吉林东北师范大学附属中学2015届高三数学(文科)高考总复习阶段测试卷(第31周)(Word版含答案)
吉林省东北师范大学附属中学2015届高考数学总复习阶段测试卷(第31周)理

吉林省东北师范大学附属中学2015届高考数学总复习阶段测试卷(第31周)理第Ⅰ卷(选择题 共60分)一、选择题(本题共有12小题,每小题5分, 共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列四个命题中,全称命题是( )A .有些实数是无理数B .至少有一个整数不能被3整除C .任意一个偶函数的图象都关于y 轴对称D .存在一个三角形不是直角三角形2.函数41lg)(+-=x x x f 的定义域为( )A .{}14<<-x xB .{}41>-<x x x 或 C .{}1<x x D .{}14>-<x x x 或3. 设全集U 是实数集R ,{}2|4M x x =>与{}|31N x x x =≥<或都是U 的子集(如下图所示),则阴影部分所表示的集合为( ) A .{}|21x x -≤< B. {}|22x x -≤≤ C .{}|12x x <≤D .{}|2x x <4.已知函数)31(12)(≤≤+=x x x f ,则()A .)1(-x f =)20(22≤≤+x xB .)1(-x f =)42(12≤≤+-x xC .)1(-x f =)20(22≤≤-x xD .)1(-x f =)42(12≤≤-x x5.设12log 3a =,0.213b ⎛⎫= ⎪⎝⎭,132c =,则 ( ) A .b c a <<B .a b c <<C .c a b <<D .b a c <<6.若函数)(x f 的唯一一个零点同时在区间(0,16),(0,8),(0,4),(0,2)内,则下列结论中正确的是( )A .)(x f 在区间(0,1)内一定有零点B .)(x f 在区间[)16,2内没有零点C .)(x f 在区间(0,1)或(1,2)内一定有零点D .)(x f 在区间(1,16)内没有零点 7.设nS 为数列{}n a 的前n 项和,249n a n =-,则nS 取最小值时,n 的值为 ( )A .12B .13C .24D .258.“10≤<a ”是“关于x 的方程0122=++x ax 至少有一个负根”的 ( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件9.已知()f x 是R 上的偶函数,对任意∈x R, 都有(6)()(3)f x f x f +=+,且(1)2f =,则(2009)f 的值为 ( )A .0B .2-C .2D .200910.设βα、是方程0622=++-k kx x 的实根,则22)1()1(-+-βα的最小值是( )A .494-B . 8C .18D .1411.已知函数12)(2++=x x x f ,若存在实数t ,当[]m x ,1∈时,x t x f ≤+)(恒成立,则实数m 的最大值是( )A .6B .5C .4D .312.函数()y f x =的图象是圆心在原点的单位圆的两段弧(如图),则不等式()()f x f x x <-+的解集为 ( )A .⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤<<<-15520552x x x 或 B .⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤<-<<-155551x x x 或 C .⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<-<<-550551x x x 或 D .⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≠<<-0552552x x x 且 第Ⅱ卷(非选择题 共90分)二、填空题(本题共4小题, 每小题5分, 共20分)13.对于实数a (a >0且a ≠1), 函数f (x) = a x -2-3的图象过定点 .14.已知数列{}n a 满足n nn a a a a -+==+122,211(∈n N*),则数列{}n a 的第4项是 .15.若函数)log 2(log 221x y -=的值域是)0,(-∞,则它的定义域是 .16.关于函数xxxf1lg)(2+=(0≠x,∈x R), 有下列命题:①)(xf的图象关于y轴对称;②)(xf的最小值是2lg;③)(xf在)0,(-∞上是减函数,在),0(∞+上是增函数;④)(xf没有最大值.其中正确命题的序号是.三、解答题(本题共6小题, 共70分, 解答应写出文字说明、证明过程或演算步骤)17.(本题满分10分) 若函数()2af x xx=-在定义域(]1,0上是减函数,求实数a的取值范围.18.(本题满分12分) 已知函数()2xf x=,1()22xg x=+.(1)求函数()g x的值域;(2)求满足方程()()0f xg x-=的x的值.19.(本题满分12分) 设数列{}na的前n项和为nS,满足22nn nS a=-(∈n N*),令nnnab2=.(1)求证:数列{}nb为等差数列;(2)求数列{}na的通项公式.20.(本题满分12分) 某渔业个体户今年年初用96万元购进一艘渔船用于捕捞,规定这艘渔船的使用年限至多为15年. 第一年各种费用之和为10万元,从第二年开始包括维修费用在内,每年所需费用之和都比上一年增加3万元. 该船每年捕捞的总收入为45万元.(1)该渔业个体户从今年起,第几年开始盈利(即总收入大于成本及所有费用的和)?(2)在年平均利润达到最大时,该渔业个体户决定淘汰这艘渔船,并将船以10万元卖出,问:此时该渔业个体户获得的利润为多少万元?(注:上述问题中所得的年限均取整数)21.(本题满分12分) 已知函数)(xf的定义域为),0(+∞,对于任意正数a、b,都有pbfafbaf-+=⋅)()()(,其中p是常数,且0>p.1)2(-=pf,当1>x时,总有pxf<)(.(1)求)21()1(ff及(写成关于p的表达式);(2)判断),0()(+∞在x f 上的单调性,并加以证明;(3)解关于x 的不等式1)45(2+>+-p x x f . 22.(本题满分12分) 已知函数)(1)(a x x a ax x f ≠--+=.(1)证明:对定义域内的所有x ,都有02)()2(=++-x f x a f . (2)当f(x)的定义域为时,求证:f(x)的值域为[]2,3--.(3)设函数g(x) = x2+| (x -a) f(x) | , 若2321≤≤a ,求g(x)的最小值.理科数学参考答案一、选择题(本题共有12小题,每小题5分, 共60分)1.C 2.D 3.A 4.D 5.B 6.B 7.C 8.A 9.C 10.B 11.C 12.A 二、填空题(本题共4小题, 每小题5分, 共20分)13.)2,2(- 14.6 15.( 0, 2 ) 16.① ② ④三、解答题(本题共6小题, 共70分, 解答应写出文字说明、证明过程或演算步骤) 17.解:(法一)任取12,(0,1]x x ∈且12x x <,由题意知12()()f x f x >,所以121222a a x x x x ->-,即12212()0a ax x x x -+->,…………………… 4分所以1212()(2)0a x x x x -+>,只需 1220a x x +<,即122a x x <-.因为12,(0,1]x x ∈,所以12(0,1)x x ∈,122(2,0)x x -∈-,故2a ≤-.……………………10分(法二)因为函数()2af x x x =-在定义域(]1,0上是减函数,所以'220a y x =+≤在(0,1]上恒成立,所以22a x ≤-.设2()2g x x =-,因为()g x 在(0,1]上的最小值为2-,所以2a ≤-.……………………10分18.解:(1)11()2()222xxg x =+=+,因为0x ≥,所以10()12x<≤,即2()3g x <≤,故()g x 的值域是(2,3] (5)分(2)由()()0f x g x -=得12202x x --=,当0≤x 时,显然不满足方程,即只有0x >满足12202x x --=,整理得2(2)2210x x -⋅-=,2(21)2x -=,故21x =±10分 因为20x >,所以21x =+2log (1x =. ……………………12分19.解:(1)因为22n n n S a =-(∈n N*),则*2,n n N ≥∈时,11122n n n S a ---=-,此时,1n n n a S S -=-=11112222222n n n n n n n a a a a ------+=--,即1122n n n a a --=+. ………………………………………… 4分由1122a a =-得12a =. 由n n n a b 2=得1112a b ==.…………………6分当2≥n 时,1nn b b --=1122n n n n a a ---=21222211==---n n n n n a a , 所以{}n b 是首项为1,公差为12的等差数列. ……………………8分 (2)由(1)知,111(1)22n n b n +=+-=,即 2n na =12n +, 所以{}n a 的通项公式为 1(1)2n n a n -=+⋅.……………………12分20.解:(1)设从今年起,第n 年的盈利额为y 万元,则.96273239632)1(10452-+-=-⎥⎦⎤⎢⎣⎡⨯-+-=n n n n n n y …………………………………3分由0>y 得01927332<+-n n ,∴.3643<<n 又∈n N*,且15≤n ,∴从今年起,第4年开始盈利. ………………………………………………6分(2)年平均利润为.5.1227396232)9623(2732739623=+⨯-≤+-=+--=n n n n n n n y (8)分当且仅当n n 9623=,即8=n 时年平均利润最大,此时,该渔业个体户共盈利1101085.12=+⨯(万元). (12)分21.解:(1)取a=b=1,则(1)2(1).(1)f f p f p=-=故.……………………2分又pf f f f -+=⨯=)21()2()212()1(,且1)2(-=p f .得:1)1()2()1()21(+=+--=+-=p p p p p f f f .……………………4分(2)设,021x x << 则])()([)()()()(112111212p x f x x f x f x x x f x f x f -+=-⋅=-1()f x -21()x f p x =-由1,01221><<x x x x 可得,所以 p x xf <)(12,所以 0)()(12<-x f x f ,因此,),0()(+∞在x f 上是减函数. ………………………………………… 8分(3)由1)45(2+>+-p x x f 得)21()45(2f x x f >+-,又因为),0()(+∞在x f 上是减函数,所以214502<+-<x x .由0452>+-x x 得 1<x 或4>x ;由21452<+-x x 得21152115+<<-x , 因此,不等式的解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+<<<<-2115412115x x x 或.……………………12分 22.(1)证明:212122)()2(+--+++--+-=++-x a ax x a a a x a x f x a f02211211=--++--+-=+--++-+-=a x ax a x x a x a a x a x x a ,∴ 结论成立. ……………………………………………………………… 4分(2)证明:x a x a x a x f -+-=-+--=111)()(.当112,211,211,121-≤-≤--≤-≤---≤-≤--+≤≤+x a x a a x a a x a 时,2113-≤-+-≤-x a , 即]2,3[)(--的值域为x f .…………………… 8分(3)解:)(|1|)(2a x a x x x g ≠-++=. 当ax a x x x g a x a x -++=-++=≠-≥43)21(1)(,122时且;当.45)21(1)(,122-+-=+--=-<a x a x x x g a x 时 因为2321≤≤a ,所以21121≤-≤-a ,则函数)(x g 在),(),1[+∞-a a a 和上单调递增, 在)1,(--∞a 上单调递减,因此,当1-=a x 时,g (x )有最小值2)1(-a (12)分。
吉林省东北师范大学附属中学2015届高三文科高考总复习阶段测试卷(20141125)

一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知集合}111|{≥-+=x x x M ,集合}032|{>+=x x N ,则=⋂N M C R )(( ) A .(-1,23) B .(-1,23] C . 2.已知α是第二象限角,且sin(53)-=+απ,则tan2α的值为( ) A .54 B .723- C .724- D .924- 3.下列函数中,在其定义域是减函数的是( )A. 12)(2++-=x x x f B. xx f 1)(=C. ||)41()(x x f = D. )2ln()(x x f -= 4. 下列函数中,最小正周期为π,且图象关于直线x=3π对称的函数是( ) A .y=2sin(2x+3π) B .y=2sin(2x-6π)C .y=2sin(32π+x ) D .y=2sin(2x-3π) 5. 函数xx x f 2)1ln()(-+=的零点所在的大致区间是( ) A .(3,4) B .(2,e ) C .(1,2) D .(0,1) 6.已知二次函数4)(2+-=ax x x f ,若)1(+x f 是偶函数,则实数的值为( ) A. -1B. 1C. -2D. 27. 2||,0)(sin(πϕωϕω<>+=x y )的图象的一部分图形如图所示,则函数的解析式为( ) A .y=sin(x+3π) B .y=sin(x-3π) C .y=sin(2x+3πD .y=sin(2x-3π)8. 设a 为实数,函数f (x )=x 3+ax 2+(a -2)x 的导数是)('x f ,且)('x f 是偶函数,则曲线y =f (x )在原点处的切线方程为( )A .y =-2xB .y =3xC .y =-3xD .y =4x9. 将函数y=sin(2x+4π)的图象向左平移4π个单位,再向上平移2个单位,则所得图象的函数解析式是( )A .y=2cos 2(x+8π) B .y=2sin 2(x+8π)C .y=2-sin(2x-4π) D .y=cos2x10.已知函数⎩⎨⎧≤<+-<≤---=)10(1)01(1)(x x x x x f ,则1)()(->--x f x f 的解集为( )A .(-∞,-1)∪(1,+∞) B. C .(-∞,0)∪(1,+∞) D. ∪(0,1)11.对于任意的实数a 、b ,记max{a,b}=⎩⎨⎧<≥)()(b a b b a a .若F(x)=max{f(x),g(x)}(x ∈R),其中函数y=f(x)(x ∈R)是奇函数,且在x=1处取得极小值-2,函数y=g(x) (x ∈R)是正比例函数,其图象与x ≥0时的函数y=f(x)的图象如图所示,则下列关于函数y=F(x)的说法中,正确的是( ) A .y=F(x)为奇函数 B .y=F(x)有极大值F(-1)C .y=F(x)的最小值为-2,最大值为2D .y=F(x)在(-3,0)上为增函数12.设函数⎪⎩⎪⎨⎧<-≥-=)2(1)21()2()2()(x x x a x f x 是R 上的单调递减函数,则实数a 的取值范围为( )A .(-∞,2)B .(-∞,813]C .(0,2)D .[813,2)二.填空题:(本大题共4小题,每小题5分。
吉林省东北师范大学附属中学高考数学总复习阶段测试卷(第35周)理

吉林省东北师范大学附属中学2015届高考数学总复习阶段测试卷(第35周)理考试说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间120分钟. 1.答题前,考生先将自己的姓名、准考证号码填写清楚. 2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、字迹清楚. 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效. 4.保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀. 参考公式:如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径),,2,1,0()1()(n k p p C k p k n kk n n Λ=-=-第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{}b a A ,=,则满足{}c b a B A ,,=Y 的集合B 的个数是 ( ) A .1 B .3 C .4 D .82.已知复数i z +=1,则222-z z 等于( )A .iB .i -C .1+iD .1-i3.已知函数xe y =的图像与函数)(xf y =的图像关于x y =对称,则( ) A .)()2(2R x e x f x∈= B .)0(ln 2ln )2(>⋅=x x x fC .)(2)2(R x e x f x∈= D .)0(ln 2ln )2(>+=x x x f 4.已知双曲线22221x y a b -=)0,0(>>b a 的一条渐近线方程为43y x =,则双曲线的离心率是( )A .53 B.3 C .54 D.25.若⎩⎨⎧≥≤x y y 1,则y x 2+的最大值是( )A . 0B . 3C .1D .不存在6.将函数x x y cos sin ⋅=的图像向右平移)0(>ϕϕ个单位后,得到的图像关于直线6π=x 对称,则ϕ的最小值为( )A .125πB .611πC .1211πD .以上都不对7.已知数列{}n a 为公差不为0的等差数列,若421,,a a a 成等比数列,则105S S 等于( )A .21B .41C .113D .无法确定8.已知函数)(x f 在区间[)+∞-,1上连续,且当0≠x 时,11)(-+=x xx f ,则)0(f 等于( )A .4B .3C .2D .19.设γβα、、为两两不重合的平面,n m l 、、为两两不重合的直线,则下列命题正确的是( )A .γαγββα//,则,若⊥⊥B .βαββαα//,//,//,,则若n m n m ⊂⊂C .m l m l //,,,//则若βαβα⊂⊂D .n m l ===αγγββαI I I ,,若,则n m l 、、交与一点或相互平行10.从6名男生与5名女生中,各选3名,使男女相间排成一排,不同的排法种数是( ) A .35362A A B .663536A C C C .3536A A D .343536A C A11.已知函数()f x 是定义在R 上的奇函数,若()f x 在区间[])2(,1>a a 上单调递增且()0f x >.则下列不等式中不一定成立的是( )A .()f a >()0fB .12a f +⎛⎫⎪⎝⎭>fC .131a f a -⎛⎫⎪+⎝⎭>()f a - D .131a f a -⎛⎫⎪+⎝⎭>()2f -12.设F 为椭圆)0(12222>>=+b a b y a x 的一个焦点,AB C ,,为该椭圆上三点,若 0=++,则FA FB FC ++=u u u r u u u r u u u r( )A .a b 23 B .2223b a b - C .()a b a 2223- D .2223b a a -第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.在()()611-+x x 的展开式中,4x 的系数为_____________(用数字作答).14.过原点作曲线x e y =的切线,则该切线的斜率为________(e 为自然对数的底数) .15.若向量b,b a b a a 则满足且向量1,),3,1(=-=的取值范围是 .16.球O 是棱长为1的正方体ABCD D C B A -1111 的外接球,N M ,分别是B B 1,11C B 的中点,下列三个命题: ①球O 的表面积为 3π;②,A B 两点间的球面距离为1arccos3; ③直线MN 被球面截得的弦长为26.其中是真命题的序号为_____(把所有正确命题的序号都填上) .三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分10分)在三角形ABC 中,102)4sin(,1=-=πA BC .ABB 1CD 1A 1C 1 DM NO(Ⅰ)求A sin 的值; (Ⅱ)求三角形ABC 面积的最大值.18.(本小题满分12分)一大学生参加某公司的招聘考试,需依次参加A 、B 、C 、D 、E 五项测试,如果前四项测试中有两项不合格或第五项不合格,则该考生被淘汰,考试即结束。
吉林省东北师范大学附属中学2015届高三数学(文科)第一轮高考总复习阶段测试卷(第27周)(含答案)

东北师范大学附属中学2014—2015学年度高三年级周考【第27周】数学试题(文科)一、选择题(本大题共12小题,每小题5分,共计60分)1.设集合I ={―2,―1,0,1,2},A ={1,2},B ={―2,―1,2},则A (C I B )=( )A .{0,1,2}B .{1,2}C .{2}D .{1}2.函数2lg(1)()2x f x -=+的定义域是 ( )A .),31(+∞-B .)1,31(-C .)31,31(-D .)31,(--∞3.若p :|x +1|>2,q :x >2,,则┐p 是┐q 成立的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4. 设a >1,函数f (x )=a |x|的图像大致是 ( )5.如图是一个几何体的三视图,则此三视图所描述几何体的表面积为 ( ) A .π)3412(+ B .20π C .π)3420(+D .28π6.已知a =(1,2),b =(3,-1)且a +b 与a -λb 互相垂直,则实数的λ值为 ( ) A .-116B .-611 C .116 D .6117.过点(3,-2)的直线l 经过圆x 2+y 2-2y =0的圆心,则直线l 的倾斜角大小为( ) A .150° B . 60° C .30° D . 120°8.在△ABC 中,已知a =2b cos C ,那么这个三角形一定是 ( ) A .等边三角形 B .直角三角形 C .等腰三角形 D .等腰直角三角形9.⎪⎩⎪⎨⎧≤+->=)1(2)24()1()(x x ax a x f x 是R 上的单调递增函数,则实数a 的取值范围为 ( )A .(1,+∞)B .[4,8]C .(4,8)D .(1,8)10.2008年3月份开始实施的《个人所得税法》规定:全月总收入不超过2000元的免征个人工资、薪金所得税,超过2000元的部分需征税,设全月总收入金额为x 元,前三级税率如下表:当全月总收入不超过4000元时,计算个人所得税的一个算法框图如上所示,则输出①,输出②分别为 ( ) A .0.05x,0.1x B .0.05x, 0.1x -225C .0.05x -100, 0.1xD .0.05x -100, 0.1x -22511.若不等式组5003x y y a x -+≥⎧⎪≥⎨⎪≤≤⎩表示的平面区域是一个三角形,则a 的取值范围是( )A .5a <B .8a ≥C .5a <或8a ≥D .58a ≤<12.对于任意实数x ,符号[x ]表示x 的整数部分,即[x ]是不超过x 的最大整数,例如[2]=2;[1.2]=2;[2.2-]=3-, 这个函数[x ]叫做“取整函数”,它在数学本身和生产实践中有广泛的应用。
吉林省东北师范大学附属中学高三数学总复习阶段测试卷

吉林省东北师范大学附属中学2015届高三数学总复习阶段测试卷1文本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,共150分,考试时间120分钟,考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂,非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第I 卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U R =,集合{}|2A x x =≥,{|05}B x x =≤<,则集合)U C A B ⋂=(( )A .{|02}x x <<B .{|02}x x <≤C .{|02}x x ≤<D .{|02}x x ≤≤2.命题“若1,x >则0x >”的否命题是 ( )A .若1x >,则0x ≤B .若1x ≤,则0x >C .若1x ≤,则0x ≤D .若1x <,则0x <3.在复平面内复数-31+z i =的对应点在( )A .第一象限B .第二象限C .第三象限D .第四象限4.函数1()(0,1)x f x a a a -=>≠的图象恒过点A ,下列函数中图象不经过点A 的是( ) A 、yB 、y =|x -2|C 、y =2x -1D 、y =2log (2)x5.与椭圆:C 2211612y x +=共焦点且过点的双曲线的标准方程为( ) A .2213y x -= B .2221y x -=C .22122y x -= D .2213y x -=6.已知向量a b r r 、是夹角为60°的两个单位向量,向量λa b r r +(λ∈R )与向量2-a b r r垂直,则实数λ的值为( )A 、1B 、-1C 、2D 、07按如图所示的程序框图运行后,若输出的结果是63,则判断框的整数M 的值是( ) A .5B .6C .7D .88、已知函数sin()y x ωϕ=+的最小正周期为2π,直线3x π=是其图像的一条对称轴,则下面各式中符合条件的解析式为( )A .sin(4)6y x π=+ B .sin(2)3y x π=+ C .sin(4-)3y x π= D .15sin()412y x π=+ 9.点A B C D 、、、在同一个球的球面上,AB BC ==,2AC =,若四面体ABCD 体积的最大值为23,则这个球的表面积为 ( ) A .1256π3 B .8π C .254π D .2516π10、已知函数()1,()ln f x g x a x =+=,若在14x =处函数f (x )与g (x )的图象的切线平行,则实数a的值为( )A、14B、12C、1D、411若点P在抛物线24y x=上,则点P到点(2,3)A的距离与点P到抛物线焦点的距离之差()A.有最小值,但无最大值B有最大值但无最小值C.既无最小值,又无最大值D.既有最小值,又有最大值12.已知函数132,0()log,0xa xf x x x⎧⨯≤⎪=⎨>⎪⎩,若关于x的方程f(f(x))=0有且仅有一个实数解,则实数a的取值范围是()A、(-∞,0)B、(-∞,0)∪(0,1)C、(0,1)D、(0,1)∪(1,+∞)第II卷(非选择题,共90分)本卷包括必考题和选考题两部分,第13题~ 第21题为必考题,每个试题要求考生必须作答,第22题~ 第24题为选考题,考生根据要求作答。
2015年吉林省吉林市高三数学(文)第三次测试-Microsoft-Word-文档--

2015年吉林省吉林市高三数学(文)第三次测试-Microsoft-Word-文档--2015年吉林市普通高中高三复习第三次调研测试卷数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共24小题,共150分,考试时间120分钟。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集*=NU,集合},,,=,2A,集合{9386UA B}N ,|{*∈3>=x x x B ,则图中阴影部分所表示的集合是 (A )}{2 (B )}{32, (C )},{321, (D )},{986,2.已知i 为虚数单位,则=+12ii- (A )25 (B )25 (C )217(D )2103. 已知命题R :∈∀x p ,0>2x,则(A )R :∉∃⌝x p ,0≤2x(B )R :∈∃⌝x p ,0≤2x(C )R :∈∃⌝x p ,0<2x (D )R :∉∃⌝x p ,0>2x4.某学校共有师生2400人,现用分层抽样的方法,从所有师生中抽取一个容量为150的样本,已知从学生中抽取的人数为135,那么该学校的教师人数是(A )15 (B )200 (C )240 (D )21605.已知α是第四象限角,且43-=αtan ,则=αsin(A )53- (B )53 (C )54 (D )54- 6.已知实数y x 、满足⎪⎩⎪⎨⎧0≥2-+20≤3--32≤y x y x y ,则目标函数yx z +3=9.一个几何体的三视图如上右图,则其体积为 (A )320 (B )6 (C )316 (D )510.已知m ,n 是两条不同的直线,γβα,,是三个不同的平面,则下列命题正确的是 (A )若γα⊥,γβ⊥,则βα// (B )若α////m n m ,,则α//n(C )若n =βα ,α//m ,β//m ,则n m // (D )若α⊥m ,n m ⊥,则α//n11.边长为4的正方形ABCD 的中心为O ,以O 为圆心,1为半径作圆,点M 是圆O 上的任意一点,点N 是边AB 、BC 、CD 上的任意一点(含端点),则DA MN ⋅的取值范围是(A )][1818-, (B )][1616-, (C )][1212-,(第8题图)(第9题图)(D )][88-,12.若存在直线l 与曲线1C 和曲线2C 都相切,则称曲线1C 和曲线2C 为“相关曲线”,有下列三个命题:①有且只有两条直线l 使得曲线4=+221y x C :和曲线0=4+2+4-+222y x y x C:为“相关曲线”; ②曲线1=-4221x y C :和曲线1=4-222y x C:是“相关曲线”;③曲线:1C x y ln =和曲线:2Cxx y -=2为“相关曲线”.其中正确命题的个数为(A )0 (B )1 (C )2 (D )3第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二.填空题:本大题共4个小题,每小题5分。
吉林省东北师范大学附属中学2015届高三一轮复习阶段测试卷(第3周)数学文Word版含答案

高三文科数学阶段质量检查试题
(第3周) (考试时间:120分钟
满分120分)拟题人:冯维丽审题人:杨艳昌 2014.8.15
范围:[三角函数、三角恒等变换、解三角形部分
] 一、选择题:(12×5=60分)
1、若223,则直线sin cos y x =1必不经过
A.第一象限
B.
第二象限 C.第三象限 D.第四象限2、函数)3sin()(x x f (0)的图象的相邻两条对称轴间的距离是
2.若将函数()f x 图象向右平移6个单位,得到函数()g x 的解析式为
A .)64sin()
(x x f B .)34sin()(x x f C .)
62sin()(x x f D .x x f 2sin )(3、在区间(0,)2上随机取一个数x ,使得
0tan 1x 成立的概率是A .1
8B .
13C .12D .24、函数()2cos()f x x (0,0)为奇函数,该函数的部分图象如图所示,
点A B 、分别为该部分图象的最高点与最低点,且
||42AB ,则函数()f x 图象的一条对称轴的方程为
A .2x
B .2x
C .12x
D .2x 5、已知锐角
满足3sin 5,则sin(2)A .
1225B .2425 C..1225D .24256、在
ABC 中,,,a b c 分别是角,,A B C 的对边,3B ,且sin :sin 3:1A C ,则:b c 的值为
A .3
B .2
C .7
D .7
7、右图所示的是函数wx A y sin 图象的一部分,则其函数解析式是
A .3sin x y
B .3sin x y。
吉林省东北师范大学附属中学2015届高三上学期第一次摸底考试数学(文)试题

吉林省东北师范大学附属中学2015届高三上学期第一次摸底考试数学(文)试题(3)函数()f x =的定义域为(A )[2,2]- (B )(0,2] (C )(0,1)(1,2) (D )(0,1)(1,2](4)下列命题中,真命题是(A ),20x x R ∀∈> (B )1,lg 0x x ∃><(C )1,()02x x R ∃∈< (D )x R ∀∈,110log 0x <(5)已知幂函数()y f x =的图像过点(2,8),则5log (5)f 的值为(A )3(B )5 (C )2(D )8(6)设0.30.212455(),(),log 544a b c ===,则a b c 、、的大小关系是 (A )b a c >> (B )a b c >> (C )c b a >> (D )b c a >> (7)函数)(x f 的导函数)(x f '图象如图所示,则下列说法正确的是 (A ))(x f 在区间),(1x -∞上递增 (B ))(x f 在区间),(21x x 上递减(C )13x x 、是)(x f 的两个极小值点 (D )方程0)(=x f 有三个根(8)若函数321y x x mx =+++是R 上的单调函数,则实数m 的取值范围是(A )1(,)3+∞ (B )1(,]3-∞ (C )1[,)3+∞ (D )1(,)3-∞(9)已知函数2cos ,11()21,||1x x f x x x π⎧-≤≤⎪=⎨⎪->⎩,则关于x 的方程2()3()20f x f x -+=的实根的个数是(A )无数个 (B )2 (C )3 (D )5 (10)函数21()ln ,[,2]2f x x x x x =--∈,若在定义域内存在0x ,使得0)(0≤-m x f 成立,则实数m 的最小值是(A )2ln 2- (B )0 (C )2ln 41+- (D )2(11)设函数()f x 的导函数为()f x ',若对任意x R ∈,都有()()f x f x '>成立,则(A )3(ln 2)2(ln 3)f f > (B )3(ln 2)2(ln 3)f f = (C )3(ln 2)2(ln 3)f f < (D )3(ln 2)f 与2(ln 3)f 的大小不确定 (12)定义:我们把关于x 的不等式||x A B -<的解集叫A 的B 邻域.已知“2a b +-”的“a b +”邻域为区间(2,8)-,其中a 、b 分别为椭圆22221x y a b+=的长半轴长和短半轴长.若此椭圆的一个焦点与抛物线2y =的焦点重合,则此椭圆的方程为(A )22183x y += (B )22194x y += (C )22198x y += (D )221169x y +=第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共计20分) (13)抛物线22y x =-的焦点到准线的距离为_______________.(14)函数()83sin f x x x =-+,若(23)()0f a f a -+>,则实数a 的取值范围是__________.(15)已知函数()f x 满足:1(1)4f =,4()()()()()f x f y f x y f x y x y R =++-∈、,则(2014)f =______________.(16)对于函数x x x f +=ln )(,若存在区间[],a b ,当[],x a b ∈时,函数()f x 的值域为[],(0)ka kb k >,则实数k 的取值范围是_______________.三、解答题(解答应写出文字说明,证明过程或演算步骤) (17)(本题满分10分)已知函数a x x x f --=2)(2(a R ∈).(Ⅰ)当0=a 时,画出函数)(x f 的简图,并指出)(x f 的单调递减区间; (Ⅱ)若函数)(x f 有4个零点,求a 的取值范围.(18)(本题满分12分)已知直线1l 为曲线3()2f x x x =+-在点(1,0)处的切线,直线2l 为该曲线的另一条切线,且2l 的斜率为1.(Ⅰ)求直线1l 、2l 的方程;(Ⅱ)求由直线1l 、2l 和x 轴所围成的三角形的面积.(19)(本题满分12分)某旅游景点经营者欲增加景点服务设施以提高旅游增加值.经过调研发现,在控制投入成本的前提下,旅游增加值y (万元)与投入成本x (万元)之间满足: 251ln ln10(10100)50y ax x x x =-+-+≤≤,其中实数a 为常数,且当投入成本为10万元时,旅游增加值为9.2万元. (Ⅰ)求实数a 的值;(Ⅱ)当投入成本为多少万元时,旅游增加值y 取得最大值.(20)(本题满分12分)已知函数32()9(0)f x ax bx x a =+-≠,当1x =-时()f x 取得极值5. (Ⅰ)求()f x 的极小值;(Ⅱ)对任意12,x x )3,3(-∈,判断不等式32|)()(|21<-x f x f 是否能恒成立,并说明理由.(21)(本小题满分12分)已知椭圆C 的中心在坐标原点,焦点在x 轴上,其离心率e =,短轴长为4. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)已知直线:()l y x m m R =+∈和椭圆C 相交于A B 、两点,点(1,1)Q ,是否存在实数m ,使ABQ ∆的面积S 最大?若存在,求出m 的值;若不存在,说明理由.(22)(本小题满分12分)已知函数0,)(≠=a e axx f x. (Ⅰ)求函数)(x f 的单调区间;(Ⅱ)当1=a 时,已知21x x <,且)()(21x f x f =,求证:)2()(21x f x f ->.(Ⅱ)由0)(=x f ,得a x x =-22,∴曲线x x y 22-=与直线a y =有4个不同交点,∴根据(Ⅰ)中图像得01<<-a ……………10分(18)(本题满分12分)解:(Ⅰ)2()31f x x '=+ ………1分∴直线1l 的斜率为1(1)4k f '==∴直线1l 的方程为4(1)y x =-,即 440x y --=4分设直线2l 与曲线)(x f 相切于点00(,)P x y ,5分则直线2l 的斜率为2200()311k f x x '==+=0000,()2x y f x ∴===-,(0,2)P ∴- ∴直线2l 的方程为2y x +=,即 20x y --=故所求直线1l 、2l 的方程分别为440x y --=,20x y --=.8分(Ⅱ)由44020x y x y --=⎧⎨--=⎩,解得2343x y ⎧=⎪⎪⎨⎪=-⎪⎩∴直线1l 、2l 的交点坐标为24(,)33-又,直线1l 、2l 和x 轴的交点分别为(1,0)和(2,0) 10分所以,所求三角形的面积为142|21|||233S =⨯-⨯-= 12分(20)(本题满分12分)解:(Ⅰ)2()329f x ax bx '=+- ……………1分由题意可得:(1)3290(1)95f a b f a b '-=--=⎧⎨-=-++=⎩,解得:1,3a b ==- ……………3分因此,x x x x f 93)(23--=,)3)(1(3)(-+='x x x f当 ),3()1,(+∞--∞∈ x 时,'()0f x >,当)3,1(-∈x 时,'()0f x <, 所以函数单调增区间为)1,(--∞,),3(+∞,单调减区间为)3,1(-当3x =时,()f x 取得极小值为27-. ……………7分(Ⅱ)能恒成立 ……………8分由(Ⅰ)知()f x 在)1,3(--上递增,在)3,1(-上递减,所以,)3,3(-∈x 时,5)1()(=-≤f x f ,27)3()(-=±>f x f ……………10分所以,对任意12,x x )3,3(-∈,恒有 32|)27(5||)()(|21=--<-x f x f . ……………12分(21)(本小题满分12分)解(Ⅰ)由题意可设椭圆C 的方程为22221(0)x y a b a b+=>>,又c e a ==,24b =,222a b c =+,解得32a b ==,. 故椭圆C 的方程为22194x y +=.……………2分 (Ⅱ)设直线m x y l +=:()m R ∈和椭圆C 相交于()11,y x A 、()22,y x B 两点.联立方程得,22194,,y x m x y =+⎧⎪⎨+=⎪⎩消去y 得,2213189360x mx m ++-=.()2232441394m m ∆=-⨯⨯-()2144130m =->.(*)且121813m x x +=-,21293613m x x -=. ……………5分所以||AB ==113=.……………7分点()1,1Q 到m x y l +=:的距离为2m.……………8分所以,1213S =⨯613=226133132m m -+≤⨯=.当且仅当2213m m-=,即m =*)式)时,S 取得最大值3.……11分即:存在实数m ,使ABQ ∆的面积S 最大,此时m 的值为 .……………12分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三文科数学阶段质量检测试题第Ⅰ卷一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.满足{a }⊆M ≠⊂{a, b, c, d }的集合M 共有 ( )A .6个B .7个C .8个D .15个2.下列各组函数是同一函数的是( )①()f x =()g x = ②()f x x =与()g x =③0()f x x =与01()g x x=; ④2()21f x x x =--与2()21g t t t =--。
A. ①② B. ①③ C. ③④ D. ①④ 3.化简)(=--+A. B. C. D.4.已知定义在R 上的函数)(x f 是偶函数,对2)3()2()2( -=--=+∈f x f x f R x ,当有都 时,)2007(f 的值为( )A .2B .-2C .4D .-45.已知扇形的周长是3cm ,面积是12cm 2,则扇形的中心角的弧度数是( ) A. 1 B. 1或4 C. 4 D. 2或46.设}{n a 为等差数列,公差d=-2,S n 为其前n 项和,若S 10=S 11,则a 1=( ) A.18 B. 22 C. 20 D.24 7.曲线sin 1sin cos 2x y x x =-+在点(,0)4M π处的切线的斜率为( )A .12-B .12C .2-D .28.已知向量),45sin ,30(cos ),120sin ,120(cos 0==则ABC ∆的形状为( ) A.直角三角形 B. 等腰三角形 C.锐角三角形 D. 钝角三角形 9.若a >0,b >0,且函数32()422f x x ax bx =--+在x =1处有极值,则ab 的最大值等于( )A .2B .3C .6D .910.函数)sin()(ϕω+=x x f (其中2||πϕ<)的图象如图所示,为了得到x y ωsin =的图象,只需把)(x f y =的图象上所有点( )A. 向左平移12π个单位长度B. 向右平移12π个单位长度 C. 向左平移6π个单位长度 D. 向右平移6π个单位长度 11.设4=∙,若在方向上的投影为2,且在方向上的投影为1,则和的夹角等于( ) A .3π B .6π C .32π D . 323ππ或 12.已知()y f x =是定义在R 上的奇函数,且当0x >时不等式()()'0f x xf x +<成立,若()0.30.333a f =⋅, (),log 3log 3b f ππ=⋅3311,log log 99c f ⎛⎫=⋅ ⎪⎝⎭,则 , ,a b c 大小关系是( )A .c a b >>B .c b a >>C .b c a >>D .a c b >>第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.数列}{n a 中,S n 为其前n 项和,S n = n 2-2n+3,则n a =____________.14.若在△ABC 中,060,1,ABC A b S ∆∠==。
15.设f(sin +cos )=sin •cos,则f(sin 6π)的值为______。
16. 已知下列命题:②要得到函数)6cos(π-=x y 的图象,需把函数x y sin =的图象上所有点向左平行移动3π个单位长度. ③已知函数3cos 2cos 2)(2+-=x a x x f ,当2-≤a 时,函数)(x f 的最小值为a a g 25)(+=.④)0(sin >=w wx y 在上至少出现了100次最小值,则π2399≥w . 其中正确命题的序号是___________.三、解答题(要求写出必要的计算步骤和思维过程。
)17.(本小题满分12分)已知向量y ⊥+-==)2(),3,1(),,1(且。
(1;(2)若()()b a b a k 42//2-+,求k 的值。
18.(本小题满分12分)如图,在河的对岸可以看到两个目标物M ,N ,但不能 到达,在河岸边选取相距40米的两个目标物P ,Q 两点,测 得75MPN ︒∠=,45NPQ ︒∠=,30MQP ︒∠=,45MQN ︒∠=, 试求两个目标物M,N之间的距离. 19.(本小题满分12分)已知向量),cos ,(cos ),cos ),(sin 3(wx wx wx wx -=-=π 函数21)(+∙=x f (0)ω>的图象的两相邻对称轴间的距离为4π.(1)求ω值; (2)若1cos ,(0,)2x x ≥∈π,且m x f =)(有且仅有一个实根,求实数m 的值. 20.(本小题满分12分)已知函数).21)(log 2(log )(42--=x x x f (1)当x ∈时.求该函数的值域;(2)若]16,4[log )(2∈≥x x m x f 对于恒成立,求m 的取值范围。
21.(本小题满分12分)已知函数211()ln()22f x ax x ax =++-(a 为常数,0a >).(Ⅰ)若12x =是函数()f x 的一个极值点,求a 的值; (Ⅱ)求证:当02a <≤时,()f x 在1[,)2+∞上是增函数;(Ⅲ)若对任意..的a ∈(1,2),总存在..01[,1]2x ∈,使不等式20()(1)f x m a >-成立,求实数m 的取范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑.22.(本小题满分10分) 《选修4—1:几何证明选讲》如图,A ,B ,C ,D 四点在同一圆上,AD 的延长线与BC 的 延长线交于E 点,且EC=ED . (I )证明:CD//AB ;(II )延长CD 到F ,延长DC 到G ,使得EF=EG ,证明:A ,B ,G ,F 四点共圆.23.(本小题满分10分)《选修4-4:坐标系与参数方程》在直接坐标系xOy 中,直线l 的方程为x-y+4=0,曲线C 的参数方程为x y sin ααα⎧=⎪⎨=⎪⎩(为参数).(I )已知在极坐标(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为(4,2π),判断点P 与直线l 的位置关系; (II )设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值. 24.(本小题满分10分)《选修4-5:不等式选讲》 已知函数52)(---=x x x f . (I )证明:3)(3≤≤-x f ;(II )求不等式158)(2+-≥x x x f 的解集.数学(文科)参考答案一、选择题:BCDBB CBDDD AA 二、填空题(13)2ln2 (14)3392 (15)83- (16)②③④三、解答题17题:(本题满分12分)解:(1)5,2),32,3(2==∴-=+y y(2).1)16,2(42),62,2(-=∴-=--+=+k k k k 18题:(本题满分12分)19题:(本题满分12分) 解:(1))62sin(21cos cos sin 3)(2π-=+-=wx wx wx wx x f )64sin()(,2,2ππ-=∴=∴=x x f w T(2)易知]3,0(π∈x ,]67,6(64πππ-∈-∴x ,]1,21[64-∈⎪⎭⎫ ⎝⎛-∴πx f 1=∴m 20题:(本题满分12分)解:(1))21)(log 2log 2()(44--=x x x f ,]1,21[]4,2[,log 4∈∈=t x x t 时,令此时,132)21)(22(2+-=--=t t t t y ,]0,81[-∈∴y(2)即恒成立对恒成立,对]2,1[312]2,1[1322∈-+≤∴∈≥+-t tt m t mt t t , 易知.0,0)1()(]2,1[312)(min ≤∴==∴∈-+=m g t g t tt t g 上单调递增,在21题:(本小题满分12分)22、(本小题满分10分)选修4-1:几何证明选讲解:(I)因为EC=ED,所以∠EDC=∠ECD.因为A,B,C,D四点在同一圆上,所以∠EDC=∠EBA.故∠ECD=∠EBA,所以CD//AB. …………5分(II)由(I)知,AE=BE,因为EF=FG,故∠EFD=∠EGC 从而∠FED=∠GEC.连结AF ,BG ,则△EFA ≌△EGB ,故∠FAE=∠GBE , 又CD//AB ,∠EDC=∠ECD ,所以∠FAB=∠GBA. 所以∠AFG+∠GBA=180°.故A ,B ,G ,F 四点共圆 …………10分 23、(本小题满分10分)选修4-4:坐标系与参数方程解:(I )把极坐标系下的点(4,)2P π化为直角坐标,得P (0,4)。
因为点P 的直角坐标(0,4)满足直线l 的方程40x y -+=, 所以点P 在直线l 上,(II )因为点Q 在曲线C 上,故可设点Q的坐标为,sin )αα, 从而点Q 到直线l 的距离为2cos()4)6d παπα++===++,由此得,当cos()16πα+=-时,d24、(本小题满分10分)选修4-5:不等式选讲解:)3,2,()|2||5|27,25,3, 5.x f x x x x x x -≤⎧⎪=---=-<<⎨⎪≥⎩当25,327 3.x x <<-<-<时 所以3() 3.f x -≤≤ ………………5分 (II )由(I )可知,当22,()815x f x x x ≤≥-+时的解集为空集;当225,()815{|55}x f x x x x x <<≥-+≤<时的解集为; 当25,()815{|56}x f x x x x x ≥≥-+≤≤时的解集为.综上,不等式2()815{|56}.f x x x x x ≥-+≤≤的解集为 …………10分版权所有:高考资源网()。