 记录数据:记录实验数据,包括色谱图及色谱曲线。

7. 清理仪器:关闭安全阀,拆卸分析柱,清理仪器,确保下次实验的正确进行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

气相色谱仪一、气相色谱简介气相色谱(gas chromatography, GC)是一种以气体为流动相的柱色谱分离分析技术,流动相气体又称为载气(carrier gas),一般为化学惰性气体,如氮气、氦气等。

根据固定相的状态不同,可将其分为气固色谱和气液色谱。

由于在气液色谱中可供选择的固定液种类很多,容易得到好的选择性,所以有广泛的实用价值。

GC能分离气体及在操作温度下能成为气体,但又不分解的物质。

它可在极短时间内同时分离及测定多成分,并可与质谱法(MS)或红外光谱法(IR)结合使用,应用广泛。

气相色谱仪由六个基本系统组成:1. 载气系统:一般由气源钢瓶、减压装置、净化器、稳压恒流装置、压力表和流量计以及供载气连续运行的密闭管路组成。

2. 进样系统:进样就是把样品快速而定量地加到色谱柱上端,以便进行分离。

进样系统包括进样器和气化室两部分。

3. 分离系统:由色谱柱和色谱炉组成。

色谱柱可分为填充柱和毛细管柱两类。

常用的填充柱内径为2~4 mm,长1~3m,具有广泛的选择性,应用很广。

毛细管柱内径0.1~0.5mm,柱长30~300m。

毛细管柱的质量传送阻力小且管柱长,其渗透性好,分离效率高,分析速度快。

但柱容量低,进样量小,要求检测器灵敏度高,操作条件严格。

色谱炉的作用是为样品各组分在柱内的分离提供适宜的温度。

4. 温控系统:温度控制系统用来设定、控制和测量色谱炉、气化室和检测器的温度。

5. 检测系统:检测系统主要为检测器(detector),是一种能把进入其中各组分的量转换成易于测量的电信号的装置。

根据检测原理的不同可分为浓度型和质量型两类。

浓度型检测器测量的是载气中组分浓度瞬间的变化,即检测器的响应值正比于载气中组分的浓度。

如热导检测器(TCD)和电子捕获检测器(ECD。

质量型检测器测量的是载气中所携带的样品进入检测器的速度变化,即检测器的响应信号正比于单位时间内组分进入检测器的质量。

如氢焰离子化检测器(FID)和火焰光度检测器(FPD)。

6. 放大记录系统:记录系统是一种能自动记录由检测器输出的电信号的装置。

二、气相色谱仪操作规程㈠、开机1、首先打开氮气钢瓶总阀门、调节减压阀压力为0.5~0.6Mpa2、打开电源开关,当屏幕上显示出Passed Selftes后,即可设测试参数,设定柱温时,一定要注意柱子的最高使用温度。

3、当温度达到设定温度时,打开空气压缩机开关,氢气钢瓶阀门调节氢气分压表为0.3~0.4Mpa。

再打开仪器面板上空气、氢气开关,用点火器点火,稳定大约30min后,待面板上Not-Ready灯熄灭后,即可测定。

4、数据处理机内容的设定,最小峰面积一般200。

去掉倒信号:InT01 8 Time 0。

纸速:一般设CHT SP 0.2~0.3㈡、测试条件的设定:色谱条件的设定要根据不同化合物的不同性质选择柱子,一般情况极性化合物选则极性柱。

非极性化合物选择非极性柱。

色谱柱柱温的确定主要由样品的复杂程度决定。

对于混合物一般采用程序升温法。

柱温的设定要同时兼顾高低沸点或溶点化合物。

以下提供几种方法,仅供参考。

1、柱温 60~80℃恒温5min 升温速率10~15℃/min 最终温度 200℃进口温度 200℃检测温度 220℃2、柱温 100~160℃速率不变最终温度230℃进样口温度 250℃检测器温度 250℃3、对于高沸点(高溶点)的化合物可采用柱温200℃升至240℃进样口温度 250℃检测温度260℃以上条件可根据不同的化合物任意改动,其目的要达到在最短的时间里,使每个化合物的组份完全分离。

一般测试化合物有两种测试方法:①毛细管柱分流法:样品被直接进入色谱柱,不需稀释进样量要少于0.1μl。

若为固体化合物,则尽可能用少量溶剂稀释,进样量为0.2~0.4μl②大口径毛细管法不分流:无论固体或液体,一定要稀释后,方可进样进样量为0.2~0.4μl(1ml/mg) ㈢、注意事项:1、检测器温度不能低于进样口温度,否则会污染检测器进样口温度应高于柱温的最高值,同时化合物在此温度下不分解。

2、含酸、碱、盐、水、金属离子的化合物不能分析,要经过处理方可进行。

3、进样器所取样品要避免带有气泡以保证进样重现性。

4、取样前用溶剂反复洗针,再用要分析的样品至少洗2-5次以避免样品间的相互干拢。

5、需直接进样品,要将注射器洗净后,将针筒抽干避免外来杂质的干拢。

紫外—可见分光光度计紫外—可见分光光度法是利用某些物质的分子吸收200-800 nm光谱区的辐射来进行分析测定的方法。

这种分子吸收光谱产生于价电子和分子轨道上的电子在电子能级间的跃迁,广泛用于无机和有机物质的定性和定量测定。

其基本原理Beer-Lambert定律,是说明物质对单色光的吸收强度与吸光物质的浓度与厚度间关系的定律。

/PT=PA=-lgT=abc紫外-可见分光光度计的类型很多,一般可归纳为三种类型,即单光束分光光度计、双光束分光光度计和双波长分光光度计。

紫外-可见分光光度计的基本结构是由五个部分组成:即光源、单色器、吸收池、检测器和信号系统。

(一)光源紫外-可见分光光度计对光源的基本要求是应在仪器操作所需的光谱区域内能够发射连续辐射,有足够的辐射强度和良好的稳定性,而且辐射能量随波长的变化应尽可能小。

分光光度计中常用的光源有热辐射光源和气体放电光源两类。

热辐射光源用于可见光区,如钨丝灯和卤钨灯;气体放电光源用于紫外光区,如氢灯和氘灯。

钨灯和卤钨灯可使用的范围在340-1000nm,在可见光区。

在近紫外区测定时常用氘灯。

它可在160-375 nm范围内产生连续光源,是紫外光区应用最广泛的一种光源(二)单色器单色器是能从光源辐射的复合光中分出单色光的光学装置,其主要功能是产生光谱纯度高的波长且波长在紫外可见区域内任意可调。

单色器一般由入射狭缝、准光器(透镜或凹面反射镜使入射光成平行光)、色散元件、聚焦元件和出射狭缝等几部分组成。

其核心部分是色散元件,起分光的作用。

能起分光作用的色散元件主要是棱镜和光栅。

棱镜可由玻璃和石英两种材料组成。

它们的色散原理是依据不同的波长光通过棱镜时有不同的折射率而将不同波长的光分开。

由于玻璃可吸收紫外光,只能用于可见光域内。

石英棱镜可使用的波长范围较宽,可从185-4000nm,即可用于紫外、可见和近红外三个光域。

光栅是利用光的衍射与干涉作用制成的,它可用于紫外、可见及红外光域,而且在整个波长区具有良好的、几乎均匀一致的分辨能力。

它具有色散波长范围宽、分辨本领高、成本低、便于保存和易于制备等优点。

缺点是各级光谱会重叠而产生干扰。

(三)吸收池吸收池用于盛放分析试样,一般有石英和玻璃材料两种。

石英池适用于可见光区及紫外光区,玻璃吸收池只能用于可见光区。

在高精度的分析测定中,吸收池要挑选配对的。

(四)检测器检测器的功能是检测信号、测量单色光透过溶液后光强度变化的一种装置。

常用的检测器有光电池、光电管和光电倍增管等。

(五)信号指示系统其作用是放大信号并以适当方式指示或记录下来。

常用的信号指示装置有直读检流计、电位调节指零装置以及数字显示或自动记录装置等。

很多型号的分光光度计装配有微处理机,可对分光光度计进行操作控制和数据处理。

高效液相色谱仪高效液相色谱(High performance liquid chromatography, HPLC)是利用液体作为流动相的一种色谱分离分析技术。

它是用高压输液泵将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,经进样阀注入供试品,由流动相带入柱内,在柱内各成分被分离后,依次进入检测器,色谱信号由记录仪或积分仪记录。

根据分离机制不同,液相色谱可分为:液固吸附色谱、液液分配色谱、化合键合色谱、离子交换色谱以及分子排阻色谱等类型。

HPLC非常适合分子量较大、难气化、不易挥发或对热敏感的物质、离子型化合物及高聚物的分离分析,能完成难度较高的分离工作,具有高柱效、高选择性、分析速度快、灵敏度高、重复性好、应用范围广等优点。

在化学、化工、医药、生化、环保、农业等科学领域获得广泛的应用高效液相色谱仪由高压输液系统、进样系统、分离系统、检测系统、记录系统等五大部分组成。

分析前,选择适当的色谱柱和流动相,开泵,冲洗柱子,待柱子达到平衡而且基线平直后,用微量注射器把样品注入进样口,流动相把试样带入色谱柱进行分离,分离后的组分依次流入检测器的流通池,最后和洗脱液一起排入流出物收集器。

当有样品组分流过流通池时,检测器把组分浓度转变成电信号,经过放大,用记录器记录下来就得到色谱图。

色谱图是定性、定量和评价柱效高低的依据。

操作过程:1、开机操作:(1)、打开电源,待电压稳定后打开计算机(2)、自上而下打开各个组件电源,再打开工作站;(3)、打开冲洗泵头的开关(需用针捅抽),控制流量大小,以能流出的最小流量为准;2、先以所用流动相冲洗系统一定时间(如所用流动相为含盐流动相,必须先用水冲洗20分钟以上再换上含盐流动相),正式进样分析前30min 左右开启D灯或W灯,以延长灯的使用寿命;3、建立色谱操作方法,进样检测。

4、实验结束后,先用水或低浓度甲醇水溶液冲洗整个管路30分钟以上,再用甲醇冲洗。

冲洗过程中关闭D灯、W灯;5、关机,先关闭泵、检测器等,再关闭工作站,然后关机,最后自下而上关闭色谱仪各组件,关闭洗泵溶液的开关;6、使用者须认真履行仪器使用登记制度,出现问题及时向老师报告,不要擅自拆卸仪器。

未经操作培训,不得擅自使用仪器。

操作注意事项1、使用前仔细阅读色谱柱附带的说明书,注意适用范围,如pH值范围、流动相类型等2、流动相应选用色谱纯试剂、高纯水或双蒸水,酸碱液及缓冲液需经过滤后使用,过滤时注意区分水系膜和油系膜的使用范围;3、水相流动相需经常更换(一般不超过2天),防止长菌变质;4、采用过滤或离心方法处理样品,确保样品中不含固体颗粒;5、用流动相或比流动相弱(若为反相柱,则极性比流动相大;若为正相柱,则极性比流动相小)的溶剂制备样品溶液,尽量用流动相制备样品液;6、使用手动进样器进样时,在进样前和进样后都需用洗针液洗净进样针筒,洗针液一般选择与样品液一致的溶剂,进样前必须用样品液清洗进样针筒3遍以上,并排除针筒中的气泡;进样量尽量小,使用定量管定量时,进样体积应为定量管的3~5倍;7、溶剂瓶中的沙芯过滤头容易破碎,在更换流动相时注意保护,当发现过滤头变脏或长菌时,不可用超声洗涤,可用5%稀硝酸溶液浸泡后再洗涤;8、如所用流动相为含盐流动相,反相色谱柱使用后,先用水或低浓度甲醇水(如5%甲醇水溶液),再用甲醇冲洗。

9、色谱柱在不使用时,应用甲醇冲洗,取下后紧密封闭两端保存。

SL电子天平使用方法1.接通电源将随机电源线插入本机后的电源插座内。

相关文档
最新文档