全等三角形专题讲解
全等三角形专题讲解

CE O D B A 21C E D BA 全等三角形专题讲解专题一、全等三角形判别方法的应用专题概说:判定两个三角形全等的方法一般有以下4种:1.三边对应相等的两个三角形全等(简写成“SSS ”)2.两边和它们的夹角对应相等的两个三角形全等(简写成“SAS ”)3.两角和它们的夹边对应相等的两个三角形全等(简写成“ASA ”)4.两个角和其中一个角的对边对应相等的两个三角形全等(简写成“AAS ”)而在判别两个直角三角形全等时,除了可以应用以上4种判别方法外,还可以应用“斜边、直角边”,即斜边和一条直角边对应相等的两个直角三角形全等(简写成“HL ”).也就是说“斜边、直角边”是判别两个直角三角形全等的特有的方法,它仅适用于判别两个直角三角形全等. 三角形全等是证明线段相等,角相等最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.那么我们应该怎样应用三角形全等的判别方法呢?(1)条件充足时直接应用在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等,而从近年的中考题来看,这类试题难度不大,证明两个三角形的条件比较充分.只要同学们认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等.例1 已知:如图1,CE ⊥AB 于点E ,BD ⊥AC 于点D ,BD 、CE 交于点O ,且AO 平分∠BAC .那么图中全等的三角形有___对.分析:由CE ⊥AB ,BD ⊥AC ,得∠AEO=∠ADO=90º.由AO 平分∠BAC ,得∠EAO=∠DAO .又AO 为公共边,所以△AEO ≌△ADO .所以EO=DO ,AE=AD .又∠BEO=∠CDO=90º, ∠BOE=∠COD ,所以△BOE ≌△COD .由 AE=AD ,∠AEO=∠ADO=90º,∠BAC 为公共角,所以△EAC ≌DAO .所以AB=AC .又∠EAO=∠DAO , AO 为公共边,所以△ABO ≌△ACO . 所以图中全等的三角形一共有4对. (2)条件不足,会增加条件用判别方法此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充使三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,逐步分析,探索结论成立的条件,从而得出答案.例2 如图2,已知AB=AD ,∠1=∠2,要使△ABC ≌△ADE ,还需添加的条件是(只需填一个)_____. 分析:要使△ABC ≌△ADE ,注意到∠1=∠2,所以∠1+∠DAC=∠2+∠DAC ,即∠BAC=∠EAC . 要使△ABC ≌△ADE ,根据SAS 可知只需AC=AE即可;根据ASA 可知只需∠B=∠D ;根据AAS 可知只需∠C=∠E .故可添加的条件是AC=AE 或∠B=∠D 或∠C=∠E .2143C O B A GA B F D EC(3)条件比较隐蔽时,可通过添加辅助线用判别方法在证明两个三角形全等时,当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系,使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等.例3 已知:如图3,AB=AC ,∠1=∠2. 求证:AO 平分∠BAC .分析:要证AO 平分∠BAC ,即证∠BAO=∠BCO ,要证∠BAO=∠BCO ,只需证∠BAO 和∠BCO 所在的两个三角形全等.而由已知条件知,只需 再证明BO=CO 即可.证明:连结BC .因为AB=AC ,所以∠ABC =∠ACB .因为∠1=∠2,所以∠ABC -∠1=∠ACB -∠2.因为AB=AC ,BO=CO ,AO=AO ,所以△ABO ≌△ACO .所以∠BAO=∠CAO ,即AO 平分∠BAC .(4)条件中没有现成的全等三角形时,会通过构造全等三角形用判别方法有些几何问题中,往往不能直接证明一对三角形全等,一般需要作辅助线来构造全等三角形.例4 已知:如图4,在Rt △ABC 中,∠ACB=90º,AC=BC ,D 为BC 的中点,CE ⊥AD 于E ,交AB 于F ,连接DF . 求证:∠ADC=∠BDF . 证明:过B 作BG ⊥BC 交CF 延长线于G ,所以BG ∥AC .所以∠G=∠ACE .因为AC ⊥BC ,CE ⊥AD ,所以∠ACE=∠ADC .所以∠G=∠ADC . 因为AC=BC ,∠ACD =∠CBG=90º,所以 图4△ACD ≌△CBG .所以BG=CD=BD .因为∠CBF=∠GBF=45º,BF=BF ,所以△GBF ≌△DBF .所以∠G=∠BDF .所以∠ADC =∠BDF .所以∠ADC =∠BDF .说明:常见的构造三角形全等的方法有如下三种:①涉及三角形的中线问题时,常采用延长中线一倍的方法,构造出一对全等三角形;②涉及角平分线问题时,经过角平分线上一点向两边作垂线,可以得到一对全等三角形;③证明两条线段的和等于第三条线段时,用“截长补短”法可以构造一对全等三角形.(5)会在实际问题中用全等三角形的判别方法新课标强调了数学的应用价值,注意培养同学们应用数学的意识,形成解决简单实际问题的能力﹒在近年中考出现的与全等三角形有关的实际问题,体现了这一数学理念,应当引起同学们的重视.例5 要在湖的两岸A 、B 间建一座观赏桥,由于条件限制,无法直接度量A ,B 两点间的距离﹒请你用学过的数学知识按以下要求设计一测量方案﹒(1)画出测量图案﹒O D A C B 43O E DC B A 21F ED A 21(2)写出测量步骤(测量数据用字母表示)﹒(3)计算A 、B 的距离(写出求解或推理过程,结果用字母表示)﹒分析:可把此题转化为证两个三角形全等.第(1)题,测量图案如图5所示.第(2)题,测量步骤:先在陆地上找到一点O ,在AO 的延长线上取一点C ,并测得OC=OA ,在BO 的延长线上取一点D ,并测得OD=OB ,这时测得CD 的长为a ,则AB 的长就是a .第(3)题易证△AOB ≌△COD ,所以AB=CD ,测得CD 的长即可得AB 的长.解:(1)如图6示.(2)在陆地上找到可以直接到达A 、B 的一点O ,在AO 的延长线上取一点C ,并测得OC =OA ,在BO 的延长线上取一点D ,并测得OD =OB ,这时测出CD 的长为a ,则AB 的长就是a .(3)理由:由测法可得OC=OA ,OD=OB .又∠COD=∠AOB ,∴△COD ≌△AOB .∴CD=AB=a .评注:本题的背景是学生熟悉的,提供了一个学生动手操作的机会,重点考查了学生的操作能力,培养了学生用数学的意识﹒专题二 角的平分线从一个角的顶点出发,把一个角分成相等的两个角的射线,叫做这个角的平分线.角的平分线有着重要的作用,它不仅把角分成相等的两部分,而且角的平分线上的点到角两边的距离相等,到一个角的两边距离相等的点在这个角的平分线上,再加上角的平分线所在的直线是角的对称轴.因此当题目中有角的平分线时,可根据角的平分线性质证明线段或角相等,或利用角的平分线构造全等三角形或等腰三角形来寻找解题思路.(1)利用角的平分线的性质证明线段或角相等 例6 如图20,∠1=∠2,AE ⊥OB 于E ,BD ⊥OA 于D ,交点为C . 求证:AC=BC .证法:∵AE ⊥OB ,BD ⊥OA ,∴∠ADC=∠BEC= 90. ∵∠1=∠2,∴CD=CE . 在△ACD 和△BCE 中, ∠ADC=∠BEC ,CD=CE ,∠3=∠4.∴△ACD ≌△BCE(ASA),∴AC=BC .说明:本题若用全等方法证明点C 到OA 、OB 距离相等,浪费时间和笔墨,不如直接应用角平分线性质证明,原因在于同学们已经习惯了用全等的方法,不善于直接应用定理,仍去找全等三角形,结果相当于重新证明了一次定理,以后再学新定理,应用时要注意全等定势的干扰,注意采用简捷证法. 例7 已知:如图21,△ABC 中,BD=CD ,∠1=∠2.求证:AD 平分∠BAC .证明:过D 作DE ⊥AB 于E ,DF ⊥AC 于F . 图21A FH D C G B EA D CB EA F DC B E 在△BED 与△CFD 中,∠1=∠2,∠BED =∠CFD = 90,BD=CD ,∴△BED ≌△CFD(AAS).∴DE =DF ,∴AD 平分∠BAC .说明:遇到有关角平分线的问题时,可引角的两边的垂线,先证明三角形全等,然后根据全等三角形的性质得出垂线段相等,再利用角的平分线性质得出两角相等.(2)利用角的平分线构造全等三角形①过角平分线上一点作两边的垂线段 例8 如图22,AB ∥CD ,E 为AD 上一点,且BE 、CE 分别 平分∠ABC 、∠BCD .求证:AE=ED .分析:由于角平分线上一点到角的两边的距离相等,而点E 是两条角平分线的交点,因此我们自然想到过点E 分别作AB 、BC 、CD 的垂线段.证明:过点E 作EF ⊥AB ,交BA 的延长线于点F ,作EG ⊥BC ,垂足为G ,作EH ⊥CD ,垂足为H .∵BE 平分∠ABC ,EF ⊥AB ,EG ⊥BC ,∴EF=EG .同理EG =EH .∴EF=EH .∵AB ∥CD ,∴∠FAE=∠D .∵EF ⊥AB ,EH ⊥CD ,∴∠AFE=∠DHE=90º. 在△AFE 和△DHE 中,∠AFE=∠DHE ,EF=EH ,∠FAE=∠D .∴△AFE ≌△DHE .∴AE=ED .②以角的平分线为对称轴构造对称图形 例9 如图23,在△ABC 中,AD 平分∠BAC ,∠C=2∠B .求证:AB=AC+CD .分析:由于角平分线所在的直线是这个角的对称轴,因此在AB 上截取AE=AC ,连接DE ,我们就能构造出一对全等三角形,从而将线段AB 分成AE 和BE 两段,只需证明BE=CD 就可以了.证明:在AB 上截取AE=AC ,连接DE .∵AD 平分∠BAC ,∴∠EAD=∠CAD .在△EAD 和△CAD 中,∠EAD=∠CAD ,AD=AD ,AE=AC ,∴△EAD ≌△CAD .∴∠AED=∠C ,CD=DE .∵∠C=2∠B ,∴∠AED=2∠B .∵∠AED=∠B+∠EBD ,∴∠B=∠EDB . ∴BE=ED .∴BE=CD .∵AB=AE+BE ,∴AB=AC+CD .③延长角平分线的垂线段,使角平分线成为垂直平分线例10 如图24,在△ABC 中,AD 平分∠BAC ,CE ⊥AD 于E . 求证:∠ACE=∠B+∠ECD . 分析:注意到AD 平分∠BAC ,CE ⊥AD ,于是可延长CE 交AB 于点F ,即可构造全等三角形.证明:延长CE 交AB 于点F .∵AD 平分∠BAC ,∴∠FAE=∠CAE .∵CE ⊥AD ,∴∠FEA=∠CEA=90º.C EB A D 在△FEA 和△CEA 中,∠FAE=∠CAE ,AE=AE ,∠FEA=∠CEA . ∴△FEA ≌△CEA .∴∠ACE=∠AFE .∵∠AFE=∠B+∠ECD ,∴∠ACE=∠B+∠ECD . (3)利用角的平分线构造等腰三角形 如图25,在△ABC 中,AD 平分∠BAC ,过点D 作DE ∥AB ,DE 交AC 于点E .易证△AED 是等腰三角形. 因此,我们可以过角平分线上一点作角的一边的平行线, 构造等腰三角形.。
《全等三角形》讲义

《全等三角形》讲义一、全等三角形的定义两个能够完全重合的三角形叫做全等三角形。
“完全重合”意味着它们的形状和大小完全相同,对应边相等,对应角也相等。
例如,我们将一个三角形沿着某条直线对折,如果对折后的两部分能够完全重合,那么这就是一个全等三角形。
二、全等三角形的性质1、全等三角形的对应边相等这是全等三角形最基本的性质之一。
如果两个三角形全等,那么它们对应的三条边的长度是相等的。
比如,三角形 ABC 全等于三角形DEF,那么 AB = DE,BC = EF,AC = DF。
2、全等三角形的对应角相等同样,如果两个三角形全等,它们对应的三个角的度数也是相等的。
还是以上面的例子来说,∠A =∠D,∠B =∠E,∠C =∠F。
3、全等三角形的周长相等因为全等三角形的对应边相等,所以它们的周长也必然相等。
4、全等三角形的面积相等由于全等三角形的形状和大小完全相同,所以它们所覆盖的面积也是相等的。
三、全等三角形的判定1、 SSS(边边边)如果两个三角形的三条边分别对应相等,那么这两个三角形全等。
比如说,有三角形 ABC 和三角形 DEF,AB = DE,BC = EF,AC = DF,那么就可以判定三角形 ABC 全等于三角形 DEF。
2、 SAS(边角边)如果两个三角形的两条边及其夹角分别对应相等,那么这两个三角形全等。
假设在三角形 ABC 和三角形 DEF 中,AB = DE,∠A =∠D,AC = DF,那么可以得出这两个三角形全等。
3、 ASA(角边角)当两个三角形的两个角及其夹边分别对应相等时,这两个三角形全等。
例如,在三角形 ABC 和三角形 DEF 中,∠B =∠E,BC = EF,∠C =∠F,那么三角形 ABC 全等于三角形 DEF。
4、 AAS(角角边)如果两个三角形的两个角和其中一个角的对边分别对应相等,那么这两个三角形全等。
比如,在三角形 ABC 和三角形 DEF 中,∠A =∠D,∠B =∠E,BC = EF,那么这两个三角形全等。
(完整)全等三角形的判定专题

全等三角形的判定证明专题一、全等三角形的性质①全等三角形的对应边相等.②全等三角形的对应角相等。
二、全等三角形的判定定理①角边角公理:有两角和它们的夹边对应相等的两个三角形全等(ASA)。
②边角边公理:有两边和它们的夹角对应相等的两个三角形全等(SAS)。
③边边边公理:有三边对应相等的两个三角形全等(SSS)。
④角角边定理:有两个角和其中一个角的对边对应相等的两个三角形全等(AAS)。
三、一般思考方法1、已知两边对应相等—1。
第三边;2。
夹角;3。
直角2、一角及邻边对应相等—1。
角的另一边;2.边的另一角;3。
边的对角3、一角及对边对应相等—1.另一角4、两角相等-1。
夹边;2。
一已知角的对边第一部分简单证明例题分析例1:已知:如图AC=BD,∠CAB=∠DBA.求证:∠CAD=∠DBC。
例2:已知:AB=CD,AB∥DC,求证:△ABC≌△CDB例3:已知:在△ABC中,AD为BC边上的中线,CE⊥AD,BF⊥AD.求证:CE=BF例4.已知:如图AB=AC,AD=AE,BE和CD相交于G。
求证:AG平分∠BAC.例5:已知:△ABC中,D、E、F分别是AB、AC、BC上的点,连结DE、EF,∠ADE=∠EFC,∠AED=∠ACB,DE=FC.求证:△ADE≌△EFC例6:已知:△ABC是等边三角形,∠GAB=∠HBC=∠DCA,∠GBA=∠HCB=∠DAC。
求证:△ABG≌△BCH≌△CAD。
自我检测1、已知:△ABC中,AB=AC,D、E分别为AB、AC的中点。
求证:∠ABE=∠ACD.2、已知:AB=DC,AC=BD ,AC 交BD 于E.求证:AE=DE.3、已知:如图,AB=CD ,BE=DF ,AF=EC.求证:BF=DE4、如图,在△ABE 中,AB =AE ,AD =AC ,∠BAD =∠EAC , BC 、DE 交于点O. 求证:(1) △ABC ≌△AED ; (2) OB =OE 。
全等三角形的讲义整理讲义

全等三角形专题一 全等三角形的性质【知识点1】能够完全重合的两个三角形叫做全等三角形。
(两个三角形全等是指两个三角形的大小和形状完全一样,与他们的位置没有关系。
)【知识点2】两个三角形重合在一起,重合的顶点叫做对应顶点;重合的边叫做 对应边;重合的角叫做对应角。
【例题1】如图,已知图中的两个三角形全等,填空:(1)AB 与 是对应边,BC 与 是对应边, CA 与 是对应边;(2)∠A 与 是对应角,∠ABC 与 是对应角, ∠BAC 与 是对应角【方法总结】在两个全等三角形中找对应边和对应角的方法。
(1)有公共边的,公 共边一定是对应边;(2)有公共角的,公共角一定是对应角;(3)有对顶角的,对顶角是对应角;(4)在两个全等三角形中,最长的边对最长的边,最短的边对最短的边,最大的角对最大的角,最小的角对最小的角。
【练习1】 如图,图中有两对三角形全等,填空: (1)△BOD ≌ ; (2)△ACD ≌ .【知识点3】 全等三角形的对应边相等,对应角相等。
(由定义还可知道,全等三角形的周长相等,面积相等,对应边上的中线和高相DABCOE ABCD等,对应角的角平分线相等)【例题2】 (海南省中考卷第5题) 已知图2中的两个三角形全等,则∠α度数是( )A.72°B.60°C.58°D.50°【例题3】(清远)如图,若111ABC A B C △≌△,且11040A B ∠=∠=°,°,则1C ∠= .【练习2】 如图,ACB A C B '''△≌△,BCB ∠'=30°,则ACA '∠的度数为( )A 20° B.30° C .35° D .40°【练习3】如图,△ABD 绕着点B 沿顺时针方向旋转90°到△EBC , 且∠ABD=90°。
全等三角形—知识讲解及典型例题解析

中考总复习:全等三角形—知识讲解及典型例题解析【考纲要求】1.掌握全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;2.探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;3. 善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等,灵活选择适当的方法判定两个三角形全等.【知识网络】【考点梳理】考点一、基本概念1.全等三角形的定义:能够完全重合的两个三角形叫做全等三角形.2.全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等.要点诠释:全等三角形的周长、面积相等;对应的高线,中线,角平分线相等.3.全等三角形的判定方法(1)三边对应相等的两个三角形全等(SSS);(2)两角和它们的夹边对应相等的两个三角形全等(ASA);(3)两角和其中一角的对边对应相等的两个三角形全等(AAS);(4)两边和它们的夹角对应相等的两个三角形全等(SAS);(5)斜边和一条直角边对应相等的两个直角三角形全等(HL).考点二、灵活运用定理三角形全等是证明线段相等,角相等的最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.应用三角形全等的判别方法注意以下几点:1. 条件充足时直接应用判定定理要点诠释:在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等.这种情况证明两个三角形全等的条件比较充分,只要认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等.2. 条件不足,会增加条件用判定定理要点诠释:此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,即从求证入手,逐步分析,探索结论成立的条件,从而得出答案.3. 条件比较隐蔽时,可通过添加辅助线用判定定理要点诠释:在证明两个三角形全等时,当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系,使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等.常见的几种辅助线添加:①遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”;②遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形利用的思维模式是全等变换中的“旋转”;③遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理;④过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”;⑤截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分之类的题目.【典型例题】类型一、全等三角形1.如图,BD、CE分别是△ABC的边AC和AB上的高,点P在BD的延长线上,BP=AC,点Q在CE 上,CQ=AB.求证:(1)AP=AQ;(2)AP⊥AQ.【思路点拨】本题主要考查了全等三角形的判定及性质问题.【答案与解析】证明:(1)∵BD、CE分别是△ABC的边AC和AB上的高,∴∠1+∠CAE=90°,∠2+∠CAE=90°.∴∠1=∠2,∵在△AQC和△PAB中,∴△AQC≌△PAB.∴ AP=AQ.(2)∵ AP=AQ,∠QAC=∠P,∵∠PAD+∠P=90°,∴∠PAD+∠QAC=90°,即∠PAQ=90°.∴AP⊥AQ.【总结升华】在确定全等条件时,注意隐含条件的寻找.举一反三:【变式】如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E点,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.【答案与解析】(1)证明:在四边形ABCD中,∵∠BAD=∠BCD=90°,∴90°+∠B+90°+∠ADC=360°,∴∠B+∠ADC=180°,又∵∠CDE+∠ADC=180°,∴∠ABC=∠CDE,(2)连接AC,由(1)证得∠ABC=∠CDE,在△ABC和△EDC中,,∴△ABC≌△EDC(SAS).类型二、灵活运用定理2.如图,已知AD为△ABC的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF.【思路点拨】将所求的线段转移到同一个或相关联的三角形中进行求解.【答案与解析】证明:延长ED至M,使DM=DE,连接 CM,MF,在△BDE和△CDM中,∴△BDE≌△CDM(SAS).∴BE=CM.又∵∠1=∠2,∠3=∠4 ,∠1+∠2+∠3+∠4=180°,∴∠3+∠2=90°,即∠EDF=90°,∴∠FDM=∠EDF =90°.在△EDF和△MDF中∴△EDF≌△MDF(SAS),∴EF=MF (全等三角形对应边相等),∵在△CMF中,CF+CM>MF(三角形两边之和大于第三边),∴BE+CF>EF.【总结升华】当涉及到有以线段中点为端点的线段时,可通过延长加倍此线段,构造全等三角形,使题中分散的条件集中.举一反三:【变式】如图所示,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF. 求证:AC=BF.【答案】证明:延长AD到H,使得DH=AD,连结BH,∵ D为BC中点,∴ BD=DC,在△ADC和△HDB中,∴△ADC≌△HDB(SAS),∴ AC=BH, ∠H=∠HAC,∵ EA=EF,∴∠HAE=∠AFE,又∵∠BFH=∠AFE,∴ BH=BF,∴ BF=AC.3.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,试判断AB-AD与CD-CB的大小关系,并证明你的结论.【思路点拨】解答本题的关键是熟练运用三角形中大边对应大角的关系.【答案与解析】AB-AD>CD-CB;证明:在AB上取一点E,使得AE=AD,连结CE.∵AC平分∠BAD,∴∠1=∠2.∵在△ACE和△ACD中,∴△ACE≌△ACD.∴CD=CE.∵在△BCE中,BE>CE-CB,即AB-AE>CE-CB,∴AB-AD>CD-CB.【总结升华】本题也可以延长AD到E,使得AE=AB,连结CE.涉及几条线段的大小关系时,用“截长补短”法构造全等三角形是常用的方法.举一反三:【变式】如图所示,已知△ABC中AB>AC,AD是∠BAC的平分线,M是AD上任意一点,求证:MB-MC<AB-AC.【答案】证明:∵AB>AC,在AB上截取AE=AC,连接ME.在△MBE中,MB-ME<BE(三角形两边之差小于第三边).在△AMC和△AME中,∴△AMC≌△AME(SAS).∴MC=ME(全等三角形的对应边相等).又∵BE=AB-AE,∴BE=AB-AC,∴MB-MC<AB-AC.4.如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC=AE+CD.【思路点拨】在AC上取AF=AE,连接OF,即可证得△AEO≌△AFO,得∠AOE=∠AOF;再证得∠COF=∠COD,则根据全等三角形的判定方法AAS即可证△FOC≌△DOC,可得DC=FC,即可得结论.【答案与解析】在AC上取AF=AE,连接OF,∵AD平分∠BAC、∴∠EAO=∠FAO,在△AEO与△AFO中,∵AE AFEAO FAO AO AO=⎧⎪=⎨⎪=⎩∠∠∴△AEO≌△AFO(SAS),∴∠AOE=∠AOF;∵AD、CE分别平分∠BAC、∠ACB,∴∠ECA+∠DAC=12(180°-∠B)=60°则∠AOC=180°-∠ECA-∠DAC=120°;∴∠AOC=∠DOE=120°,∠AOE=∠COD=∠AOF=60°,(对顶角相等)则∠COF=60°,∴∠COD=∠COF,又∵∠FCO=∠DCO,CO=CO,∴△FOC≌△DOC(ASA),∴DC=FC,∵AC=AF+FC,∴AC=AE+CD.【总结升华】本题考查了全等三角形的判定和性质,涉及到三角形内角和定理,熟练掌握全等三角形的判定方法是解题的关键.类型三、综合运用5 .如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E为AC中点,BD平分∠ABC,点F在AB上,且BF=BC.求证:(1)DF=AE;(2)DF⊥AC.【思路点拨】(1)由等边三角形的性质可写出结论.(2)要证明以上结论,需创造一些条件,首先可从△ABC中分出一部分使得与△ACF的面积相等,则过A作AM∥FC交BC于M,连接DM、EM,就可创造出这样的条件,然后再证其它的面积也相等即可.【答案与解析】证明:(1)延长DE交AB于点G,连接AD.∵四边形BCDE是平行四边形,∴ED∥BC,ED=BC.∵点E是AC的中点,∠ABC=90°,∴AG=BG,DG⊥AB.∴AD=BD,∴∠BAD=∠ABD.∵BD平分∠ABC,∴∠ABD=∠BAD=45°,即∠BDE=∠ADE=45°.又BF=BC,∴BF=DE.∴在△AED与△DFB 中,,∴△AED≌△DFB(SAS),∴AE=DF,即DF=AE;(2)设AC与FD交于点O.∵由(1)知,△AED≌△DFB,∴∠AED=∠DFB,∴∠DEO=∠DFG.∵∠DFG+∠FDG=90°,∴∠DEO+∠EDO=90°,∴∠EOD=90°,即DF⊥AC.【总结升华】本题考查了平行四边形的性质,全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.举一反三:【变式】如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连结CE交AD于点F,连结BD交CE于点G,连结BE. 下列结论中:① CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④CD·AE=EF·CG;一定正确的结论有( ) .A.1个 B.2个 C.3个 D.4个B【答案】D.6.如图,已知△ABC.(1)请你在BC边上分别取两点D、E(BC的中点除外),连结AD、AE,写出使此图中只存在两对面积相等的三角形的相应条件,并表示出面积相等的三角形;(2)请你根据使(1)成立的相应条件,证明AB+AC>AD+AE.【思路点拨】考查了三角形面积的求法,全等三角形的判定以及三角形三边的关系.本题(2)中通过构建全等三角形将已知和所求条件转化到相关的三角形中是解题的关键.【答案与解析】(1)令BD=CE≠DE,有△ABD和△ACE,△ABE和△ACD面积相等.(2)取DE的中点O,连结AO并延长到F点,使得FO=AO,连结EF,CF.在△AD0和△FEO中,又∠AOD=∠FOE,DO=EO,可证△ADO≌△FEO.所以AD=FE.因为BD=CE,DO=EO,所以BO=CO.同理可证△ABD≌△FCO,所以AB=FC.延长AE交CF于G点,在△ACG中,AC+CG>AE+EG,在△EFG中,EG+FG>EF,可推得AC+CG+EG+FG>AE+EG+EF,即AC+CF>AE+EF,所以AB+AC>AD+AE.【总结升华】正确构造全等和利用三角形的任意两边之和大于第三边的结论是关键.举一反三:【变式】在△ABC中,,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图①的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到图②的位置时,求证:DE=AD-BE;(3)当直线MN绕点C旋转到图③的位置时,试问:DE、AD、BE有怎样的等量关系?请写出这个等量关系,并加以证明.【答案】(1)证明:∵∠ACD+∠BCE=90°∠DAC+∠ACD=90°,∴∠DAC=∠BCE.又AC=BC,∠ADC=∠BEC=90°,∴△ADC≌△CEB.∴CD=BE,AD=CE.∴DE=CE+CD=AD+BE.(2)证明:∵∠ACD+∠BCE=90°∠DAC+∠ACD=90°,∴∠DAC=∠BCE.又AC=BC,∠ADC=∠BEC=90°,∴△ADC≌△CEB.∴CD=BE,AD=CE.∴DE=AD-BE.(3)证明:∵∠ACD+∠BCE=90°∠DAC+∠ACD=90°,∴∠DAC=∠BCE.又AC=BC,∠ADC=∠BEC=90°,∴△ADC≌△CEB.∴CD=BE,AD=CE.∴DE=BE-AD.。
全等三角形(知识点讲解)

学习必备 欢迎下载全等三角形 全等三角形 知识梳理性质对应角相等 对应边相等二、基础知识梳理 一)、基本概念1、“全等 ”的理解 全等的图形必须满足: (1)形状相同的图形; (2)大小相等的图形;即能够完全重合的两个图形叫全等形。
同样我们把能够完全重合的两个三角形叫做全等三角形。
2、全等三角形的性质( 1)全等三角形对应边相等; (2)全等三角形对应角相等; 3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。
(2)两角和它们的夹边对应相等的两个三角形全等。
(3)两角和其中一角的对边对应相等的两个三角形全等。
(4)两边和它们的夹角对应相等的两个三角形全等。
(5)斜边和一条直角边对应相等的两个直角三角形全等。
4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等 判定:到一个角的两边距离相等的点在这个角平分线上 (二)灵活运用定理、知识网络全等形 全等三角形边边边SSS边角边SAS判定 角边角ASA角角边 AAS斜边、 直角边HL角平分线作图性质与判定定理应用1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。
2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。
3、要善于灵活选择适当的方法判定两个三角形全等。
(1) 已知条件中有两角对应相等, 可找:①夹边相等( ASA )②任一组等角的对边相等 (AAS ) (2) 已知条件中有两边对应相等, 可找①夹角相等 (SAS ) ②第三组边也相等 (SSS ) (3) 已知条件中有一边一角对应相等, 可找①任一组角相等 (AAS 或 ASA ) ②夹等角的另一组边相等 (SAS ) 5. 经典例题透析 证明图形全等 基础版—— “ SSS ” (1)已知: AB=DC ,AD=BC ,求证:∠ A= ∠C2)如图, E 是 AD 上的一点, AB=AC ,AE=BD ,CE=BD+DE ,求证:∠ CED=∠ B+ C基础版—— “ SAS ”(3)如图, AD ∥ BC ,AD=CB , AE=CF ,求证: BE=DF4) 已知:如图,点 A 、B 、C 、D 在同一条直线上, EA AD ,FD AD , AE DF , AB DC .求证: ACE DBF .基础版——“ ASA ”与“ AAS ”(5)如图,已知: AB = AC ,点 D 在 AB 上,点 E 在 AC 上,BE 和CD 相交 于点 O ,∠B =∠ C ,求证: BD =CEDB举一反三:变式 1】如图,△ABC ≌△ DBE . 问线段 AE 和 CD 相等吗?为什么?( 6)如图,△ABC 中,∠BAC=90 ,AB =AC ,直线 MN 过点 A , 于 E ,求证: DE =BD+CE基础版 HL ”( Rt △) N(7)如图, AB AC ,AB//CD ,AC=CD ,BC=DE ,BC 与 DE 相交于点 O ,求 证: DE BC 类型一:全等三角形性质的应用 1、如图,△ ABD ≌△ ACE , AB =AC ,写出图中的对应边和对应角、如图,已知ΔABC≌ΔDEF,∠A=30°,∠ B=50°,BF=2,求∠ DFE的度数与EC举一反三:如图所示,ΔACD≌ΔECD,ΔCEF≌ΔBEF,∠ACB=90°求证:( 1)CD⊥AB;( 2) EF∥ AC.变式 1】类型二:全等三角形的证明3、如图, AC=BD,DF=CE,∠ ECB=∠ FDA,求证:△ ADF≌△BCE.举一反三:【变式 1】如图,已知 AB∥DC,AB= DC,求证:AD∥BC【变式 2】如图,已知 EB⊥ AD于 B,FC⊥ AD 于 C,且 EB= FC,AB=CD.求证 AF =DE.、类型三:综合应用4、如图,AD为ΔABC的中线。
全等三角形详细讲解

全等三角形1. 全等形:能够完全重合的两个图形叫全等形。
全等形必须满足的条件:(1)形状相同(2)大小相等(3)能够完全重合2.定义:能够完全重合的两个三角形称为全等三角形。
用“≌”表示,读作“全等于”。
注:全等三角形是相似三角形中相似比为1:1的特殊情况3. 全等三角形的表示:(1)当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
由此,可以得出:全等三角形的对应边相等,对应角相等。
(2)关键:会找对应顶点、对应边、对应角①对应角所对的边是对应边,两个对应角所夹的边是对应边;②对应边所对的角是对应角,两条对应边所夹的角是对应角;③有公共边的,公共边一定是对应边;④有公共角的,角一定是对应角;⑤有对顶角的,对顶角一定是对应角;(3)表示。
注:对应顶定点字母写在对应位置上。
5. 全等三角形的性质:(1)对应边相等,对应角相等(2)周长,面积相等考点:证明线段相等、角相等、面积相等、两条线段的和差等于另一条线段6. 全等变换:只改变位置,不改变形状和大小的图形变换。
如:平移,翻着(对称),旋转三角形全等的判定全等三角形判定定理:(1)三边对应相等的两个三角形全等。
(SSS或“边边边”)(2)两边和它们的夹角对应相等的两个三角形全等。
(SAS或“边角边”)(3)两角和它们的夹边对应相等的两个三角形全等。
(ASA或“角边角”)(4)两角和其中一角的对边对应相等的两个三角形全等。
(AAS或“角角边”)(5)斜边和一条直角边对应相等的两个直角三角形全等。
(HL或“斜边,直角边”)注意:在全等的判定中,没有AAA角角角和SSA(特例:直角三角形为HL,属于SSA)边边角,这两种情况都不能唯一确定三角形的形状。
补充:(6)三条中线(或高、角分线)分别对应相等的两个三角形全等。
性质======判定定理角平分线的性质1.①会画已知角的平分线②利用SSS证明是角平分线2.性质:角平分线上的点到角的两边的距离相等3.判定:角的内部,到角的两边距离相等的点在这个角平分线上补充:平行线平行线的性质:①两直线平行,同位角相等②两直线平行,内错角相等③两直线平行,同旁内角互补平行线的判定定理:①同位角相等,两直线平行②内错角相等,两直线平行③同旁内角互补,两直线平行。
《全等三角形》讲义(完整版)

全等三角形讲义一、知识点总结全等三角形定义:形状大小相同,并且能够完全重合的两个三角形叫做全等形三角形。
:形状大小相同,并且能够完全重合的两个三角形叫做全等形三角形。
补充说明:重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
:重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等:全等三角形的对应边相等,全等三角形的对应角相等 全等三角形判定定理:(1)边边边定理:三边对应相等的两个三角形全等。
(简称SSS ) (2)边角边定理:两边和它们的夹角对应相等的两个三角形全等。
)边角边定理:两边和它们的夹角对应相等的两个三角形全等。
((简称SAS) (3)角边角定理:两角和它们的夹边对应相等的两个三角形全等。
(简称ASA ASA)) (4)角角边定理:两个角和其中一个角的对边对应相等的两个三角形全等。
(简称AAS AAS)) (5)斜边、直角边定理:斜边和一条直角边对应相等的两个直角三角形全等。
(简称HL HL)) 角平分线的性质:在角平分线上的点到角的两边的距离相等在角平分线上的点到角的两边的距离相等. .∵OP 平分∠平分∠AOB AOB AOB,,PM PM⊥⊥OA 于M ,PN PN⊥⊥OB 于N ,∴PM=PN 角平分线的判定:到角的两边距离相等的点在角的平分线上到角的两边距离相等的点在角的平分线上. .∵PM PM⊥⊥OA 于M ,PN PN⊥⊥OB 于N ,PM=PN ∴OP 平分∠平分∠AOB AOB三角形的角平分线的性质:三角形三个内角的平分线交于一点,并且这一点到三边的距离等。
二、典型例题举例A BC PMNO A BCPMN O例1、如图,△ABN ≌△ACM,∠B 和∠C 是对应角,AB 与AC 是对应边,写出其他对应边和对应角.例2、如图,△、如图,△ABC ABC 是一个钢架,是一个钢架,AB=AC AB=AC AB=AC,,AD 是连结点A 与BC 中点D 的支架.的支架.求证:△求证:△ABD ABD ABD≌△≌△≌△ACD ACD ACD..例3、已知:点A 、F 、E 、C 在同一条直线上,AF =CE ,BE ∥DF ,BE =DF . 求证:△ABE ≌△CDF .例4、如图:、如图:D D 在AB 上,上,E E 在AC 上,上,AB AB AB==AC AC,∠,∠,∠B B =∠=∠C C .求证AD AD==AE AE..例5、如图:∠、如图:∠1=1=1=∠∠2,∠,∠3=3=3=∠∠4 求证:求证:AC=AD AC=AD例6、如图,B 、E 、F 、C 在同一直线上,AF ⊥BC 于F ,DE ⊥BC 于E ,AB=DC ,BE=CF ,你认为AB 平行于CD 吗?说说你的理由吗?说说你的理由D CB ACADB123 4例7、如图1,△ABC 的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断△ABC 与△AEG 面积之间的关系,并说明理由.例8、如图,OC 是∠AOB 的平分线,P 是OC 上的一点,PD ⊥OA 交OA 于D ,PE ⊥OB 交OB 于E ,F 是OC 上的另一点,连接DF ,EF ,求证DF =EF例9、如图,△ABC 中,AD 是它的角平分线,P 是AD 上的一点,PE ∥AB 交BC 于E ,PF ∥AC 交BC 于F ,求证:D 到PE 的距离与D 到PF 的距离相等的距离相等例10、如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 面积是282cm ,AB =20cm ,AC =8cm,求DE 的长.AGF CBDE图1AEB DCFAB CDED C EF BA 例10、已知:BE ⊥CD ,BE =DE ,BC =DA ,求证:①,求证:① △BEC ≌△DAE ;②DF ⊥BC .例11、如图,已知:E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C ,D 是垂足,连接CD ,求证:(1)∠ECD=∠EDC ;(2)OD=OC ;(3)OE 是CD 的中垂线.三、专题版块三、专题版块 专题一:专题一: 全等三角形的判定和性质的应用全等三角形的判定和性质的应用例1、如图,在△ABC 中,AB=AC , BAC=40°,分别以AB AB、AC 为边作两个等腰三角形ABD 和ACE ACE,使∠,使∠BAD=∠CAE=90°.(1)求∠DBC 的度数.(2)求证:BD=CE.例2、如图,A B ∥CD,AF CD,AF∥∥DE,BE=CF,DE,BE=CF,求证:求证:求证:AB=CD. AB=CD.例3、如图在△ABC 中,BE 、CF 分别是AC 、AB 边上的高,在BE 延长线上截取BM =AC ,在CF 延长线上截到CN =AB ,求证:AM =AN 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CE O D B A 全等三角形专题讲解专题一 全等三角形判别方法的应用专题概说:判定两个三角形全等的方法一般有以下4种:1.三边对应相等的两个三角形全等(简写成“SSS ”)2.两边和它们的夹角对应相等的两个三角形全等(简写成“SAS ”)3.两角和它们的夹边对应相等的两个三角形全等(简写成“ASA ”)4.两个角和其中一个角的对边对应相等的两个三角形全等(简写成“AAS ”)而在判别两个直角三角形全等时,除了可以应用以上4种判别方法外,还可以应用“斜边、直角边”,即斜边和一条直角边对应相等的两个直角三角形全等(简写成“HL ”).也就是说“斜边、直角边”是判别两个直角三角形全等的特有的方法,它仅适用于判别两个直角三角形全等.三角形全等是证明线段相等,角相等最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.那么我们应该怎样应用三角形全等的判别方法呢?(1)条件充足时直接应用在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等,而从近年的中考题来看,这类试题难度不大,证明两个三角形的条件比较充分.只要同学们认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等.例1 已知:如图1,CE ⊥AB 于点E ,BD ⊥AC 于点D ,BD 、CE 交于点O ,且AO 平分∠BAC .那么图中全等的三角形有___对.分析:由CE ⊥AB ,BD ⊥AC ,得∠AEO=∠ADO=90º.由AO 平分∠BAC ,得∠EAO=∠DAO .又AO 为公共边,所以△AEO ≌△ADO .所以EO=DO ,AE=AD .又∠BEO=∠CDO=90º,∠BOE=∠COD ,所以△BOE ≌△COD .由AE=AD ,∠AEO=∠ADO=90º,∠BAC 为公共角,所以△EAC ≌DAO .所以AB=AC .又 ∠EAO=∠DAO , AO 为公共边,所以△ABO ≌△ACO . 图1 所以图中全等的三角形一共有4对. (2)条件不足,会增加条件用判别方法此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充使三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,逐步分析,探索结论成立的条件,从而得出答案.例2 如图2,已知AB=AD ,∠1=∠2,要使△ABC ≌△ADE ,还需添加的条件是(只需填一个)_____.21C E DB A2143C O B A G A B F D E C 分析:要使△ABC ≌△ADE ,注意到∠1=∠2,所以∠1+∠DAC=∠2+∠DAC ,即∠BAC=∠EAC . 要使△ABC ≌△ADE ,根据SAS 可知只需AC=AE 图2即可;根据ASA 可知只需∠B=∠D ;根据AAS 可知只需∠C=∠E .故可添加的条件是AC=AE 或∠B=∠D 或∠C=∠E .(3)条件比较隐蔽时,可通过添加辅助线用判别方法在证明两个三角形全等时,当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系,使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等. 例3 已知:如图3,AB=AC ,∠1=∠2.求证:AO 平分∠BAC .分析:要证AO 平分∠BAC ,即证∠BAO=∠BCO ,要证∠BAO=∠BCO ,只需证∠BAO 和∠BCO 所在的两个三角形全等.而由已知条件知,只需再证明BO=CO 即可.证明:连结BC . 因为AB=AC ,所以∠ABC =∠ACB . 因为∠1=∠2,所以∠ABC -∠1=∠ACB -∠2. 图3即∠3=∠4,所以BO=CO .因为AB=AC ,BO=CO ,AO=AO ,所以△ABO ≌△ACO .所以∠BAO=∠CAO ,即AO 平分∠BAC .(4)条件中没有现成的全等三角形时,会通过构造全等三角形用判别方法有些几何问题中,往往不能直接证明一对三角形全等,一般需要作辅助线来构造全等三角形.例4 已知:如图4,在Rt △ABC 中,∠ACB=90º,AC=BC ,D 为BC 的中点,CE ⊥AD 于E ,交AB 于F ,连接DF .求证:∠ADC=∠BDF . 证明:过B 作BG ⊥BC 交CF 延长线于G ,所以BG ∥AC .所以∠G=∠ACE .因为AC ⊥BC ,CE ⊥AD ,所以∠ACE=∠ADC .所以∠G=∠ADC . 因为AC=BC ,∠ACD =∠CBG=90º,所以 图4 △ACD ≌△CBG .所以BG=CD=BD .因为∠CBF=∠GBF=45º,BF=BF ,所以△GBF ≌△DBF .所以∠G=∠BDF .所以∠ADC =∠BDF .所以∠ADC =∠BDF .说明:常见的构造三角形全等的方法有如下三种:①涉及三角形的中线问题时,常采用延长中线一倍的方法,构造出一对全等三角形;②涉及角平分线问题时,经过角平分线上一点向两边作垂线,可以得到一对全等三角形;O D A C B F C ED B A CE D B A AO Q M C P BN ③证明两条线段的和等于第三条线段时,用“截长补短”法可以构造一对全等三角形.(5)会在实际问题中用全等三角形的判别方法新课标强调了数学的应用价值,注意培养同学们应用数学的意识,形成解决简单实际问题的能力﹒在近年中考出现的与全等三角形有关的实际问题,体现了这一数学理念,应当引起同学们的重视.例5 要在湖的两岸A 、B 间建一座观赏桥,由于条件限制,无法直接度量A ,B 两点间的距离﹒请你用学过的数学知识按以下要求设计一测量方案﹒(1)画出测量图案﹒(2)写出测量步骤(测量数据用字母表示)﹒ 图5(3)计算A 、B 的距离(写出求解或推理过程,结果用字母表示)﹒ 分析:可把此题转化为证两个三角形全等.第(1)题,测量图案如图5所示.第(2)题,测量步骤:先在陆地上找到一点O ,在AO 的延长线上取一点C ,并测得OC=OA ,在BO 的延长线上取一点D ,并测得OD=OB ,这时测得CD 的长为a ,则AB 的长就是a .第(3)题易证△AOB ≌△COD ,所以AB=CD ,测得CD 的长即可得AB 的长.解:(1)如图6示.(2)在陆地上找到可以直接到达A 、B 的一点O ,在AO 的延长线上取一点C ,并测得OC =OA ,在BO 的延长线上取一点D ,并测得OD =OB ,这时测出CD 的长为a ,则AB 的长就是a .(3)理由:由测法可得OC=OA ,OD=OB .又∠COD=∠AOB ,∴△COD ≌△AOB .∴CD=AB=a . 图6 评注:本题的背景是学生熟悉的,提供了一个学生动手操作的机会,重点考查了学生的操作能力,培养了 学生用数学的意识﹒练习:1.已知:如图7,D 是△ABC 的边AB 上一点,AB ∥FC ,DF 交AC 于点E ,DE=FE . 图7求证:AE=CE .2.如图8,在△ABC 中,点E 在BC 上,点D 在AE 上,已知∠ABD=∠ACD ,∠BDE=∠CDE . 求证:BD=CD . 3.用有刻度的直尺能平分任意角吗?下面是一种 图8 方法:如图9所示,先在∠AOB 的两边上取OP=OQ , 再取PM=QN ,连接PN 、QM ,得交点C ,则射线OC平分∠AOB .你能说明道理吗? 图94.如图10,△ABC 中,AB=AC ,过点A 作A D C PB H F EGAD C B A DC F B EA D CB A O DC B AFC G B EA F D CB E GE ∥BC ,角平分线BD 、CF 相交于点H ,它们的 延长线分别交GE 于点E 、G .试在图10中找出3对全等三角形,并对其中一对全等三角形给出证明. 图105.已知:如图11,点C 、D 在线段AB 上,PC=PD .请你添加一个条件,使图中存在全等三角形,并给予证明. 所添条件为__________,你得到的一 对全等三角形是△_____≌△_____. 图116.如图12,∠1=∠2,BC=EF ,那么需要 补充一个直接条件_____(写出一个即可),才能使△ABC ≌△DEF . 图127.如图13,在△ABD 和△ACD 中, AB=AC ,∠B=∠C .求证:△ABD ≌△ACD . 图13 8.如图14,直线AD 与BC 相交于点O , 且AC=BD ,AD=BC . 求证:CO=DO .图14 9.已知△ABC ,AB=AC ,E 、F 分别 为AB 和AC 延长线上的点,且BE=CF ,EF 交BC 于G .求证:EG=GF . 图15 10.已知:如图16,AB=AE ,BC=ED ,点F 是CD 的中点,AF ⊥CD . 求证:∠B=∠E . 图1611.如图17,某同学把一把三角形的玻璃打碎成了三块,现在要到玻璃店去配一块大小形状完全一样的玻璃,那么最省事的办法是()﹒(A )带①和②去 (B )带①去(C )带②去 (D )带③去 图1712.有一专用三角形模具,损坏后,只剩下如图18中的阴影部分,你对图中做哪些数据度量后,就可以重新制作一块与原模具完全一样的模具,并说明其中的道理. 图1813.如图19,将两根钢条AA'、BB'的中点O 连在一起,使AA'、BB'可以绕着点O 自由转动,就做成了一个测量工件,则A' B'的长等于内槽宽AB ,那么判定△OAB ≌△OAB 的理由是( )43O E DC B A 21F ED A 21(A )边角边 (B )角边角(C )边边边 (D )角角边 图19专题二 角的平分线从一个角的顶点出发,把一个角分成相等的两个角的射线,叫做这个角的平分线.角的平分线有着重要的作用,它不仅把角分成相等的两部分,而且角的平分线上的点到角两边的距离相等,到一个角的两边距离相等的点在这个角的平分线上,再加上角的平分线所在的直线是角的对称轴.因此当题目中有角的平分线时,可根据角的平分线性质证明线段或角相等,或利用角的平分线构造全等三角形或等腰三角形来寻找解题思路. (1)利用角的平分线的性质证明线段或角相等 例6 如图20,∠1=∠2,AE ⊥OB 于E , BD ⊥OA 于D ,交点为C .求证:AC=BC . 图20证法:∵AE ⊥OB ,BD ⊥OA ,∴∠ADC=∠BEC=︒90.∵∠1=∠2,∴CD=CE .在△ACD 和△BCE 中,∠ADC=∠BEC ,CD=CE ,∠3=∠4.∴△ACD ≌△BCE(ASA),∴AC=BC .说明:本题若用全等方法证明点C 到OA 、OB 距离相等,浪费时间和笔墨,不如直接应用角平分线性质证明,原因在于同学们已经习惯了用全等的方法,不善于直接应用定理,仍去找全等三角形,结果相当于重新证明了一次定理,以后再学新定理,应用时要注意全等定势的干扰,注意采用简捷证法.例7 已知:如图21,△ABC 中,BD=CD ,∠1=∠2.求证:AD 平分∠BAC .证明:过D 作DE ⊥AB 于E ,DF ⊥AC 于F . 图21在△BED 与△CFD 中,∠1=∠2,∠BED =∠CFD =︒90,BD=CD , ∴△BED ≌△CFD(AAS).∴DE =DF ,∴AD 平分∠BAC .说明:遇到有关角平分线的问题时,可引角的两边的垂线,先证明三角形全等,然后根据全等三角形的性质得出垂线段相等,再利用角的平分线性质得出两角相等.(2)利用角的平分线构造全等三角形①过角平分线上一点作两边的垂线段例8 如图22,AB ∥CD ,E 为AD 上一点,且BE 、CE 分别平分∠ABC 、∠BCD .求证:AE=ED .分析:由于角平分线上一点到角的两边的距离相等,而点E 是两条角A F H D C GB E A D CB E A F DC B E C E BA D 平分线的交点,因此我们自然想到过点E 分别作AB 、BC 、CD 的垂线段.证明:过点E 作EF ⊥AB ,交BA 的延长线于点F ,作EG ⊥BC ,垂足为G ,作EH ⊥CD ,垂足为H . ∵BE 平分∠ABC ,EF ⊥AB ,EG ⊥BC ,∴EF=EG .同理EG =EH .∴EF=EH .∵AB ∥CD ,∴∠FAE=∠D .∵EF ⊥AB ,EH ⊥CD ,∴∠AFE=∠DHE=90º. 图22在△AFE 和△DHE 中,∠AFE=∠DHE ,EF=EH ,∠FAE=∠D . ∴△AFE ≌△DHE .∴AE=ED .②以角的平分线为对称轴构造对称图形例9 如图23,在△ABC 中,AD 平分∠BAC ,∠C=2∠B .求证:AB=AC+CD .分析:由于角平分线所在的直线是这个角的对称轴,因此在AB 上截取AE=AC ,连接DE ,我们就能构造出一对全等三角形,从而将线段AB 分成AE 和BE 两段,只需证明BE=CD 就可以了.证明:在AB 上截取AE=AC ,连接DE .∵AD 平分∠BAC ,∴∠EAD=∠CAD . 图23 在△EAD 和△CAD 中,∠EAD=∠CAD ,AD=AD ,AE=AC ,∴△EAD ≌△CAD .∴∠AED=∠C ,CD=DE .∵∠C=2∠B ,∴∠AED=2∠B .∵∠AED=∠B+∠EBD ,∴∠B=∠EDB .∴BE=ED .∴BE=CD .∵AB=AE+BE ,∴AB=AC+CD .③延长角平分线的垂线段,使角平分线成为垂直平分线例10 如图24,在△ABC 中,AD 平分∠BAC ,CE ⊥AD 于E . 求证:∠ACE=∠B+∠ECD .分析:注意到AD 平分∠BAC ,CE ⊥AD ,于是可延长CE 交AB 于点F ,即可构造全等三角形.证明:延长CE 交AB 于点F .∵AD 平分∠BAC ,∴∠FAE=∠CAE .∵CE ⊥AD ,∴∠FEA=∠CEA=90º. 在△FEA 和△CEA 中, ∠FAE=∠CAE ,AE=AE ,∠FEA=∠CEA . 图24∴△FEA ≌△CEA .∴∠ACE=∠AFE .∵∠AFE=∠B+∠ECD ,∴∠ACE=∠B+∠ECD .(3)利用角的平分线构造等腰三角形如图25,在△ABC 中,AD 平分∠BAC ,过点D 作 DE ∥AB ,DE 交AC 于点E .易证△AED 是等腰三角形.C F E B AD Q P CB AC B AD CE B A D C BA D4321C E B AD因此,我们可以过角平分线上一点作角的一边的平行线,构造等腰三角形. 图25例11 如图26,在△ABC 中,AB=AC ,BD 平分∠ABC ,DE ⊥BD 于D ,交BC 于点E .求证:CD=21BE . 分析:要证CD=21BE ,可将BE 分成两条线段,然后再证明CD 与这两条线段都相等.证明:过点D 作DF ∥AB 交BC 于点F .∵BD 平分∠ABC ,∴∠1=∠2.∵DF ∥AB ,∴∠1=∠3,∠4=∠ABC . 图26∴∠2=∠3,∴DF=BF .∵DE ⊥BD ,∴∠2+∠DEF=90º,∠3+∠5=90º.∴∠DEF=∠5.∴DF=EF .∵AB=AC ,∴∠ABC=∠C .∴∠4=∠C ,CD=DF .∴CD=EF=BF ,即CD=21BE . 练习:1.如图27,在△ABC 中,∠B=90º, AD 为∠BAC 的平分线,DF ⊥AC 于F ,DE=DC .求证:BE=CF . 图272.已知:如图28,AD 是△ABC 的中线, DE ⊥AB 于E ,DF ⊥AC 于F ,且BE=CF . 求证:(1)AD 是∠BAC 的平分线;(2)AB=AC . 图283.在△ABC 中,∠BAC=60º,∠C=40º,AP 平分∠BAC 交BC 于P ,BQ 平分∠ABC 交AC 于Q . 求证:AB+BP=BQ+AQ . 图29 4.如图30,在△ABC 中,AD 平分∠BAC ,AB=AC+CD . 求证:∠C=2∠B . 图30 5.如图31,E 为△ABC 的∠A 的平分线AD 上一点,AB >AC . 求证:AB -AC >EB -EC . 图316.如图32,在四边形ABCD 中,BC >BA , AD=CD ,BD 平分∠ABC . 图32 求证:∠A+∠C=180º. 7.如图33所示,已知AD ∥BC ,∠1=∠2,F C E B A D C E B AD CB A D AC BD A CF E B M D ∠3=∠4,直线DC 过点E 作交AD 于点D ,交 BC 于点C . 求证:AD+BC=AB . 图338.已知,如图34,△ABC 中,∠ABC=90º, AB=BC ,AE 是∠A 的平分线,CD ⊥AE 于D .求证:CD=21AE . 图34 9.△ABC 中,AB=AC ,∠A=100º,BD 是∠B 的平分线. 求证:AD+BD=BC . 图3510.如图36,∠B 和∠C 的平分线相交于点F , 过点F 作DE ∥BC 交AB 于点D ,交AC 于点 E ,若BD+CE=9,则线段DE 的长为( ) A .9 B .8 C .7 D .6 图3611.如图37,△ABC 中,AD 平分∠BAC ,AD 交BC 于点D ,且D 是BC 的中点.求证:AB=AC . 图37 12.已知:如图38,△ABC 中,AD 是∠BAC的平分线,E 是BC 的中点,EF ∥AD ,交AB 于M , 交CA 的延长线于F . 求证:BM=CF . 图38。