MCS单片机常用接口
10MCS-51单片机常用接口电路

0000H
START
000BH
T0_INT
SP,
#5FH
TMOD, #01H
TH0, #0F8H
TL0,
#30H
TR0
ET0
EA
DISP_W, #00H
DISP_BIT
DISPLAY
LOOP
;复位入口地址。
;跳到主程序。
;定时/计数器0中断入口地址-51使用统一编址的方式每一接口芯片中的 一个功能寄存器(端口)的地址就相当于一个RAM单 元。 10.1.3 I/O数据的几种传送方式
为实现和不同的外设的速度匹配,I/O接口必须 根据不同外设选择恰当的I/O数据传送方式。I/O数据 传送的几种传送方式是:
(1)同步传送 (2)查询传送 (3)中断传送。
;定时/计数器0工作于方式1。 ;设置定时2ms的定时器初值高位。 ;设置定时2ms的定时器初值低位。 ;允许T0计数。 ;允许T0中断。 ;开单片机中断。
;指向显示的第一个数码管。
;清除定时标志DISP_BIT。 ;调显示子程序。
T0_INT: MOV
MOV
SETB RETI
;显示子程序入口: DISPLAY: JB
d
c
b
a
段码如下表所示:
显示字符 0 1 2 3 4 5 6 7 8 9 A B
共阴极段码 3FH 06H 5BH 4FH 66H 6DH 7DH 07H 7FH 6FH 77FH 7CH
共阳极段码 C0H F9H A4H B0H 99H 92H 82H F8H 80H 90H 88H 83H
显示字符 C D E F P U T y H L
第10章 MCS-51单片机常用接口电路 10.1 扩展I/O接口的设计 ➢MCS-51单片机要通过I/O接口来和外设交换信息。 ➢I/O扩展属于单片机系统扩展的一部分,MCS-51单 片机有P0~P3共4个8位的并行I/O口,由于P0和P2 在很多场合要用作16位的地址总线和8位的数据总 线,真正能用作I/O接口的只有P1口和P3口的部分 引脚。 ➢在具体应用设计中往往需要扩展I/O接口。
MCS51单片机的输入输出通道接口

传感器的发展方向:
传感器已经成为现代信息技术系统三大支柱之一,在工 业、农业、航空航天、军事国防等领域得到了日益广泛的应 用。其发展方向主要有以下几个方面: (1)利用新的物理现象、化学反应、生物效应设计传感器。 (2)引入数据融合技术。 (3)使用新型材料,向微功耗、集成化及无源化发展。 (4)采用新的加工技术。 (5)向微型化发展。 (6)向高可靠性、宽温度范围发展等。 ( 7)器件自身是数字化的,不需要再经过数/模、模/数变换。
5.2.1 D/A转换器的性能指标
(1)分辨率:指D/A转换器能分辨的最小输出模拟增量,即相 邻两个二进制码对应的输出电压之差称为D/A转换器的分辨率。 可用最低位(LSB)表示。如,n位D/A转换器的分辨率为 1/2n。
(2)精度:精度是指D/A转换器的实际输出与理论值之间的误 差,它是以满量程VFS的百分数或最低有效位(LSB)的分 数形式表示。
NOP
MOV A,R1
;从R1中取出低8位到A寄存器
MOV R3,#08H ;循环初值 8次
AA: RLC , A ;最低位送入C寄存器
MOV P1.1,C ;位数据送上DIN
NOP
SETB P1.2 NOP NOP CLR P1.2 DJNZ R3,AA NOV R3,#08H MOV A,R2 BB: RLC A MOV P1.1,C NOP NOP SETB P1.2 NOP NOP CLR P1.2 DJNZ R3,BB SETB P1.3 CLR P1.2 是 CLR P1.1
(5)偏移量误差:偏移量误差是指输入数字量为零时,输出模
拟量对零的偏移值。
5.2.2 D/A转换器的分类
MCS-51单片机的并行接口

1.1 P0口
口结构
P0口
“读-改-写”类指令 先读端口,然后对读入的数据进行修改,最后再写回到端口 不直接读取引脚上的数据而读锁存器Q端内容,是为了消除错
读引脚电平的可能性
P0口
P0既可用作地址/数据总线,又可用作通用I/O端口 用作输出端口时,输出级为开漏电路,在驱动NMOS电路时应
例 某接口电路与单片机使用一条线传送握手信号。双方约定, 单片机先向接口发送一个1和一个0,随后接口电路向单片机回 送一个1
单片机原理与应用
单片机原理与应用
MCS-51单片机的并行接口
MCS-51单片机本身提供了4个8位的并行端口,分别记做P0、 P1、P2和P3,共有32条I/O口线
都是双向端口,每个口包含一个锁存器(即特殊功能寄存器P0、 P1、P2和P3)、一个输出驱动器和输入缓冲器
端口和其中的锁存器都表示为P0、P1、P2、P3 结构不同,功能各异
1.4 P3口
口结构
P3口
作为通用I/O口使用时,工作原理与P1、P2口类似,但第二功 能输出端应保持高电平,使锁存器输出端Q内容能通过与非门
P3口的各位都具有第二功能
P3口
P3口的第二功能输入信号
P3.0——RxD,串行口数据接收 P3.2—— INT0#,外部中断0请求信号输入 P3.3—— INT1#,外部中断1请求信号输入 P3.4——T0,定时器/计数器0外部计数脉冲输入 P3.5——T1,定时器/计数器1外部计数脉冲输入
ORL ANL XRL CPL
P1, #3CH ;将P1中间4位置位
P1, #0C3H ;将P1中间4位清零
P1, #03H ;将P1最低2位取反
P1.5
;取反P1.5
单片机-第8章 单片机的并行接口

1.8155的内部结构
图8-1 8155的内部结构
8155芯片各组成部分的作用:
双向数据总线缓冲器:用于缓冲存储单 片机与8155的RAM之间的读/写数据。 地址锁存器:用于锁存单片机送给8155 的端口地址或RAM单元地址。 地址译码器:用于对地址锁存器送来的 低3位地址进行译码,根据译码输出,选择 命令/状态寄存器、定时器/计数器或A、B 和C 3个I/O寄存器中的某一个工作。
命令寄存器和状态寄存器:命令寄存器存放 单片机送来的命令字,只能写入;状态寄存器 存放8155的状态字,只能读出。 定时器/计数器:是一个二进制14位的减法 计数器。计数器初值由单片机送入,由TIMER IN引脚上输入的脉冲实现减1计数控制,并根据 不同的计数输出方式从TIMER OUT引脚输出相 应的波形。作为定时器使用时,TIMER IN引脚 应输入频率恒定的周期脉冲。
读写控制器:根据和线上的信号,控制 单片机与8155之间所传信息的 读写。
RAM存储器:容量为256字节,用于存 放实时数据。存储器存储单元地址由地址 锁存器指定。
I/O寄存器:A、B和C 3个端口各有一 个I/O寄存器。其中A、B端口的I/O寄存器 为8位,用于存放外设的输入/输出数据;C 口的I/O寄存器为6位,用于存放输入/输出 数据或命令/状态信息。8155在某一时刻只 能选中某个I/O寄存器工作,这由单片机送 给8155的命令字决定。
PC1、PC2:C口工作方式设置位,设 置方法如表8-2所示。
P3口 的第二功能
P3口引脚 P3.0 名称 RXD 功 能 串行口输入
P3.1 P3.2 P3.3 P3.4 P3.5 P3.6
P3.7
TXD
INT0
单片机常用芯片引脚图

单片机常用芯片引脚图一、单片机类1、MCS-51芯片介绍:MCS-51系列单片机是美国Intel公司开发的8位单片机,又可以分为多个子系列。
MCS-51系列单片机共有40条引脚,包括32条I/O接口引脚、4条控制引脚、2条电源引脚、2条时钟引脚。
引脚说明:P0.0~P0.7:P0口8位口线,第一功能作为通用I/O接口,第二功能作为存储器扩展时的地址/数据复用口。
P1.0~P1.7:P1口8位口线,通用I/O接口无第二功能。
P2.0~P2.7:P2口8位口线,第一功能作为通用I/O接口,第二功能作为存储器扩展时传送高8位地址。
P3.0~P3.7:P3口8位口线,第一功能作为通用I/O接口,第二功能作为为单片机的控制信号。
ALE/ PROG:地址锁存允许/编程脉冲输入信号线(输出信号)PSEN:片外程序存储器开发信号引脚(输出信号)EA/Vpp:片外程序存储器使用信号引脚/编程电源输入引脚RST/VPD:复位/备用电源引脚2、MCS-96芯片介绍:MCS-96系列单片机是美国Intel公司继MCS-51系列单片机之后推出的16位单片机系列。
它含有比较丰富的软、硬件资源,适用于要求较高的实时控制场合。
它分为48引脚和68引脚两种,以48引脚居多。
引脚说明:RXD/P2.1 TXD/P2.0:串行数据传出分发送和接受引脚,同时也作为P2口的两条口线HS1.0~HS1.3:高速输入器的输入端HS0.0~HS0.5:高速输出器的输出端(有两个和HS1共用)Vcc:主电源引脚(+5V)Vss:数字电路地引脚(0V)Vpd:内部RAM备用电源引脚(+5V)RSTINT0/P3.2INT1/P3.3WR/P3.6RD/P3.7V SSV REF:A/D转换器基准电源引脚(+5V)AGND:A/D转换器参考地引脚XTAL1、XTAL2:内部振荡器反相器输入、输出端,常外接晶振。
CLKOUT:内部时钟发生器的输出引脚,提供频率位晶振频率的1/3的脉冲供外部使用。
第7章 MCS-51单片机常用接口技术

图7.3 用8031的P1口设计的4×4键盘
第7章 MCS-51单片机常用接口技术
7.1.2 键盘按键识别方法
首先在键处理程序中将P1.3~P1.0依次按位变低, P1.3~P1.0在某一时刻只有一个为低。在某一位为低时读行线, 根据行线的状态即可判断出哪一个按键被按下。 如9号键按下时,当列线P1.2为低时,读回的行线状态中 P1.4被拉低,由此可知2号键被按下。 一般在扫描法中分两步处理按键,首先是判断有无键按下, 即使列线(P1.3~P1.0)全部为低,读行线,如行线 (P1.4~P1.7)全为高,则无键按下,如行线有一个为低,则 有键按下。当判断有键按下时,使列线依次变低,读行线,进 而判断出具体哪个键按下。
第7章 MCS-51单片机常用接口技术
7.2.2 LED显示器接口及显示方式
表7.2 段选码、位选码及显示状态表
段选码 (字型) F9H A4H B0H 99H 92H 位选码 P2.4~P2.0 11110 11101 11011 10111 01111 1 2 3 4 5 显示器显示状态
第7章 MCS-51单片机常用接口技术
7.2.1 LED显示器原理
图7.6为LED显示器的内部结构及外形。
(a)共阴极 (b)共阳极 (c)LED实物 图7.6 LED显示结构及实物
第7章 MCS-51单片机常用接口技术
7.2.1 LED显示器原理
7段LED显示数字0~F,符号等字型见表7.1,其中a段为最 低位,dp为最高位。
第7章 MCS-51单片机常用接口技术
单片机原理及应用教程
第 7章 MCS-51单片机常用接口技术
主 编 范立南 谢子殿 副主编 刘 彤 尹授远 李雪飞
第7章 MCS-51单片机常用接口技术
第5章 MCS–51单片机的接口与应用 99页 5.8M

(1) 用键盘连接的I/O线的二进制组合表示键码。例如用4行、
4列线构成的16个键的键盘,可使用一个8位I/O口线的高、低4 位口线的二进制数的组合表示16个键的编码,如图5.4(a)所示。 各键相应的键值为88H、84H、82H、81H、48H、44H、42H、 41H、28H、24H、22H、21H、18H、14H、12H、11H。这种键 值编码软件较为简单直观,但离散性大,不便安排散转程序的 入口地址。
第5章 MCS–51单片机的接口与应用 JNB ACC.2,K2 JNB ACC.3,K3 JNB ACC.4,K4 JNB ACC.5,K5 JNB ACC.6,K6 ;检测2号键是否按下,按下转 ;检测3号键是否按下,按下转 ;检测4号键是否按下,按下转 ;检测5号键是否按下,按下转 ;检测6号键是否按下,按下转
;0号键功能程序
;0号键功能程序执行完返回 ;0号键功能程序
JMP START
……………………… PROM7: ……………………… JMP START …
;1号键功能程序执行完返回
;7号键功能程序 ;7号键功能程序执行完返回
第5章 MCS–51单片机的接口与应用
5.1.4 行列式键盘
行列式键盘又叫矩阵式键盘。用I/O口线组成行、列结构, 按键设置在行列的交点上。例如4×4的行列结构可组成16个键 的键盘。因此,在按键数量较多时,可以节省I/O口线。 1.行列式键盘的接口 行列式键盘的接口方法有许多,例如直接接口于单片机的 I/O口上;利用扩展的并行I/O接口;用串行口扩展并行I/O口接 口;利用一种可编程的键盘、显示接口芯片8279进行接口等。 其中,利用扩展的并行I/O接口方法方便灵活,在单片机应用系
MOVX @DPTR,A
单片机的输入输出设备接口

单片机的输入输出设备接口1. 简介在嵌入式系统开发中,单片机是最常用的核心处理器之一。
单片机通过输入输出设备接口与外部设备进行通信,实现数据的输入和输出。
本文将介绍常见的单片机输入输出设备接口,包括数字输入输出口、模拟输入输出口、串行通信接口等。
2. 数字输入输出口(GPIO)数字输入输出口(General Purpose Input Output,简称GPIO)是一种常见的单片机输入输出设备接口。
它可以通过程序控制对内部资源的输入和输出。
单片机的GPIO包括多个引脚,每个引脚可以作为输入口或输出口使用。
在使用过程中,我们可以通过将引脚设置为输入模式或输出模式,并通过编程对引脚进行读写操作。
2.1. 输入模式在输入模式下,GPIO可以用作输入接口,接收外部设备的信号。
在单片机中,通常使用输入状态寄存器(Input Status Register)来存储外部信号的状态。
当外部设备产生一个高或低电平信号时,单片机可以通过读取输入状态寄存器来获取该信号的状态。
2.2. 输出模式在输出模式下,GPIO可以用作输出接口,控制外部设备的状态。
在单片机中,通常使用输出数据寄存器(Output Data Register)来存储输出数据。
通过向输出数据寄存器写入高或低电平信号,单片机可以控制外部设备的状态。
3. 模拟输入输出口(ADC和DAC)除了数字输入输出口,单片机还可以提供模拟输入输出口。
模拟输入输出口分为模拟数字转换器(ADC)和数字模拟转换器(DAC)两种。
3.1. 模拟数字转换器(ADC)模拟数字转换器(Analog-to-Digital Converter,简称ADC)可以将模拟信号转换为数字信号。
通过电压分压、采样等方法,单片机的ADC模块可以将外部模拟信号转换为数字量,供单片机进行处理和分析。
3.2. 数字模拟转换器(DAC)数字模拟转换器(Digital-to-Analog Converter,简称DAC)可以将数字信号转换为模拟信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7章 MCS51单片机常用接口
② 译码法 部分译码法是先将扩展芯片的地址线与单片机的地址总 线从低位到高位顺序相连,剩余的高位地址线的一部分经 译码后连接到扩展的芯片的片选线上。
2019年1月11日星期五
5
第7章 MCS51单片机常用接口
全译码法是先将扩展芯片的地址线与单片机的地址总 线从低位到高位顺序相连,剩余的高位地址线的全部经译 码后连接到扩展芯片的片选线上。
2019年1月11日星期五
6
第7章 MCS51单片机常用接口
●译码器法 译码器法就是利用译码器电路对存储器地址分配的片 外扩展位进行译码,将译码输出与存储芯片的片选端相连。
常用译码器有: 2~4译码器74LS139; 3~8译码器74LS138 4~16译码器74LS154 用 74LS138 译码器
A15 A14 A13
低地址 0 高地址 0 1 1 0/1 0/1
A12~A0 程序存储器的地址线
0~0 1~1 4000H/6000H 5FFFH/7FFFH 6000H~7FFFH
因此1#芯片的地址有两组分别是 4000H~5FFFH
2019年1月11日星期五
12
第7章 MCS51单片机常用接口
②数据总线:P0提供8位数据 ,分时复用地址/数据 ALE:锁存器
RD:外RAM读
③控制总线 WR:外RAM写 PSEN:外ROM读
2019年1月11日星期五 2
片内程序存储器 RAM和ROM不够用 时所进行的扩展
第7章 MCS51单片机常用接口
7.2 存储器扩展
7.2.1 存储器扩展概述
1.MCS51单片机的存储器扩展能力 可扩展的片外最大容量64KB,地址范围:0000H~FFFFH。 通过不同控制信号进行访问。
/CE :是片选信号。 /OE :是输出允许信号。
EPROM2764
VPP :是编程电源。
/PGM:是编程脉冲输入
2019年1月11日星期五
10
第7章 MCS51单片机常用接口
2 典型EPROM扩展电路 ① 用线选法扩展2片程序存储器 【例题7.1】利用2片EPROM2764的芯片扩展16KB的外部 程序存储器。试设计连接电路及芯片地址范围? ●设计要点:
① /PSEN与1#和2#芯片的/OE相 连。 ② P27(A15)选通1#,P26 (A14)选通2#芯片。 ③ P0口作为地址和数据的分时 复用;P2口低5位作为芯片的高5 位地址线。
2019年1月11日星期五 11
第7章 MCS51单片机常用接口
●程序存储器芯片地址的确定 分析:2764程序存储器芯片是8KB*8,其地址线条数=13 条即用单片机P0口8条+P2口的低5条构成。依据设计的电路 图知P27=0时选中芯片1#,P26=1,P25未用。则1#芯片地址 范围是: P27 P26 P25 P24~P0 单片机的P2口和P0口管脚
2019年1月11日星期五
8
第7章 MCS51单片机常用接口
2019年1月11日星期五
9
第7章 MCS51单片机常用接口
7.2.2 程序存储器扩展 1.EPROM2764(8K*8) EPROM2764是28脚双列直插式封装,其管脚配置如下图: A0-A12:是13根地址线。
D0-D7: 是8根数据线。
6264(2)地址:2000H~3FFFH
2019年1月11日星期五 15
连接的电路如图
2019年1月11日星期五
7
第7章 MCS51单片机常用接口
●74LS138译码器功能管脚
① 共有16个引脚。
② C B A 为三个输入引脚接单片 机地址线不同组合选择不同芯片 ③ Y0~Y7为8个输出引脚接扩展 芯片的片选信号 ④ G1G2BG2A为三个控制引脚接线电 平1 0 0 ⑤ 电源正负极
2.存储器扩展的一般方法 程序存储器 掩膜ROM、可编程PROM、光可擦除EPROM 存 电可擦除EEPROM 储 器 数据存储器 静态SRAM和动态DRAM 扩展方法:译码法和线选法。
2019年1月11日星期五 3
第7章 MCS51单片机常用接口
① 线选法 先将扩展芯片的地址线与单片机的地址线从低位开始 顺序相连后,剩余的高位地址线的一根或几根直接连接到 各扩展芯片的片选线上。 依据电路可知: 地址:A12A11~A2A1A0 即13根地址线。 扩展芯片容量为8KB。 控制线ALE地址锁存。 PSEN控制允许输出。 扩展芯片的地址范围: 0000H~1FFFH
⑤ /CE1和/CE2:片选信号。同时有效芯片选通
⑥ VCC:+5V电压;GND:接地; ⑦ NC:空余。
2019年1月11日星期五
14
第7章 MCS51单片机常用接口
【例题7.2】依据下列电路设计计算6264(1),6264(2)的地 址并分析其工作原理。
6264(1)地址:4000H~5FFFH
第7章 MCS51单片机常用接口
7.1 MCS-51单片机的最小系统
最小系统:指一个真正可用的单片机的最小配置。
单片机最小系统结构 ● 地址总线 ● 数据总线 ● 控制总线
地址锁存器用74LS373
2019年1月11日星期五 1
第7章 MCS51单片机常用接口
①地址总线 系 统 三 总 线 结 构 高8位地址P2 低8位地址P0 P0、P2不能作为I/O口用
8000H
9FFFH
A000H
BFFFH
2019年1月11日星期五
13
第7章 MCS51单片机常用接口
7.2.3 数据存储器扩展 1.6264静态数据存储器芯片结构及管脚功能
6264芯片容量是8KB=213B
① A0-A12:13根地址线。
② I/O0-I/O7:8根双向输入输出数据线。
③ /WE:写允许信号。 ④ /OE:读允许信号。
P27 P26 P25 P24~P0 单片机的P2口和P0口管脚 A15 A14 A13 A12~A0 程序存储器的地址线 低地址 1 0 0/1 0~0 8000H/A000H 高地址 1 0 0/1 1~1 9FFFH/BFFFH 因此2#芯片的地址有两组分别是 8000H-9FFFH;A000HBFFFH 综合计算扩展芯片地址 4000H 5FFFH 16KB 6000H 7FFFH