人教版数学中考知识点梳理-二次函数的应用
中考重点二次函数的性质与应用

中考重点二次函数的性质与应用中考重点:二次函数的性质与应用二次函数是初中数学中的重要内容之一,它在中考中的考查频率较高。
掌握二次函数的性质与应用,能够帮助我们解决与二次函数相关的问题,提高解题能力。
本文将重点讨论二次函数的性质和应用,探索其在数学中的作用。
一、二次函数的定义及一般式表示二次函数是形如y = ax² + bx + c的函数,其中a、b、c为常数且a≠0。
其中,a决定了二次函数的开口方向,b决定了函数的对称轴位置,c表示函数与y轴的交点。
二次函数的一般式表示形式为y = ax² + bx + c,其中a、b、c为实数且a≠0。
一般式可以转化为顶点式表示或者因式分解式表示,从而更方便地研究二次函数的性质。
二、二次函数的性质1. 对称性:二次函数的图像关于对称轴对称。
对称轴的表示为x = -b / (2a),在二次函数图像上即为顶点的横坐标。
2. 开口方向:当a>0时,二次函数开口向上;当a<0时,二次函数开口向下。
3. 极值点与最值:二次函数的极值点即顶点,其横坐标为-x / (2a),纵坐标为f(-x /(2a))。
当a>0时,二次函数的最小值为f(-x / (2a));当a<0时,二次函数的最大值为f(-x / (2a))。
4. 零点:二次函数与x轴的交点称为零点,可以通过求解二次方程ax² + bx + c = 0来确定。
二次函数有两个零点时称为有两个实根,有一个零点时称为有一个实根,没有实根时称为无实根。
三、二次函数的应用1. 求解问题:二次函数常常用于求解与平面图形有关的问题。
例如,已知抛物线y = ax² + bx + c与x轴交于A、B两点,求抛物线经过的最高点的坐标。
通过求解顶点坐标可以得到问题的解。
2. 最值问题:二次函数能够用于解决最值问题。
例如,已知二次函数y = ax² + bx + c,在一定范围内求函数的最值。
初三数学《二次函数》考点整理与例题解析

初三数学《二次函数》考点整理与例题解析二次函数重难点分析:1、二次函数的图像2、二次函数的性质以及性质的综合应用3、二次函数的应用性问题:①面积最值问题②高度、长度最值问题③利润最大化问题④求近似解知识点归纳:1、二次函数的概念y=ax2+bx+c(a≠0)2、求二次函数的解析式一般式y=ax2+bx+c、顶点式y=a(x+m)2+k交点式y=a(x-x1)(x-x2)3、二次函数的图像和性质当a>0时,图像开口向上,有最低点,有最小值当a<0时,图像开口向下,有最高点,有最大值顶点式对称轴:直线x=-m一般式对称轴:直线x=-b/2a交点式对称轴:直线x=(x1+x2)/24.二次函数图像的平移函数y=a(x+m)2+k的图像,可以由函数y=ax2的图像先向右(当m<0时)或向左(m>0时)平移|m|个单位,再向上(当k>0时)或向下(当k<0时)平移|k|个单位得到5、抛物线与系数的关系二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。
常数项c决定抛物线与y轴交点抛物线与y轴交于(0,c)抛物线与x轴交点个数?= b2-4ac>0时,抛物线与x轴有2个交点。
?= b2-4ac=0时,抛物线与x轴有1个交点。
?= b2-4ac<0时,抛物线与x轴没有交点知识拓展:初中数学最重要的部分,在中考中占的比重大,跟其他知识点联系多,以数形结合的题型考查几何,解方程、代数等都相互联系,知识点多题型多变,压轴题多以此为出题点1、考查形式:以选择题、填空题形式考察二次函数图像的性质,以解答题形式考察以二次函数为载体的综合题。
2、考察趋势:二次函数图像与系数的关系,二次函数的应用仍是重点3、二次函数求最值的应用:依据实际问题中的数量关系,确定二次函数的解析式,结合方程、一次函数等知识解决实际问题(对于二次函数最大(小)值的确定,一定要注意二次函数自变量的取值范围,同时兼顾实际问题中对自变量的特殊约定,结合图像进行理解)经典例题。
人教版数学中考知识点梳理-二次函数的应用

第13讲二次函数的应用
一、知识清单梳理
【素材积累】
1、只要心中有希望存摘,旧有幸福存摘。
预测未来的醉好方法,旧是创造未来。
坚志而勇为,谓之刚。
刚,生人之德也。
美好的生命应该充满期待、惊喜和感激。
人生的胜者决不会摘挫折面前失去勇气。
2、我一直知道,漫长人生中总有一段泥泞不得不走,总有一个寒冬不得不过。
感谢摘这样的时候,我遇见的世界上最美的心灵,我接受的最温暖的帮助。
经历
过这些,我将带着一颗感恩和勇敢的心继续走上梦想的道路,无论是风雨还是荆棘。
初三数学二次函数知识点归纳

初三数学二次函数知识点归纳在初中数学的学习中,二次函数是一个重要的内容,也是进一步深入学习代数的基础。
学好二次函数的性质和运用对于学生的数学能力的提升至关重要。
下面将对初三数学中二次函数的知识进行归纳总结。
一、二次函数及其图象的性质1. 二次函数的定义二次函数是一个以x的二次幂作为最高次幂的多项式函数,一般的二次函数表达式为: y = ax^2 + bx + c (其中 a, b, c 为常数且 a ≠ 0)。
2. 二次函数图象的平移二次函数图象的平移可以通过改变 a, b 和 c 的值来实现。
当将 a 的值变为 a',则图象的开口方向和大小会有相应的改变;当将 b 的值变为 b',则图象在 x 轴方向上平移;当将 c 的值变为 c',则图象在y 轴方向上平移。
3. 二次函数图象的对称轴二次函数图象的对称轴是一个线段,记作 x = -b/2a,对称轴将图象分为两个对称的部分。
4. 二次函数的顶点二次函数的顶点就是图象的最高点或最低点,所有的二次函数图象都有一个顶点。
5. 二次函数图象的开口方向二次函数图象的开口方向由二次项的系数 a 的正负决定。
当 a > 0 时,图象开口向上;当 a < 0 时,图象开口向下;当 a = 0 时,不再是二次函数。
二、二次函数的求解1. 二次函数的零点二次函数的零点是指函数曲线与 x 轴相交的点,也就是函数的根。
求解二次函数的零点可以通过以下步骤进行:首先,将函数表达式设置为 y = 0;然后,应用求根公式 x = (-b ± √(b^2 - 4ac))/(2a) 计算 x 的值。
2. 二次函数的最值二次函数的最值通过求解顶点来确定。
当a > 0 时,函数有最小值,且最小值为顶点的纵坐标;当 a < 0 时,函数有最大值,且最大值为顶点的纵坐标。
三、二次函数的应用1. 抛物线二次函数的图象通常被称为抛物线。
初三的二次函数知识点总结

初三的二次函数知识点总结一、二次函数的定义二次函数是一个形如f(x) = ax^2 + bx + c的函数,其中a、b、c是常数且a≠0。
二次函数的图像是一个抛物线,开口方向由a的符号决定,a>0时开口向上,a<0时开口向下。
二、二次函数的顶点二次函数的顶点是抛物线的最低点或最高点,顶点的横坐标可以用公式x=-b/2a来求得,纵坐标可以代入x的值计算得到。
三、二次函数的平移对于一般的二次函数f(x)=ax^2+bx+c,如果f(x)变为f(x)+m或f(x)-m,就是把抛物线上下平移了m个单位。
如果f(x)变为f(x)+m或f(x)-m,就是把抛物线左右平移了m个单位。
四、二次函数的对称轴二次函数的对称轴是与顶点横坐标相等的直线,即x=-b/2a。
五、二次函数的判别式二次函数的判别式Δ=b^2-4ac,当Δ>0时,函数在x轴上有两个不同的实根;当Δ=0时,函数在x轴上有一个重根;当Δ<0时,函数在x轴上没有实根。
六、二次函数的图像二次函数的图像是一条抛物线,它的开口方向和顶点的位置可以通过二次函数的系数来描述。
七、二次函数的性质1. 当a>0时,抛物线开口向上,函数的最小值为y轴的对称轴。
2. 当a<0时,抛物线开口向下,函数的最大值为y轴的对称轴。
3. 当a>0时,函数在对称轴的一侧是单调递增的,另一侧是单调递减的。
4. 当a<0时,函数在对称轴的一侧是单调递减的,另一侧是单调递增的。
八、二次函数的应用二次函数在生活中有很多应用,比如抛物线的运动轨迹、抛物线的优化问题、抛物线的张力问题、抛物线的最大值与最小值等等。
以上就是初三二次函数的知识点总结。
希望同学们能够掌握这些知识,为以后的学习打下坚实的基础。
人教版九年级数学《二次函数》知识点梳理与总结(超经典)

《二次函数》单元知识梳理与总结一、二次函数的概念1、定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.2、注意点:(1)二次函数是关于自变量x 的二次式,二次项系数a 必须为非零实数,即a ≠0,而b 、c 为任意实数。
(2)当b=c=0时,二次函数2ax y =是最简单的二次函数。
(3)二次函数c b a c bx ax y ,,(2++=是常数,)0≠a 自变量的取值为全体实数 (c bx ax ++2为整式)3、三种函数解析式:(1)一般式: y=ax 2+bx+c (a ≠0),对称轴:直线x=ab2- 顶点坐标:( a b ac a b 4422--, ) (2)顶点式:()k h x a y +-=2(a ≠0),对称轴:直线x=h 顶点坐标为(h ,k )(3)交点式:y=a (x-x 1)(x-x 2)(a ≠0), 对称轴:直线x=22x1x + (其中x 1、x 2是二次函数与x 轴的两个交点的横坐标).二、二次函数的图象1、二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.2、二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.注:二次函数的图象可以通过抛物线的平移得到 3、二次函数c bx ax y ++=2的图像的画法因为二次函数的图像是抛物线,是轴对称图形,所以作图时常用简化的描点法和五点法,其步骤是:(1)先找出顶点坐标,画出对称轴;(2)找出抛物线上关于对称轴的四个点(如与坐标轴的交点等); (3)把上述五个点按从左到右的顺序用平滑曲线连结起来.1、增减性:当a>0时,在对称轴左侧,y 随着x 的增大而减少;在对称轴右侧,y 随着x 的增大而增大; 当a<0时,在对称轴左侧,y 随着x 的增大而增大;在对称轴右侧,y 随着x 的增大而减少; 2、最大或最小值:当a>0时,函数有最小值,并且当x=a b2- , y 最小 =a b ac 442-当a<0时,函数有最大值,并且当x=ab2- , y 最大 =a b ac 442-四、.抛物线的三要素:开口方向、对称轴、顶点坐标。
初三中考数学 二次函数的应用

第21课时二次函数的应用【复习要点】1、二次函数的应用常用于求解析式、交点坐标等。
(1)求解析式的一般方法:①已知图象上三点或三对的对应值,通常选择一般式。
②已知图象的顶点坐标、对称轴、最值或最高(低)点等,通常选择顶点式。
③已知图象与x轴的两个交点的横坐标为x1、x2,通常选择交点式(不能做结果,要化成一般式或顶点式)。
(2)求交点坐标的一般方法:①求与x轴的交点坐标,当y=代入解析式即可;求与y轴的交点坐标,当x=代入解析式即可。
②两个函数图像的交点,将两个函数解析式联立成方程组解出即可。
2、二次函数常用来解决最优化问题,即对于二次函数2(0)=++≠,当x=时,y ax bx c a函数有最值y=。
最值问题也可以通过配方解决,即将2(0)y a x h k a=-+≠,当x=时,函数()(0)=++≠配方成2y ax bx c a有最值y=。
3、二次函数的实际应用包括以下方面:(1)分析和表示不同背景下实际问题,如利润、面积、动态、数形结合等问题中变量之间的二次函数关系。
(2)运用二次函数的知识解决实际问题中的最值问题。
4、二次函数主要是利用现实情景或者纯数学情景,考查学生的数学建模能力和应用意识。
从客观事实的原型出发,具体构造数学模型的过程叫做数学建模,它的基本思路是:【例题解析】例1:如图1所示,一位运动员在距篮圈中心水平距离4米处跳起投篮,球运行的路线是抛物线,当球运动的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈,已知篮圈中心到地面的距离为3.05米.求抛物线的表达式.解析:因为抛物线的对称轴为y轴,故可设篮球运行的路线所对应的函数表达式为2y ax k=+(a≠0,k≠0).代入A,B两点坐标为(1.5,3.05),(0,3.5).可得:21.5 3.053.5a kk⎧+=⎨=⎩,.解得0.2a=-,所以,抛物线对应的函数表达式为20.2 3.5y x =-+.反思:将实际问题转化为数学问题,建立适当的平面直角坐标系是解决问题的关键。
第二十二章《二次函数》知识点总结人教版数学九年级上册

《二次函数》知识点总结【知识点1 二次函数的表达式】1. 一般式: . 顶点坐标: . 对称轴: .2. 顶点式: .顶点坐标: . 对称轴: . 【知识点2 二次函数的图象与性质】 1. 二次项系数a 决定抛物线的 开口方向 ;①当0>a 时,抛物线的 ; ②当0<a 时,抛物线的 ; ③ ||a 越大,抛物线的开口 .3.常数项c 决定抛物线 与y 轴 交点的位置 . ①当0=c ,抛物线与y 轴交于 ; ②当0>c ,抛物线与y 轴交于 ; ③当0<c ,抛物线与y 轴交于 .5.根据a 、b 、c 的符号,画出二次函数的草图:①已知 a <0、b <0、c <0 ②已知 a>0、b <0、c >0 6.描述下面二次函数c bx ax y ++=2的增减性: 【知识点3 抛物线与坐标轴的交点】 1. 抛物线c bx ax y ++=2与x 轴的交点个数,即02=++c bx ax . ①当 ,抛物线与x 轴有两个交点; ②当 ,抛物线与x 轴有1个交点; ③当 ,抛物线与x 轴有没有交点;2.求抛物线c bx ax y ++=2与x 轴的交点的过程: 3.求抛物线c bx ax y ++=2与y 轴的交点的过程:4.函数 y = ax 2 + bx + c 的图象如图,那么 ①方程 ax 2 + bx + c =2 的根是 ______________;2.系数a 和b 共同决定抛物线 对称轴的位置 . ①a 和b 同号,对称轴在原点的 ; ②a 和b 异号, .4.根据图象判断出a 、b 、c 的符号:方法总结:第一步:求出对称轴;第二步:用箭头在对称轴两侧标出上升和下降;第三步:描述增减性.①当 时,随的增大而减小; ②当 时, 随的增大而增大;∵轴上的点, 为零,∴ . ∵轴上的点, 为零,∴ .②不等式 ax 2 + bx + c >0 的解集是 ___________; ③不等式 ax 2 + bx + c <2 的解集是 _________.④ a + b + c 0 ,4a 2 b + c 0 , 9a +3 b + c 0 .【知识点4 抛物线的平移】二次函数 y = ax 2 + bx + c 的平移口诀:“上下平移, ;左右平移, .” 【 * *知识点5 抛物线的对称 ** 】抛物线c bx ax y ++=2关于x 轴对称的解析式为 . 抛物线c bx ax y ++=2关于y 轴对称的解析式为 . 【 * *知识点6 二次函数图象的画法 ** 】 画出二次函数3-2-2x x y =的的图象.【典型例题 】1.m2+1+2x −是二次函数,则m 的值为( )C. −1D. 1或−12.【求顶点坐标 】抛物线y =2(x −3)4的顶点坐标是( ) A. (3,4)B. (−3,4)C. (3,−4)D. (2,4)3.【与坐标轴的交点 】抛物线y =−x 2+4x −4与坐标轴的交点个数为( ) A. 0B. 1C. 2D. 34.【平移】将函数y =x 2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是( ) A. 向左平移1个单位 B. 向右平移3个单位C. 向上平移3个单位D. 向下平移1个单位5.【平移】抛物线y =x 2+6x +7可由抛物线y =x 2如何平移得到的( )A. 先向左平移3个单位,再向下平移2个单位B. 先向左平移6个单位,再向上平移7个单位C. 先向上平移2个单位,再向左平移3个单位D. 先向右平移3个单位,再向上平移2个单位 6.【图象与性质】对于抛物线y =−3(x +1)2−2,下列说法正确的是( ) A. 抛物线开口向上 B. 当x >−1时,y 随x 的增大而减小 C. 函数最小值为−2D. 顶点坐标为(1,−2)7.【增减性】已知(−3,y 1),(−1,y 2),(2,y 3)是抛物线y =−3x 2+6x +m 上的三个点.则( ) A. y 1<y 3<y 2B. y 3<y 2<y 1C. y 1<y 2<y 3D. y 2<y 1<y 38.【最值】已知二次函数y=x2−4x+2,关于该函数在−1≤x≤3的取值范围内,下列说法正确的是( )A. 有最大值−1,有最小值−2B. 有最大值0,有最小值−1C. 有最大值7,有最小值−1D. 有最大值7,有最小值−29.【系数与图象】二次函数y=ax2+bx+c(a≠0)与一次函数y=ax+c在同一坐标系中的图象大致为( )A. B. C. D.10.【求解析式】如图所示,已知二次函数y=ax2+bx+c的图象,求二次函数的解析式.11.如图,已知二次函数y=ax2−4x+c的图象经过点A(−1,−1)和点B(3,−9).(1)求该二次函数的解析式、对称轴及顶点坐标;(2)点C是抛物线与x轴的一个交点,点D是抛物线与y轴的交点,求三角形ACD 的面积;(3)已知点M(x1,y1)和N(1+x1,y2)在抛物线对称轴的右侧,判段y1和y2的大小.12.在运动会比赛时,九年级的一名男同学推铅球,已知铅球经过的路线是某二次函数图象的一部分(如图所示),如果这名男同学的出手处A点的坐标为(0,2),铅球路线的最高处B点的坐标为(6,5).(1)求出这个二次函数的解析式;(2)请求出这名男同学比赛时的成绩?13.如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m.(1)建立平面直角坐标系,求抛物线的解析式;(2)如果水面下降1m,则水面宽度是多少米?14.某商场一种商品的进价为每件30元,售价为每件50元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件40.5元,求两次下降的百分率;(2)经调查,若该商品每降价2元,每天可多销售16件,那么每天要想获得最大利润,每件售价应多少元?最大利润是多少?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第13讲二次函数的应用
师院附中李忠海
一、知识清单梳理
【素材积累】
1、冬天是纯洁的。
冬天一来,世界变得雪白一片,白得毫无瑕疵,白雪松软软地铺摘大地上,好似为大地铺上了一层银色的地毯。
松树上压着厚厚的白雪,宛如慈爱的妈妈温柔地抱着自己的孩子。
白雪下的松枝还露出一点绿色,为这白茫茫的世界增添了一点不一样的色彩。
2、张家界的山真美啊!影影绰绰的群山像是一个睡意未醒的仙女,披着蝉翼般的薄纱,脉脉含情,凝眸不语,摘一座碧如翡翠的山上,还点缀着几朵淡紫、金黄、艳红、清兰的小花儿,把这山装扮得婀娜多姿。
这时,这山好似一位恬静羞涩的少女,随手扯过一片白云当纱巾,遮住了她那美丽的脸庞。