高中数学 1.1.2基本不等式 新人教A版选修4-5

合集下载

2017年高中数学第一讲不等式和绝对值不等式1.1.2基本不等式课件新人教A版选修4_5

2017年高中数学第一讲不等式和绝对值不等式1.1.2基本不等式课件新人教A版选修4_5
值才是2.
【归纳总结】 1.理解基本不等式的两个关键点 一是定理成立的条件是a,b都是正数;二是等号取得的 条件是当且仅当a=b时.
2(.1利 )各用项a或2 b各因a式b 为求正最.值的三个条件 (2)和或积为定值. (3)各项或各因式能取得相等的值.
3.定理1与定理2的不同点 定理1的适用范围是a,b∈R;定理2的适用范围是 a>0,b>0.
ab 等式 1 2 2 1 2 , 构造关于 ab 的不等式.
ab ab
2.如何利用“x+2y+xy=30”这个条件? 提示:由x+2y+xy=30,得y= 30 x .
x2
【解析】1.选C.因为 1 2 ab ,所以a>0,b>0,由 ab
ab 1 2 2 1 2 =2
方法一:由于2x+3y≥ 2 2x 3y 2 6ห้องสมุดไป่ตู้y, 所以2 6x≤y18,得xy≤ , 27
2
即S≤ 27,当且仅当2x=3y时,等号成立.

2x 2x
23y 3y,
18,
解得
x y

4.5, 3.
故每间虎笼长为4.5m,宽为3m时,可使面积最大.
方法二:由2x+3y=18,得x=93- y.
小,最小费用为2200元.
【补偿训练】动物园要围成相同面积的长方形虎笼四 间.一面可利用原有的墙,其他各面(不包括上盖和地面) 用钢筋网围成.
(1)现有36m长的材料,每间虎笼的长、宽各设计为多少 时,可使每间虎笼面积最大? (2)若使每间虎笼面积为24m2,则每间虎笼的长、宽各 设计为多少时,可使围成四间虎笼的钢筋网总长最小?

高中数学新人教A版选修4-5课件:第一讲不等式和绝对值不等式1.1.2基本不等式

高中数学新人教A版选修4-5课件:第一讲不等式和绝对值不等式1.1.2基本不等式
1
年销售收入为 150% 32 3- t+1 + 3 + 2t.
首 页
探究一
探究二
J 基础知识 Z 重点难点
ICHU ZHISHI
探究三
由题意,生产 x 万件化妆品正好销完,
由年利润=年销售收入-年生产成本-促销费,
-t2 +98t+35
得年利润 y=
(t≥0).
2(t+1)
-t2 +98t+35
1 2x+y 2
1
(x,y∈R+)中,用的是不等式链中的
其变形去解题,如 xy= ×(2x)y≤
2
2
2
2
1 (2x+y)
1
a+b 2
(x,y∈R+)也可以,这两种解法比较,
.但是 xy= ×(2x)y≤ ×
ab≤
2
2
2
2
可以发现,求得的最值不一样,这说明选择不同的重要不等式的变形形式,求
得的值或范围是不同的,所以我们在选择重要不等式的变形形式时,要使
论有关的不等关系,得出有关理论参数的值.
(4)作出问题结论:根据③中得到的理论参数的值,结合题目要求得出问
题的结论.
J 基础知识 Z 重点难点
首 页
ICHU ZHISHI
HONGDIAN NANDIAN
1
1.下列各式中,最小值等于 2 的是(
x
A.
y
y
+
x
B.
1
C.tanθ+θ
2
3
S 随堂练习
1
的最大值,转化为求 (2x)y 的最大值,即

高中数学人教A版选修 选修4-5 1.2.1 绝对值三角不等式 教案

高中数学人教A版选修 选修4-5 1.2.1 绝对值三角不等式 教案

1.2.1 绝对值三角不等式教学目标:1:了解绝对值三角不等式的含义,理解绝对值三角不等式公式及推导方法, 会进行简 单的应用。

2:充分运用观察、类比、猜想、分析证明的数学思维方法,体会转化和数形结合的数学思想,并能运用绝对值三角不等式公式进行推理和证明。

教学重点:绝对值三角不等式的含义,绝对值三角不等式的理解和运用。

教学难点:绝对值三角不等式的发现和推导、取等条件。

教学过程: 一、复习引入:关于含有绝对值的不等式的问题,主要包括两类:一类是解不等式,另一类是证明不等式。

本节课探讨不等式证明这类问题。

1.请同学们回忆一下绝对值的意义。

⎪⎩⎪⎨⎧<-=>=0000x x x x x x ,如果,如果,如果。

几何意义:在数轴上,一个点到原点的距离称为这个点所表示的数的绝对值。

2.证明一个含有绝对值的不等式成立,除了要应用一般不等式的基本性质之外,经常还要用到关于绝对值的和、差、积、商的性质:(1)a a ≥,当且仅当0≥a 时等号成立,.a a -≥当且仅当0≤a 时等号成立。

(2)2a a =, (3)b a b a ⋅=⋅, (4))0(≠=b baba 那么?b a b a +=+?b a b a +=- 二、讲解新课:结论:a b a b ++≤(当且仅当0ab ≥时,等号成立.)探究: ,,a b a b +, 之间的什么关系?b a -baa b+已知,a b 是实数,试证明:a b a b ++≤(当且仅当0ab ≥时,等号成立.) 方法一:证明:10.当ab ≥0时, 20. 当ab <0时,综合10, 20知定理成立.方法二:分析法,两边平方(略)定理1 如果,a b 是实数,则a b a b ++≤(当且仅当0ab ≥时,等号成立.)(1)若把b a ,换为向量b a,情形又怎样呢?根据定理1,有b b a b b a -+≥-++,就是,a b b a ≥++。

高中数学第一讲不等式和绝对值不等式1.1.2基本不等式练习(含解析)新人教A版选修4_5

高中数学第一讲不等式和绝对值不等式1.1.2基本不等式练习(含解析)新人教A版选修4_5

2.基本不等式一、选择题1.若a,b,c都是正数,且a(a+b+c)+bc=4-2,则2a+b+c的最小值为( )A.-1B.+1C.2+2D.2-2解析:∵a(a+b+c)+bc=4-2,∴(a+b)(a+c)=4-2,∵a,b,c>0,∴(a+c)(a+b)≤,当且仅当a+c=a+b,即b=c时,等号成立.∴2a+b+c≥2=2(-1)=2-2.答案:D2.下列结论中不正确的是( )A.a>0时,a+≥2B.≥2C.a2+b2≥2abD.a2+b2≥解析:选项A、C显然正确;选项D中,2(a2+b2)-(a+b)2=a2+b2-2ab≥0,∴a2+b2≥成立;而选项B中,≥2不成立,因为若ab<0,则不满足基本不等式成立的条件.答案:B3.函数y=3x2+的最小值是( )A.3-3B.-3C.6D.6-3解析:y=3x2+=3x2+3+-3,∵3x2+3>0,>0,∴y≥2-3=6-3,当且仅当3x2+3=时,y取得最小值6-3.答案:D4.设x,y∈R,且x+y=5,则3x+3y的最小值是( )A.10B.6C.4D.18解析:3x+3y≥2=2=2=18.答案:D5.若x,y>0,且x+2y=3,则的最小值是( )A.2B.C.1+D.3+2解析:=1+,当且仅当时,等号成立,取得最小值1+.答案:C二、非选择题6.若a>3,则+a的最小值为.解析:由基本不等式,得+a=+a-3+3≥2+3=2+3=7,当且仅当=a-3,即a=5(a=1舍去)时,等号成立.答案:77.若正数a,b满足ab=a+b+3,则ab的取值范围是.解析:令=t(t>0),由ab=a+b+3≥2+3,得t2≥2t+3,∴t≥3或t≤-1(舍去).∴≥3.∴ab≥9,当a=b=3时,等号成立.答案:[9,+∞)8.函数y=log a(x+3)-1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0,则的最小值为.解析:函数y=log a(x+3)-1的图象恒过定点A(-2,-1),∵点A在直线mx+ny+1=0上,∴-2m-n+1=0,即2m+n=1,则×(2m+n)==2++4·+2≥4+2=4+4=8,当且仅当m=,n=时取等号.答案:89.求函数y=(x≥0)的最小值.解:原式变形,得y==x+2++1.因为x≥0,所以x+2>0.所以x+2+≥6,所以y≥7,当且仅当x=1时,等号成立.所以函数y=(x≥0)的最小值为7.10. 若a>0,b>0,且.(1)求a3+b3的最小值;(2)是否存在a,b,使得2a+3b=6?并说明理由.解:(1)由,得ab≥2,且当a=b=时等号成立.故a3+b3≥2≥4,且当a=b=时等号成立.所以a3+b3的最小值为4.(2)由(1)知,2a+3b≥2≥4.由于4>6,从而不存在a,b,使得2a+3b=6.11.如图,为处理含有某种杂质的污水,要制造一个底宽为2 m的无盖长方体沉淀箱,污水从A 孔流入,经沉淀后从B孔流出,设箱体的长度为a m,高度为b m,已知流出的水中该杂质的质量分数与a,b的乘积ab成反比,现有制箱材料60 m2,问当a,b各为多少时,沉淀后流出的水中该杂质的质量分数最小?(A,B孔的面积忽略不计)解:设y为流出的水中该杂质的质量分数,则y=,k>0,k为比例系数,依题意,即求a,b的值,使y最小.依题设,有4b+2ab+2a=60(a>0,b>0),所以b=(0<a<30).①于是y====≥=.当a+2=时,等号成立,y取最小值.这时a=6,a=-10(舍去),将a=6代入①,得b=3.故当a为6,b为3时,沉淀后流出的水中该杂质的质量分数最小.三、备选习题1.已知a>2,试判断log a(a-1)·log a(a+1)与1的大小关系.解:∵a>2,∴log a(a-1)>0,log a(a+1)>0,且log a(a-1)≠log a(a+1),∴log a(a-1)·log a(a+1)<==1,∴当a>2时,log a(a-1)·log a(a+1)<1.2.一艘船由甲地逆水匀速行驶到乙地,甲乙两地相距s(千米),水速为常量p(千米/时),船在静水中的最大速度为q(千米/时),且p<q.已知船每小时的燃料费用(元)与船在静水中速度v(千米/时)的平方成正比,比例系数为k.(1)把全程燃料费用y(元)表示为静水中的速度v(千米/时)的函数,并指出其定义域;(2)为了使全程燃料费用最小,船的实际前进速度应为多少?解:(1)由于船每小时航行的燃料费用是kv2,全程航行时间为,于是全程燃料费用y=kv2·,故所求函数是y=ks·(p<v≤q),定义域是(p,q].(2)y=ks·=ks=ks·≥ks=4ksp.其中取“=”的充要条件是v-p=,即v=2p.①当v=2p∈(p,q],即2p≤q时y min=f(2p)=4ksp.②当v=2p∉(p,q],即2p>q.任取v1,v2∈(p,q],且v1<v2,则y1-y2=ks=·[p2-(v1-p)(v2-p)],而p2-(v1-p)(v2-p)>p2-(q-p)(q-p)=q(2p-q)>0,∴y1-y2>0.故函数y在区间(p,q]内单调递减,此时y(v)≥y(q),即y min=y(q)=ks.此时,船的前进速度等于q-p.故为使全程燃料费用最小,当2p≤q时,船的实际前进速度应为2p-p=p(千米/时);当2p>q 时,船的实际前进速度为q-p(千米/时).。

2新人教A版高中数学(选修4-5)《基本不等式》ppt课件

2新人教A版高中数学(选修4-5)《基本不等式》ppt课件
2
基本不等式
我们已 经 学 过 重 要 不等式 a b 2ab2 Nhomakorabea2
a, b R , 为了方便同学们学习下面将它 ,
以定理的形式给出并给出证明 , .
定理1
如果 a, b R, 那么a b 2ab, 当
2
2
且仅当a b时, 等号成立 .
证明 因为 a b 2 ab a b 0 , 当且仅
2 2 2
a b 时等号成立 成立 .
, 所以 , 当且仅当 a b 时 , 等号
探究 你能从几何的角度解释 定理1 吗?
A
如果把实数 , b作为线段 a 长度那么可以这样来解 释定理1 :
借助几何画板 解释定理1 .
B H
I
K
b
D
G
F
a
b
J
a
C
b
E
图 1 .1 2
以 a b 为例 , 如图 1 . 1 2 , 在正方形 a ; 在正方形 S 正方形
1设总造价为S元, AD长为x米, 试建立S关于x的函数
关系式;
2 当x为何值时S最小, 并求出这个最小值 .

2
1 设 DQ
y米 , 则
D
2
H
Q
G
x 4 xy 200 ,
从而 y 200 x 4x
2
P
N F
C B
A
M E
.
于是
2
S 4200 x 210 4 xy 80 2 y
C B
M E
2 4000 x
400000 x
2
80000 ,

人教A版高中数学选修4-5同步ppt课件:1-1-2

人教A版高中数学选修4-5同步ppt课件:1-1-2

y 9x 1 9 当且仅当x= y 且x+y=1,即 x=4,y=12 时,上式等号 成立. 故 x=4,y=12 时,(x+y)min=16.
5 (2)∵x<4,∴4x-5<0,则 5-4x>0. 1 1 ∴y=4x+ =(4x-5)+ +5 4x-5 4x-5
1 =-5-4x+5-4x +5≤-2
规律技巧
1 以上各题均当 a=b=2时取等号,在推理过程
中要正确运用不等式的性质,把握住不等号方向的正确性.当 同向不等式相加时要注意等号能否成立.
【变式训练 1】
(1)已知 a,b∈(0,+∞),a+b=1,
1 1 求证:1+a1+b≥9.
(2)已知 a,b,c 是不全相等的正数,求证: a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc.
(3)利用基本不等式还可以得到以下不等式: 1 a+ ≥2(a>0,当且仅当 a=1 时取等号). a b a 当 ab>0 时, + ≥2(当且仅当 a=b 时取等号). a b
2 a + b a2+b2≥ ≥2ab(a,b∈R,当且仅当 a=b 时,等号 2
成立).
2.均值不等式的应用 应用均值不等式中等号成立的条件,可以求最值. (1)x,y∈R+,且 xy=m(m 为定值),那么当 x=y 时,x+y 有最小值 2 m; (2)x,y∈R+,且 x+y=n(n 为定值),那么当 x=y 时,xy n2 有最大值 . 4 在应用均值不等式求最值时,应强调“一正、二定、三相 等”.否则会得出错误的结果.
第一讲
不等式和绝对值不等式

不等式
2
基本不等式
课前预习目标
课堂互动探究

1.1.2.基本不等式 课件(人教A选修4-5)

1.1.2.基本不等式 课件(人教A选修4-5)

a+b 如果 a,b 都是正数,我们就称 2 为 a,b 的算术平均,
ab 为 a,b 的几何平均.
4.利用基本不等式求最值 对两个正实数 x,y, (1)如果它们的和 S 是定值,则当且仅当 x=y 时,它们的 积 P 取得最 大 值; (2)如果它们的积 P 是定值,则当且仅当 x=y 时,它们的 和 S 取得最 小 值.
行证明.
(2)本题证明过程中多次用到基本不等式,然后利用同 向不等式的可加性或可乘性得出所证的不等式,要注意不 等式性质的使用条件,对“当且仅当……时取等号”这句话 要搞清楚.
[通一类] 1.设a,b,c∈R+,
求证: a2+b2+ b2+c2+ c2+a2≥ 2(a+b+c).
证明:∵a2+b2≥2ab, ∴2(a2+b2)≥(a+b)2. 又 a,b,c∈R+, ∴ a2+b2≥

每吨面粉的价格为1 800元,面粉的保管等其他费用为平
均每吨每天3元,购买面粉每次需支付运费900元. (1)求该厂多少天购买一次面粉,才能使平均每天所支付 的总费用最少? (2)某提供面粉的公司规定:当一次购买面粉不少于210 吨时,其价格可享受9折优惠,问该厂是否考虑利用此 优惠条件?请说明理由.
2
2 2 |a+b|= (a+b). 2 2
2
2 2 2 2 同理: b +c ≥ (b+c), c +a ≥ (a+c). 2 2
三式相加, 得 a2+b2+ b2+c2+ c2+a2≥ 2(a+b+c).
当且仅当 a=b=c 时取等号.
[研一题]
[例 2] 1 9 已知 x>0,y>0,且x+y=1,
[精讲详析]
本题考查基本不等式在证明不等式中的应
用,解答本题需要分析不等式的特点,先对a+b,b+c,c+ a分别使用基本不等式,再把它们相乘或相加即可.

最新高中数学 第一章 不等式和绝对值不等式 1.2.2 绝对值不等式的解法试题 新人教A版选修4-5(考试必备)

最新高中数学 第一章 不等式和绝对值不等式 1.2.2 绝对值不等式的解法试题 新人教A版选修4-5(考试必备)

2.绝对值不等式的解法课后篇巩固探究A组1.已知集合A={x|x2-5x+6≤0},B={x||2x-1|>3},则A∩B等于()A.{x|2≤x≤3}B.{x|2≤x<3}C.{x|2<x≤3}D.{x|-1<x<3}{x|2≤x≤3},B={x|x>2或x<-1},则A∩B={x|2<x≤3}.2.若a>2,则关于x的不等式|x-1|+a>2的解集为()A.{x|x>3-a}B.{x|x>a-1}C.⌀D.R|x-1|+a>2可化为|x-1|>2-a,因为a>2,所以2-a<0,故原不等式的解集为R.3.不等式|3x-4|>x2的解集为()A.(-4,1)B.(-1,4)C.⌀D.(-∞,-4)∪(1,+∞)|3x-4|>x2可得3x-4>x2或3x-4<-x2,解3x-4>x2得无解;解3x-4<-x2得-4<x<1,故原不等式的解集为(-4,1).4.不等式<0的解集是()A.{x|-3<x<5}B.{x|-3<x<5,且x≠2}C.{x|-3≤x≤5}D.{x|-3≤x≤5,且x≠2}|x-2|>0,且x≠2,所以原不等式等价于|x-1|-4<0,即|x-1|<4,所以-4<x-1<4,即-3<x<5.又x≠2,故原不等式的解集为{x|-3<x<5,且x≠2}.5.不等式|2x-log2x|<|2x|+|log2x|的解集为()A.(0,1)B.(1,2)C.(1,+∞)D.(2,+∞)|a-b|≤|a|+|b|中,“=”成立的条件是ab≤0,“<”成立的条件是ab>0,所以2x·log2x>0.又x>0,所以log2x>0,解得x>1.6.不等式|2x-1|<3的解集为.2x-1|<3⇔-3<2x-1<3⇔-1<x<2.-1,2)7.不等式|x+3|>|2-x|的解集是.|x+3|>|2-x|得(x+3)2>(2-x)2,整理得10x>-5,即x>-,故原不等式的解集为.8.若关于x的不等式|ax+2|<6的解集为(-1,2),则实数a=.0明显不符合题意.由|ax+2|<6得-8<ax<4.当a>0时,有-<x<,因为不等式的解集为(-1,2),所以解得两值相矛盾舍去.当a<0时,有<x<-,则解得a=-4.综上,a=-4.49.已知函数f(x)=(a∈R).(1)若a=3,解不等式:f(x)≥2;(2)若f(x)的定义域为R,求实数a的取值范围.当a=3时,不等式f(x)≥2即为≥2,所以|x+1|+|x-3|-2≥4,所以|x+1|+|x-3|≥6.于是或从而x≥4,或x≤-2.故原不等式解集为{x|x≥4或x≤-2}.(2)f(x)的定义域为R,即不等式|x+1|+|x-a|-2≥0恒成立,所以|x+1|+|x-a|≥2恒成立.而g(x)=|x+1|+|x-a|的最小值为|a+1|,于是|a+1|≥2,解得a≥1,或a≤-3.故实数a的取值范围是(-∞,-3]∪[1,+∞).10.已知函数f(x)=|x+a|+|2x-1|(a∈R).(1)当a=1时,求不等式f(x)≥2的解集;(2)若f(x)≤2x的解集包含,求a的取值范围.当a=1时,不等式f(x)≥2可化为|x+1|+|2x-1|≥2.①当x≥时,不等式为3x≥2,解得x≥,故x≥;②当-1≤x<时,不等式为2-x≥2,解得x≤0,故-1≤x≤0;③当x<-1时,不等式为-3x≥2,解得x≤-,故x<-1.综上,原不等式的解集为.(2)因为f(x)≤2x,所以|x+a|+|2x-1|≤2x,所以不等式可化为|x+a|≤1,解得-a-1≤x≤-a+1.由已知得解得-≤a≤0.故a的取值范围是.B组1.不等式的解集为()A.[0,1)B.(0,1)C.(-∞,0)∪(1,+∞)D.(-∞,0]∪(1,+∞),所以<0,解得0<x<1.2.导学号26394014关于x的不等式|x+3|-|x-1|≤a2-3|a|对任意实数x恒成立,则实数a的取值范围为()A.(-∞,-4]∪[4,+∞)B.(-∞,-1]∪[4,+∞)C.[-1,4]D.(-∞,1]∪[2,+∞)|x+3|-|x-1|≤4,又|x+3|-|x-1|≤a2-3|a|对任意实数x恒成立,所以a2-3|a|≥4,即a2-3|a|-4≥0,解得|a|≥4或|a|≤-1(舍去).故选A.3.在实数范围内,不等式||x-2|-1|≤1的解集为.-1≤|x-2|-1≤1,即0≤|x-2|≤2,解得0≤x≤4.4.若不等式|3x-b|<4的解集中的整数有且仅有1,2,3,则b的取值范围为.|3x-b|<4得-4<3x-b<4,即<x<.因为不等式|3x-b|<4的解集中的整数有且仅有1,2,3,则故5<b<7.5.导学号26394015解不等式|2x+1|+|x-2|+|x-1|>4.x≤-时,原不等式化为-2x-1+2-x+1-x>4,解得x<-.当-<x≤1时,原不等式化为2x+1+2-x+1-x>4,4>4,矛盾.当1<x≤2时,原不等式化为2x+1+2-x+x-1>4,解得x>1.由1<x≤2,则1<x≤2.当x>2时,原不等式化为2x+1+x-2+x-1>4,解得x>.由x>2,则x>2.综上所述,原不等式的解集为.6.导学号26394016已知函数f(x)=|x-a|,其中a>1.(1)当a=2时,求不等式f(x)≥4-|x-4|的解集;(2)已知关于x的不等式|f(2x+a)-2f(x)|≤2的解集为{x|1≤x≤2},求a的值.解(1)当a=2时,f(x)+|x-4|=当x≤2时,由f(x)≥4-|x-4|得-2x+6≥4,解得x≤1;当2<x<4时,f(x)≥4-|x-4|无解;当x≥4时,由f(x)≥4-|x-4|得2x-6≥4,解得x≥5.所以f(x)≥4-|x-4|的解集为{x|x≤1或x≥5}.(2)记h(x)=f(2x+a)-2f(x),则h(x)=由|h(x)|≤2,解得≤x≤.因为|h(x)|≤2的解集为{x|1≤x≤2},所以于是a=3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x
1+y2取得最大值3
4
2 .
精品课件
解法二 令{ x=cos θ, y= 2sin θ 0≤θ≤π2 ,
则 x 1+y2=cos θ 1+2sin2θ=
2cos2θ(1+2sin2θ)·12≤
12·2cos2θ+(21+2sin2θ)2=3 4 2.
栏 目 链 接

2cos2θ=1+2sin2θ,即
目 链 接
当且仅当 x=x4,即 x=2 时等号成立.
因此,当 x=2 时,y 取得最小值 160,即容器的最低总造价为
大值.
链 接
∴可把x放到根号里面去考虑,即化为,
注意到x2与1+y2的积,应处理成2x2·.
精品课件
解析:解法一 ∵x≥0,y≥0,x2+y22=1,
∴x 1+y2= x2(1+y2)=
2x2·1+2 y2≤

2x2+21+2 y2= 2x2+2y22+12=342,
目 链 接
当且仅当 x2=1+2 y2,即 x= 23,y= 22时,
精品课件
解析:(1)因为 x>0,所以由基本不等式得 f(x)=4x+1x6≥

2 4x·1x6=2 64=16.
目 链 接
当且仅当 4x=1x6,即 x=2 时,“=”成立.
精品课件
(2)运用“乘 1 法” 1x+2y=1x+2y×1=1x+2y(2x+y)=4+4yx+ xy≥4+2 4yx·xy=8,当且仅当4yx=xy时,等号成立.又∵2x+y=1,栏目链
栏 目
总造价是( )
链 接
A.80 元 B.120 元 C.160 元 D.240 元
精品课件
解析:设底面矩形的一边长为 x.由容器的容积为 4 m3,高为 1
m.得另一边长为4xm.记容器的总造价为 y 元,则
y=4×20+2x+4x×1×10=

80+20x+4x≥80+20×2 x·4x=160,
当 x2=6 时,y2=240×6+362=2 720.
栏 目


因为 y1>y2,
所以当 x2=6 时,y 有最小值,ymin=2 720.
故每人至少应交2 47820≈56.67(元).
精品课件
点评:利用基本不等式解决应用题时,首先要仔细
阅读题目,弄清要解决的实际问题,确定是求什么
量的最值,然后分析题目中给出的条件,建立y的
π θ= 6 时,也即
x=
23,y=
22时,
x 1+y2取得最大值342.
答案:3
2 4
精品课件
利用基本不等式证明不等式
已知a,b,c是不全相等的正数,求证:a(b2+c2) +b(c2+a2)+c(a2+b2)>6abc.
栏 目

分析:本题的结论是关于a,b,c的轮换对称式(a, 接
b,c在不等式中的作用相等,交换其中任意两个
∴a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc.
精品课件
2




(1

1 x
)(1

1 y
)

(x+1)(y+1) xy

栏 目

(2x+y)(2y+x) xy

5xy+2(x2+y2) xy

5

2(x2+y2) xy

5+接ຫໍສະໝຸດ 2×xy2xy=9.当且仅当 x=y=21时取等号.∴(1+1x)(1+1y)≥9.
因为 y=240xx+6x4≥240×2 x×6x4=3 840,
当且仅当 x=6x4,即 x=8 时,等号成立.
精品课件
所以每人至少应交3 48840=80(元). (2)每批去 x 名同学,共需去48x×4批, 总开支又分为:
①买卡所需费用 240x 元,

②包车所需费用48×x 4×40元.
的位置,结论仍成立),只需侧重证明a(b2+
c2)≥2abc,其他按“同理”的格式书写即可.
精品课件
证明:∵b2+c2≥2bc,a>0,∴a(b2+c2)≥2abc,①
同理,b(c2+a2)≥2abc,②


c(a2+b2)≥2abc.③
链 接
∵a,b,c 不全相等,∴①②③式中至少有一个式子不能取等号.
精品课件
利用基本不等式解应用题
某游泳馆出售冬季游泳卡,每张 240 元,其使用规定 为:不记名,每卡每次只限一人,每天只限一次.某

班有48名同学,老师打算组织同学们集体去游泳,除 目

需购买若干张游泳卡外,每次游泳还需包一辆汽车, 接 无论乘坐多少名同学,每次的包车费都为40元. (1)若每个同学游8次,每人至少应交多少元钱? (2)若每个同学游4次,每人至少应交多少元钱?
第一讲 不等式和绝对值不等式 1.1 不 等 式
1.1.2 基本不等式
精品课件
栏 目 链 接
精品课件
利用基本不等式求函数的值域或最值

(1)若x>0,求f(x)=4x+的最小值


(2)设x>0,y>0且2x+y=1,则+的最小值是

______;
分析:函数解析式在形式上已经基本符合了基本不
等式的形式,但还应注意适用前提.
栏 目
函数表达式y=f(x)(x一般为题目中最后所要求的
链 接
量),最后利用不等式的有关知识解题.求解过程
中要注意实际问题对变量x的范围的制约.
精品课件
►变式训练
3.(2014·福建卷)要制作一个容积为4 m3,高为1 m
的无盖长方体容器.已知该容器的底面造价是每平方
米20元,侧面造价是每平方米10元,则该容器的最低

∴x=14,y=12,∴当 x=41,y=12时,x1+2y取最小值 8. 点评:使用基本不等式求最值时,一定要验证三个条件:“一正”“二 定”“三相”等,缺一不可.
精品课件
►变式训练
1.设x≥0,y≥0,x2+=1,则x 的最大值为
__________.

1.分析:∵x2+=1是常数,∴x2与的积可能有最 目
精品课件
分析:弄清题意,理解总费用由买游泳卡所需费用及包车费两项
组成.
解析:设买 x 张游泳卡,总开支为 y 元.
(1)每批去 x 同学,共需去48x×8批,总开支又分为:

①买卡所需费用 240x 元,


②包车所需车费用48×x 8×40元.

所以 y=240x+48×x 8×40(0<x≤48,x∈Z).
目 链 接
所以 y=240x+48×x 4×40(0<x≤48,x∈Z),
即 y=240x+3x2≥240×2 x×3x2=1 920 2. 当且仅当 x=3x2,即 x=4 2时,等号成立.
精品课件
由 0<x≤48,5<4 2<6,x∈Z)可知,
当 x1=5 时,y1=240×5+352=2 736;
相关文档
最新文档