C++链表的创建与操作
链表操作

链表操作图书管理基本业务包括:1、对一种书的采编入库(类别、书名、作者、出版社、ISBN(唯一)、价格、数量)。
2、对一种书进行搜索(类别、ISBN、书名、作者)若有多个结果则同时显示出来。
3、对一种书进行清除库存(通过ISBN)。
4、对一种书实现借阅和归还,同时可以查看该学生借阅了几本书。
基本要求:采编入库:新购一种书,登记入册,若库存中已经有了,则总量增加。
(所有项均用英文单词和数字输入)例如入库某种书:Literature,Old Man and the Sea,Hemingway,Tsinghua University Press,978-7-5011-6964-1,35.6,10清除库存:某种书报损或无效了,将它从库存中删除(所有项都删除)。
借阅:如果一种书现存量大于0,则借出去,并登记借阅者的图书证号(自己定义6位数字字符串)。
通过对图书证号的查询,可以知道该学生已经借阅了几本书,并显示书名。
归还:注销对借阅者的登记,改变该书的现存量。
实现提示:1.1图书表可以采用链式或顺序存储结构实现。
图书的顺序表结构:typedef struct Book{char type[30]; //图书类别(文学、期刊、英语…..)char BookName[50]; //图书名称char Author[20]; //作者char Press[50]; //出版社char ISBN[20]; //ISBN编号(每一类书都有唯一编号,如:978-7-5011-6964-1)float Price; //图书价格int Number; //入库数量}Book;typedef struct BList{Book *elem;int length; //当前图书种类数量int listsize; //初始时可存放图书长度}BList;图书的链表结构:typedef struct Book{char BookName[50];char Author[20];char Press[50];char ISBN[20];float Price;int Number;}Book;typedef struct LNode{Book data;Struct LNode *next;}LNode,*LinkList;1.2、图书的入库则是顺序表或链表的插入操作(可以插入到最后一个位置)。
c链表库函数

c链表库函数全文共四篇示例,供读者参考第一篇示例:C语言是一种广泛应用于系统编程的高级语言,而链表(Linked List)是C语言中常用的数据结构之一。
在C语言中,链表并不像数组一样有现成的库函数可以直接调用,需要通过自定义函数来实现链表的操作。
为了方便使用链表,不少开发者封装了链表操作的库函数,提供了一些常用的链表操作接口,以供开发者使用。
本文将介绍一些常见的C链表库函数及其用法。
一、链表的概念及基本操作链表是一种线性表的存储结构,由若干节点(Node)组成,每个节点包含数据域和指针域。
数据域用于存放数据,指针域用于指向下一个节点。
链表的最后一个节点指针域为空(NULL),表示链表的末尾。
常见的链表操作包括创建链表、插入节点、删除节点、遍历链表、查找节点等。
下面我们来看看C语言中常用的链表库函数。
二、常见的C链表库函数1. 创建链表在C语言中,创建链表的函数通常包括初始化链表头节点和链表节点的操作。
```#include <stdio.h>#include <stdlib.h>//定义链表节点typedef struct node {int data;struct node* next;} Node;2. 插入节点插入节点是链表操作中的重要操作,可以在链表的任意位置插入新节点。
常见的插入方式包括头部插入和尾部插入。
```//头部插入节点void insertNodeAtHead(Node* head, int data) {Node* newNode = (Node*)malloc(sizeof(Node));newNode->data = data;newNode->next = head->next;head->next = newNode;}以上是常见的C链表库函数,这些函数可以帮助我们更方便地操作链表。
在实际开发中,可以根据需要自定义更多的链表操作函数,以满足具体的需求。
c语言链表操作题

c语言链表操作题C语言链表操作题一、问题描述假设有一个链表,每一个节点都包含一个整数,节点的结构体定义如下:```struct ListNode {int val;struct ListNode *next;};```请你完成以下链表操作函数:1. `struct ListNode* createList(int *arr, int size)`:传入一个整数数组和数组的长度,返回一个链表的头节点,链表的节点顺序和数组顺序一致。
2. `void displayList(struct ListNode *head)`:传入链表的头节点,打印链表中所有的节点值,用空格隔开,最后换行。
3. `int lengthOfList(struct ListNode *head)`:传入链表头节点,返回链表的长度。
4. `void insertNode(struct ListNode *head, int index, int val)`:传入链表的头节点、插入的位置和插入的值,在指定位置插入一个新节点。
5. `void deleteNode(struct ListNode *head, int index)`:传入链表的头节点和删除的位置,删除指定位置的节点。
6. `void reverseList(struct ListNode *head)`:传入链表的头节点,翻转整个链表。
7. `int findValInList(struct ListNode *head, int val)`:传入链表的头节点和要查找的值,返回第一个匹配的节点的下标,如果没有匹配的,则返回-1。
二、解题思路1. 创建链表:根据数组中元素的数量,循环遍历数组,每结构体当做链表节点,并记录对应下一个节点,最后返回链表头节点。
2. 打印链表:循环遍历链表的每一个节点,打印节点的val,并在每个节点之间添加空格,最后在尾部添加换行符。
3. 计算链表长度:从链表头节点开始循环遍历每一个节点,直到当前节点的next指针指向NULL,每遍历到一个节点就计数器加1。
链表c语言经典例题

链表c语言经典例题
链表是计算机科学中的经典数据结构之一,常用于存储和操作动态数据。
以下是一些常见的链表例题,可以帮助理解链表的基本操作和应用。
1. 链表的创建:
- 创建一个空链表。
- 创建一个包含指定节点值的链表。
2. 链表的插入操作:
- 在链表的头部插入一个节点。
- 在链表的尾部插入一个节点。
- 在指定位置插入一个节点。
3. 链表的删除操作:
- 删除链表的头节点。
- 删除链表的尾节点。
- 删除指定数值的节点。
4. 链表的查找操作:
- 查找链表中指定数值的节点。
- 查找链表的中间节点。
5. 链表的逆序操作:
- 反转整个链表。
- 反转链表的前 N 个节点。
- 反转链表的一部分区间内的节点。
6. 链表的合并操作:
- 合并两个有序链表,使其有序。
- 合并 K 个有序链表,使其有序。
7. 链表的环检测:
- 判断链表中是否存在环,若存在,则返回环的起始节点。
8. 链表的拆分操作:
- 将一个链表按照奇偶位置拆分成两个链表。
以上是一些链表的经典例题,通过解答这些例题,可以加深对链表结构和基本操作的理解。
在编写对应的 C 语言代码时,需要注意链表节点的定义、指针的使用以及内存的动态分配和释放等问题。
实验报告1

实验一创建链表和链表操作一、实验目的掌握线性表的基本操作:插入、删除、查找、以及线性表合并等操作在顺序存储结构和链式存储结构上的实现。
二、实验内容:1. 创建单链表2.在链表上进行插入、删除操作;3.设计一个程序,用两个单链表分别表示两个集合,并求出这两个集合的并集。
四、测试数据:∙(3,9,5,6,11,8);在5之前插入4,7,并删除11∙求集合{1,12,8,6,4,9}和{2,5,12,7,4}的并集五、概要设计:本操作应完成如下功能:(1)创建链表说明:分配一定的空间,根据给定的链表长度输入值,创建链表。
(2)合并链表说明:将两个链表合并为一个链表只需修改链表头、尾指针即可实现。
(3)在链表中插入值说明:将给定的值插入到指定位置上,只需修改插入位置的前后结点的指针即可。
(4)在链表中删除值说明:将指定位置的值删除,只需修改删除位置的前后结点的指针即可。
六、详细设计:源代码:#include<stdio.h>#include<conio.h>#include<stdlib.h>#include<iostream.h>#define OK 1#define ERROR 0#define OVERFLOW 0//线性链表的存储结构,一个结点typedef struct LNode{int data; // 数据域struct LNode *next; // 指针域}LNode,*LinkList; //结点结构类型和指向结点的指针类型int TraverseList_L(LinkList L) //遍历单链表{LinkList p;p=L->next;while(p){printf("-->%d",p->data);p=p->next;}return OK;}//尾插法创建的带头结点的单链表。
void CreateList_L(LinkList &L,int &n){L=(LinkList)malloc(sizeof (LNode));//建立一个空链表L。
c语言链表的创建方法

c语言链表的创建方法在C语言中,链表是一种常见的数据结构,它由一系列节点组成,每个节点包含一个值和一个指向下一个节点的指针。
链表可以动态地添加或删除节点,因此在许多应用程序中被广泛使用。
链表的创建方法大致可以分为以下几个步骤:1. 定义一个节点结构体链表的节点通常包含一个值和一个指针,指针指向下一个节点。
因此,我们需要定义一个结构体来表示节点:```struct Node {int data;struct Node* next;};```其中,`data`表示节点的值,`next`表示指向下一个节点的指针。
2. 创建第一个节点创建第一个节点时,我们需要先分配一段内存,然后将节点的值和指针都赋值为NULL:```struct Node* head = NULL;head = (struct Node*)malloc(sizeof(struct Node));head->data = 1;head->next = NULL;```这里我们使用了`malloc`函数来分配内存,并将返回的指针强制转换为`struct Node*`类型,然后将节点的值和指针赋值为1和NULL。
3. 添加新节点添加新节点时,我们需要先找到链表的末尾,然后在末尾添加新节点:```struct Node* newNode = NULL;newNode = (struct Node*)malloc(sizeof(struct Node));newNode->data = 2;newNode->next = NULL;struct Node* current = head;while (current->next != NULL) {current = current->next;}current->next = newNode;```这里我们定义了一个新节点`newNode`,然后遍历链表找到末尾节点,将末尾节点的指针指向新节点。
用c语言将链表读取二进制文件

用C语言将链表读取二进制文件1. 介绍在编程中,链表是一种常用的数据结构,它由一系列节点组成,每个节点包含数据和指向下一个节点的指针。
在C语言中,我们可以使用链表来表示和操作各种复杂的数据结构。
本文将详细介绍如何使用C语言读取二进制文件,并将数据存储到链表中。
我们将逐步解释如何打开二进制文件、读取文件内容以及在内存中构建链表的过程。
同时,我们还将讨论如何释放链表的内存,以避免内存泄漏问题。
以下是本文的大纲:1.介绍2.准备工作3.打开二进制文件4.读取文件内容5.构建链表6.释放内存7.示例代码8.总结2. 准备工作在开始之前,我们需要确保已经安装了C编译器(如GCC或Clang),以便能够编译和运行我们的代码。
此外,我们还需要一份包含二进制数据的文件,用于演示读取和构建链表的过程。
3. 打开二进制文件要读取二进制文件,我们首先需要将其打开。
在C语言中,我们可以使用fopen函数来打开文件,并将其与一个文件指针相关联。
文件指针用于表示文件的位置和状态。
以下是打开二进制文件的代码示例:FILE *file = fopen("data.bin", "rb");if (file == NULL) {printf("无法打开文件。
\n");return -1;}在上述代码中,我们使用fopen函数打开名为data.bin的文件,并将其与一个文件指针file相关联。
参数"rb"指定以二进制模式打开文件。
如果文件打开失败,我们会输出一条错误信息并返回。
4. 读取文件内容一旦我们成功打开了文件,我们就可以使用fread函数来读取文件的内容。
fread 函数可以读取一定数量的数据块,并将其存储到指定的内存位置。
以下是读取文件内容的代码示例:// 假设我们已经定义了一个用于存储数据的缓冲区unsigned char buffer[1024];size_t bytesRead = fread(buffer, sizeof(unsigned char), sizeof(buffer), file); if (bytesRead == 0) {printf("无法读取文件。
链表教学设计

链表教学设计一、教学目标1、让学生理解链表的基本概念和结构。
2、使学生掌握链表的创建、插入、删除和遍历操作。
3、培养学生运用链表解决实际问题的能力。
4、提高学生的逻辑思维和程序设计能力。
二、教学重难点1、重点链表的概念和特点。
链表节点的创建和链接。
链表的插入、删除和遍历操作的实现。
2、难点理解链表中指针的作用和操作。
处理链表操作中的边界情况和错误。
三、教学方法1、讲授法:讲解链表的基本概念、原理和操作方法。
2、演示法:通过演示程序的运行过程,帮助学生理解链表的动态特性。
3、实践法:让学生亲自动手编写链表操作的代码,加深对链表的理解和掌握。
四、教学过程1、导入(5 分钟)通过一个简单的例子,如存储学生信息,引出顺序存储和链式存储的概念。
比较顺序存储(如数组)和链式存储(链表)的优缺点,让学生对链表有一个初步的认识。
2、链表的概念和结构(15 分钟)讲解链表的定义:链表是一种常见的数据结构,由一系列节点组成,每个节点包含数据和指向下一个节点的指针。
画图展示链表的结构,包括节点的组成(数据域和指针域)以及节点之间的链接关系。
强调链表的动态性,可以根据需要灵活地添加或删除节点,而不像数组那样需要预先分配固定的存储空间。
3、链表节点的创建(15 分钟)以 C 语言为例,讲解链表节点的结构体定义:```cstruct Node {int data;struct Node next;};```演示如何使用动态内存分配函数(如 malloc)创建一个链表节点,并为节点的数据域赋值。
4、链表的创建(20 分钟)逐步讲解如何通过逐个创建节点并链接起来,构建一个链表。
给出示例代码,让学生理解创建链表的过程:```cstruct Node createList(){struct Node head = NULL, newNode, temp;int data;printf("输入节点数据(输入-1 结束):");scanf("%d",&data);while (data!=-1) {newNode =(struct Node )malloc(sizeof(struct Node));newNode>data = data;newNode>next = NULL;if (head == NULL) {head = newNode;temp = newNode;} else {temp>next = newNode;temp = newNode;}printf("输入节点数据(输入-1 结束):");scanf("%d",&data);}return head;}```让学生自己动手编写代码创建一个简单的链表。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C++链表的创建与操作我们知道,数组式计算机根据事先定义好的数组类型与长度自动为其分配一连续的存储单元,相同数组的位置和距离都是固定的,也就是说,任何一个数组元素的地址都可一个简单的公式计算出来,因此这种结构可以有效的对数组元素进行随机访问。
但若对数组元素进行插入和删除操作,则会引起大量数据的移动,从而使简单的数据处理变得非常复杂,低效。
为了能有效地解决这些问题,一种称为“链表”的数据结构得到了广泛应用。
1.链表概述链表是一种动态数据结构,他的特点是用一组任意的存储单元(可以是连续的,也可以是不连续的)存放数据元素。
链表中每一个元素成为“结点”,每一个结点都是由数据域和指针域组成的,每个结点中的指针域指向下一个结点。
Head是“头指针”,表示链表的开始,用来指向第一个结点,而最后一个指针的指针域为NULL(空地址),表示链表的结束。
可以看出链表结构必须利用指针才能实现,即一个结点中必须包含一个指针变量,用来存放下一个结点的地址。
实际上,链表中的每个结点可以用若干个数据和若干个指针。
结点中只有一个指针的链表称为单链表,这是最简单的链表结构。
再c++中实现一个单链表结构比较简单。
例如,可定义单链表结构的最简单形式如下struct Node{int Data;Node *next;};这里用到了结构体类型。
其中,*next是指针域,用来指向该结点的下一个结点;Data是一个整形变量,用来存放结点中的数据。
当然,Data可以是任何数据类型,包括结构体类型或类类型。
在此基础上,我们在定义一个链表类list,其中包含链表结点的插入,删除,输出等功能的成员函数。
class list{Node *head;public:list(){head=NULL;}void insertlist(int aDate,int bDate); //链表结点的插入void Deletelist(int aDate); //链表结点的删除void Outputlist(); //链表结点的输出Node*Gethead(){return head;}};2.链表结点的访问由于链表中的各个结点是由指针链接在一起的,其存储单元文笔是连续的,因此,对其中任意结点的地址无法向数组一样,用一个简单的公式计算出来,进行随机访问。
只能从链表的头指针(即head)开始,用一个指针p先指向第一个结点,然后根据结点p找到下一个结点。
以此类推,直至找到所要访问的结点或到最后一个结点(指针为空)为止。
下面我们给出上述链表的输出函数;void list::Outputlist(){Node *current = head;while(current != NULL){cout << current->Data << " ";current = current->next;}cout<<endl;}3.链表结点的插入如果要在链表中的结点a之前插入结点b,则需要考虑下面几点情况。
(1)插入前链表是一个空表,这时插入新结点b后。
(2)若a是链表的第一个结点,则插入后,结点b为第一个结点。
(3)若链表中存在a,且不是第一个结点,则首先要找出a的上一个结点a_k,然后使a_k的指针域指向b,在令b的指针域指向a,即可完成插入。
(4)如链表中不存在a,则插在最后。
先找到链表的最后一个结点a_n,然后使a_n的指针域指向结点b,而b指针的指针为空。
以下是链表类的结点插入函数,显然其也具有建立链表的功能。
void list::insertlist(int aDate,int bDate) //设aDate是结点a中的数据,bDate是结点b中的数据{Node *p,*q,*s; //p指向结点a,q指向结点a_k,s指向结点bs=(Node*)new(Node); //动态分配一个新结点s->Data=bDate; //设b为此结点p=head;if(head==NULL) {//若是空表,使b作为第一个结点head=s;s->next=NULL;} else{if(p->Data==aDate){ //若a是第一个结点s->next = p;head = s;}else{while(p->Data != aDate && p->next != NULL) {//查找结点aq=p;p=p->next;}if(p->Data == aDate) {//若有结点aq->next = s;s->next=p;} else{ //若没有结点ap->next = s;s->next = NULL;}}}}4.链表结点的删除如果要在链表中删除结点a并释放被删除的结点所占的存储空间,则需要考虑下列几种情况。
(1)若要删除的结点a是第一个结点,则把head指向a的下一个结点。
(2)若要删除的结点a存在于链表中,但不是第一个结点,则应使a得上一个结点a_k-1的指针域指向a的下一个结点a_k+1。
(3)空表或要删除的结点a不存在,则不做任何改变。
以下是链表类的结点删除函数。
void list::deletelist(int aDate) {//设aDate是要删除的结点a中的数据成员Node *p,*q; //p用于指向结点a,q用于指向结a的前一个结点p = head;if(p==NULL) { //若是空表return;}if(p->Data==aDate) { //若a是第一个结点head = p->next;delete p;}else{while( p->Data != aDate && p->next != NULL) { //查找结点aq = p;p = p->next;}if(p->Data == aDate) { //若有结点aq->next=p->next;delete p;}}}例题:利用以上三个链表操作成员函数insertlist,deletelist,outputlist可形成以下的简单链表操作程序。
#include"iostream.h"struct Node{int Data;Node*next;};class list{Node*head;public:list(){head=NULL;}void insertlist(int aData,int bData);void deletelist(int aData);void outputlist();Node*gethead(){return head;}};void list::insertlist(int aData,int bData) {//设aData是结点a中的数据,bData是结点b中的数据Node *p,*q,*s; //p指向结点a,q指向结点a_k,s指向结点bs=(Node*)new(Node); //动态分配一个新结点s->Data=bData; //设b为此结点p=head;if(head==NULL) { //若是空表,使b作为第一个结点head=s;s->next=NULL;}else{if(p->Data==aData) { //若a是第一个结点s->next=p;head=s;}else{while(p->Data!=aData && p->next!=NULL) {//查找结点aq=p;p=p->next;}if(p->Data==aData) {//若有结点aq->next=s;s->next=p;}else{ //若没有结点a;p->next=s;s->next=NULL;}}}}void list::deletelist(int aData) { //设aData是要删除的结点a中的数据成员Node*p,*q; //p用于指向结点a,q用于指向结a的前一个结点p=head;if(p==NULL) //若是空表return;if(p->Data==aData) {//若a是第一个结点head=p->next;delete p;}else{while(p->Data!=aData&&p->next!=NULL) {//查找结点aq=p;p=p->next;}if(p->Data==aData) {//若有结点aq->next=p->next;delete p;}}}void list::outputlist(){Node*current=head;while(current!=NULL){cout<<current->Data<<" ";current=current->next;}cout<<endl;}void main(){list A, B;int Data[10]={25,41,16,98,5,67,9,55,1,121};A.insertlist(0,Data[0]); //建立链表A首结点for(int i=1;i<10;i++){A.insertlist(0,Data[i]); //顺序向后插入}cout<<"/n链表A:";A.outputlist();A.deletelist(Data[7]);cout<<"删除元素Data[7]后";A.outputlist();B.insertlist(0,Data[0]); //建立链表B首结点for(i=0;i<10;i++){B.insertlist(B.gethead()->Data,Data[i]); //在首结点处顺序向后插入}cout<<"/n链表B:";B.outputlist();B.deletelist(67);cout<<"删除元素67后";B.outputlist();}程序运行结果为链表A:25,41,16,98,5,67,9,55,1,121删除元素Data[7]后;25,41,16,98,5,67,9,1,121链表B;121,1,55,9,67,5,98,16,41,25,删除元素67后;121,1,55,9,5,98,16,41,25,下面是杨辉三角的代码:#include <iostream>#include <iomanip>using namespace std;int main(){const int n=11;int i,j,a[n][n];for(i=1;i<n;i++){a[i][i]=1;a[i][1]=1;}for(i=3;i<n;i++){for(j=2;j<=i-1;j++)a[i][j]=a[i-1][j-1]+a[i-1][j];}for(i=1;i<n;i++){for(j=1;j<=i;j++)cout<<setw(5)<<a[i][j]<<" ";cout<<endl;}cout<<endl;return 0;}。