R语言入门教程
R语言入门教程

R语言简介R语言笔记:数据分析与绘图的编程环境版本1.7R Development Core TeamJune10,2006Contents1绪论与基础11.1R语言环境 (1)1.2相关的软件和文档 (1)1.3R与统计 (2)1.4R与视窗系统 (2)1.5R的交互使用 (2)1.6入门训练 (3)1.7获取函数和功能的帮助信息 (3)1.8R的命令、对大小写的敏感,等等 (3)1.9对已输入命令的记忆和更改 (4)1.10命令文件的执行和输出的转向到文件 (4)1.11数据的保持与对象的清除 (4)2简单操作;数值与向量52.1向量与赋值 (5)2.2向量运算 (5)2.3产生规则的序列 (6)2.4逻辑向量 (7)2.5缺失值 (7)2.6字符向量 (7)2.7索引向量(index vector);数据集子集的选择与修改 (8)2.8对象的其他类型 (9)3对象,模式和属性103.1固有属性:模式和长度 (10)3.2改变对象的长度 (11)3.3属性的获取和设置 (11)3.4对象的类别 (11)4有序因子与无序因子124.1一个特例 (12)4.2函数tapply()与ragged数组 (12)4.3有序因子 (13)5数组和矩阵145.1数组 (14)5.2数组的索引和数组的子块 (14)5.3索引数组 (15)iCONTENTS ii5.4函数array() (16)5.4.1向量,数组的混合运算,重复使用规则 (16)5.5两个数组的外积 (17)5.6数组的广义转置 (17)5.7专门的矩阵功能 (18)5.7.1矩阵乘法 (18)5.7.2线性方程和矩阵的逆 (18)5.7.3特征值和特征向量 (19)5.8奇异值分解与行列式 (19)5.9最小二乘拟合及QR分解 (19)5.10构建分区矩阵,cbind()和rbind() (19)5.11连接函数c(),针对数组的应用 (19)5.12由因子生成频数表 (20)6列表和数据帧216.1列表 (21)6.2构建和修改列表 (22)6.2.1连接列表 (22)6.3数据帧 (22)6.3.1创建数据帧 (22)6.3.2attach()与detach() (23)6.3.3使用数据帧 (23)6.3.4挂接任意列表 (24)6.3.5管理搜索路径 (24)7从文件中读取数据257.1函数read.table() (25)7.2函数scan() (26)7.3内建数据集的存取 (26)7.3.1从其他R功能包中载入数据 (27)7.4编辑数据 (27)8概率分布288.1R—作为一个统计表的集合 (28)8.2检测数据集合的分布 (29)8.3单样本和两样本检验 (32)9语句组、循环和条件操作359.1表达式语句组 (35)9.2控制语句 (35)9.2.1条件执行:if语句 (35)9.2.2重复执行:for循环,repeat和while (35)10编写自己的函数3710.1简单示例 (37)10.2定义新的二元操作符 (38)10.3指定的参数和默认值 (38)10.4参数’...’.. (39)10.5函数内的赋值 (39)10.6更多高级示例 (39)CONTENTS iii10.6.1区组设计的效率因子(Efficiency factors) (39)10.6.2删除打引数组中的所有名称 (40)10.6.3递归的数值积分 (41)10.7范畴(scope) (41)10.8定制环境 (43)10.9类别,通用函数和对象定位 (44)11R的统计模型4511.1定义统计模型;公式 (45)11.1.1对比(contrasts) (48)11.2线性模型 (48)11.3用于释放模型信息的通用函数 (48)11.4方差分析与模型比较 (49)11.4.1方差分析表(ANOVA tables) (49)11.5更新拟合模型 (50)11.6广义线性模型 (50)11.6.1族(families) (51)11.6.2函数glm() (51)11.7非线性最小二乘和最大似然模型 (53)11.7.1最小二乘 (53)11.7.2最大似然 (54)11.8一些非标准的模型 (55)12图形过程5612.1高级绘图命令 (56)12.1.1函数plot() (56)12.1.2显示多元数据 (57)12.1.3显示图形 (58)12.1.4高级绘图函数的参数 (58)12.2低级绘图命令 (59)12.2.1数学注释 (61)12.2.2Hershey矢量字体 (61)12.3图形的交互 (61)12.4使用图形参数 (62)12.4.1持续性变更(Permanent changes):par()函数 (62)12.4.2临时性变更:图形函数的参数 (63)12.5图形参数列表 (63)12.5.1图形元素 (63)12.5.2坐标轴和标记 (64)12.5.3图边缘(Figure margins) (65)12.5.4多图环境 (65)12.6设备驱动 (67)12.6.1文本文档的PostScript图表 (67)12.6.2多重图形设备 (67)12.7动态图形 (68)Chapter1绪论与基础1.1R语言环境R是一套由数据操作、计算和图形展示功能整合而成的套件。
R语言入门

R语言介绍
四、R的使用
R是一种区分大小写的解释型语言。你可以在命令提示符(> )后每次输入并执行一条命令。
基本绘图
1、条形图
1.1 简单的条形图
例. 使用”vcd”包中的数据集Arthritis(关于一项探索类 风湿性关节炎新疗法的研究结果)画条形图:
> install.packages(“vcd”) > library(vcd) > counts <- table(Arthritis$Improved)
标准差以及月龄和体重的相关度。 plot():用图形展示月龄与体重的关系。
目录
1 2 3 4
R语言介绍 创建数据集
基本绘图 回归分析
创建数据集
数据集通常是由数据构成的一个矩形数组。按照个人要求的格式 来创建含有研究信息的数据集,这是任何数据分析的第一步。在R中 ,这个任务包括以下两步:
选择一种数据结构来存储数据; 将数据输入或导入到这个数据结构中。
创建数据集
二、数据的输入
导入Excel数据:①读取一个Excel文件的最好方式,就是在Excel中将 其导出为一个逗号分隔文件(csv),再导入。
②也可以用xlsx包直接地导入Excel工作。此方式需要先下载和安装 xlsxjars和rJava包,以及一个正常工作的Java安装( )
R语句由函数和赋值构成。R使用<-,而不是传统的=作为赋 值符号。例如:x<-rnorm(5)
*创建了一个名为x的向量对象,它包含5个来自标准正态分布 的随机偏差。
R语言-菜鸟级课程

数 据 类 型
#? 1、如何创建一个矩阵 v<-matrix(1:12,nrow=3,byrow=T) #? 2、求矩阵的逆(需要方阵,且秩为行数) v2<-matrix(tan(1:16),nrow=4,byrow=T) qr(v2)$rank solve(v2) #? 3、求矩阵的特征值与特征向量(需要方阵) eigen(v2) ------------------------------------------------------#? 1、如何创建一个数据框 d<data.frame(ID=c(1,2,3,4,5),AGE=20:24,INCOME=c(2 3001,3232,10232,9923,1023)) #? 2、条件过滤及子集筛选 d2<-d[d$INCOME>10^4,c("ID","AGE")] d2<subset(d,d$INCOME>10^4,c("ID","AGE"),drop=TRU E) #? 3、数据框的拼接 d2<-cbind(d2,RNO=c("20","23"))
MeanDecreaseGini通过 基尼(Gini)指数计算每 个变量对分类树每个节点 上观测值的异质性的影响, 从而比较变量的重要性。 该值越大表示该变量的重 要性越大
如何用R分析数据、初步窥探数据
聚 类 分 析
Q&A
数据框(data.frame)
install.packages()
安 install.packages(c("xx","yy")) 装 R RCMD INSTALL "xxx.tar.gz" 包
R语言入门教程

R语言入门教程R语言是一种功能强大的统计计算和图形化编程语言,广泛应用于数据科学、统计分析、机器学习等领域。
本教程旨在帮助初学者快速入门R语言,并提供基础知识和实际应用示例。
第一章:R语言简介1.1 R语言的起源和发展1.2 R语言的特点和优势1.3 R语言的应用领域和前景第二章:R语言的安装与环境配置2.1 下载和安装R语言2.2 R语言的集成开发环境(RStudio)配置2.3 R语言的包管理器和常用包的安装第三章:基本语法和数据结构3.1 R语言的基本数据类型3.2 变量和赋值操作3.3 基本数学运算和逻辑运算3.4 控制流程语句(if-else, for, while等)3.5 R语言的数据结构:向量、矩阵、数据框和列表第四章:数据导入与导出4.1 从文本文件导入数据4.2 从Excel文件导入数据4.3 从数据库导入数据4.4 将数据输出为文本、Excel或数据库文件第五章:数据处理与清洗5.1 缺失值的处理5.2 异常值的检测和处理5.3 数据转换和重塑5.4 数据合并和拆分第六章:数据可视化6.1 基本图形绘制函数6.2 高级图形包(ggplot2)的使用6.3 图形参数调整和自定义第七章:统计分析和建模7.1 常用统计分析方法的实现7.2 聚类分析和主成分分析7.3 线性回归和逻辑回归模型7.4 机器学习算法(如随机森林、支持向量机)的应用第八章:R语言编程高级技巧8.1 函数的定义和调用8.2 自定义包的创建和使用8.3 面向对象编程(OOP)的实现8.4 并行计算和代码优化技巧第九章:实际案例分析9.1 数据挖掘和预测建模9.2 金融风险管理分析9.3 生物信息学数据处理和分析9.4 社交网络分析和可视化第十章:进阶学习资源推荐10.1 R语言官方文档和在线教程10.2 统计学和数据科学相关书籍推荐10.3 开源R语言项目和社区资源通过本教程的学习,读者将能够掌握R语言的基本语法和数据结构,能够进行数据的导入、处理、可视化和统计分析,在实际应用中能够解决问题和开展研究。
R语言数据科学入门教程

R语言数据科学入门教程第一章:R语言介绍与安装1.1 R语言的历史和发展R语言起源于新西兰奥克兰大学的S语言,经过多年的发展和优化,成为一种功能强大且广泛使用的数据分析和统计编程语言。
1.2 R语言的特点介绍R语言的开源性、跨平台性、扩展性以及丰富的统计分析和数据可视化功能。
1.3 R语言的安装和配置详细介绍如何下载、安装和配置R语言及其相关的集成开发环境(IDE),例如RStudio。
第二章:R语言基础2.1 R语言的基本语法和命令行界面介绍R语言的基本语法规则,解释如何使用R语言的命令行界面进行交互式编程。
2.2 变量和向量介绍R语言中变量的定义和使用方法,以及如何创建和操作向量。
2.3 数据类型和数据结构详细介绍R语言的不同数据类型(如数值型、字符型、逻辑型等),以及常见的数据结构(如数组、矩阵、数据框等)。
2.4 条件语句和循环介绍在R语言中如何使用条件语句(如if-else语句)和循环语句(如for循环和while循环)。
第三章:数据处理与清洗3.1 数据导入与导出介绍如何使用R语言导入和导出各种常见格式的数据文件,包括CSV、Excel、JSON等。
3.2 数据读取和预览介绍如何使用R语言读取和预览数据,包括查看数据的前几行、数据结构和摘要统计信息等。
3.3 缺失值处理介绍如何处理数据中的缺失值,包括删除含有缺失值的观测值或变量、插补缺失值等方法。
3.4 数据变换和重构介绍如何使用R语言对数据进行变换和重构,包括变量转换、数据透视表和合并数据集等操作。
第四章:数据分析与可视化4.1 描述性统计分析介绍如何使用R语言进行常见的描述性统计分析,例如计算均值、中位数、标准差等。
4.2 统计图表绘制详细介绍R语言中的数据可视化功能,包括绘制直方图、散点图、折线图、箱线图等常见图表。
4.3 统计推断和假设检验介绍如何使用R语言进行统计推断和假设检验,包括t检验、方差分析、回归分析等常见的假设检验方法。
初学者如何学习编写R语言的入门教程

初学者如何学习编写R语言的入门教程R语言是一种广泛应用于数据分析和统计建模的高级编程语言。
对于初学者来说,学习R语言可能会感到有些困惑和挑战。
然而,通过有序的学习和实践,初学者可以逐渐掌握R语言的技巧和概念。
本文将介绍一些学习R语言的基本步骤和方法,帮助初学者进入这个有趣且强大的编程世界。
一、了解R语言的基本概念在开始学习R语言之前,初学者需要对R语言的基本概念有一定的了解。
R语言是一种面向数据分析和统计建模的编程语言,具有易学易用的特点。
初学者可以通过阅读相关的书籍、教程或者观看在线视频来了解R语言的基本概念,例如变量、函数、数据类型、数据结构等。
二、选择合适的学习资源学习R语言需要掌握一定的理论知识和实践经验。
初学者可以选择一些优质的学习资源来帮助他们系统地学习R语言。
这些学习资源可以包括在线课程、学习社区、编程书籍、编程博客等等。
通过这些学习资源,初学者可以获取R语言的知识和技巧,并有机会与其他学习者进行交流和分享经验。
三、实践编写R语言代码学习R语言最重要的一点是实践,通过编写R语言代码来巩固所学的知识和技能。
初学者可以选择一些简单的练习题或者项目来进行实践,例如数据清洗、数据可视化、统计分析等。
在实践中,初学者可以逐渐熟悉R语言的语法和常用函数,并学会解决实际问题的能力。
四、参与开源项目和社区R语言有一个活跃的开源社区,初学者可以通过参与开源项目和社区来拓展自己的知识和技能。
参与开源项目可以让初学者接触到一些实践中的问题和挑战,并有机会与更有经验的R语言开发者进行合作和交流。
此外,初学者还可以利用社区资源,例如论坛、邮件列表等,向其他R语言学习者寻求帮助和建议。
五、持续学习和提升学习R语言是一个不断学习和提升的过程。
初学者应该保持对R语言的兴趣和热情,并不断学习新的知识和技能。
可以在日常工作或者学习中尝试使用R语言解决问题,参加相关的培训或者会议,阅读最新的研究成果等等。
通过不断地学习和实践,初学者可以逐渐提升自己在R语言上的能力,并成为一个熟练的R语言开发者。
R语言入门操作(2)

通过Lasso 来进⾏行行压缩估计和变量量选择2018年年9⽉月24⽇日⽥田甜参数估计与假设检验2019年年4⽉月28⽇日 ⽥田甜CONTENTS01 02 03Rstudio 参数估计假设检验01Rstudio•R,解释器器,IDE的关系R是⼀一种解释型语⾔言,不不需要编译的过程,代码的翻译和执⾏行行是同步的,R不不需要编译器器但需要解释器器图形界⾯面程序(GUI)除了了引⽤用了了解释器器到它主要窗⼝口中外,还实现了了编辑器器,图形展示和快捷按钮等功能,⼀一个GUI程序只需提供对R语⾔言常⽤用功能的图形化包装即可被称R的GUIGUI如果在⼀一个窗⼝口中包括了了解释器器、编辑器器和图形展示等功能则可被称为IDERstudio是⼀一个优秀的R IDE•选择⼀一个适合⾃自⼰己的IDE(Integrated Development Environment)•控制台•⼯工作空间和历史窗⼝口•画图和帮助窗⼝口2.1参数估计-点估计•矩估计因为不不同的分布有不不同的参数,所以在R 的基本包中并没有给出现成的函数,⼀一般要转化为⽅方程组求解:例例:设随机变量量X 服从[ , ]的均匀分布,现有n 个样本, ,估计两个参数解:⽤用样本⼀一阶矩(样本均值)估计总体均值,样本⼆二阶矩(样本⽅方差)估计总体⽅方差,即⽤用rootSolve 包中的函数multiroot()求解⽅方程组install.packages('rootSolve') # 安装rootSolve 程序包library(rootSolve) # 载⼊入包θ2x 1,...,x n θ1E (X )=θ1+θ22=¯x Var (X )=(θ2−θ1)212=1n n ∑i =1(x 1−¯x )2=S 2•输⼊入样本数据,计算样本⼀一阶矩和⼆二阶矩程序运⾏行行结果(采⽤用迭代的⽅方式,因此需要给出初始值)x = c(4, 5, 2, 9, 5, 1, 6, 4, 6, 2)mu = mean(x) # ⼀一阶矩var = sum((x - mean(x)) ^ 2) / 10 # ⼆二阶矩•构建⽅方程组model = function(theta, mu, var){c(F1 = theta[1] + theta[2] - 2 * mu,F2 = (theta[2] - theta[1]) ^ 2 / 12 - var)}•调⽤用函数进⾏行行求解(详细的参数说明可⽤用?multiroot命令来查看)multiroot(f=model,start=c(0,10),mu=mu,var=var)•法⼀一:写出似然函数,求偏导转换为⽅方程组,求解⽅方程组•例例:设X 服从正态分布 ,为来⾃自总体的⼀一组样本,⽤用极⼤大似然估计参数解:似然函数为:求偏导可得:N (μ,σ2)x 1,...,x n L (μ,σ2;x )=n ∏i =1f (x i ;μ,σ2)=(2πσ2)−n /2exp [−12σ2n∑i =1(x i −μ)2]∂lnL (μ,σ2;x )∂μ=−1σ2n ∑i =1(x i −μ)=0∂lnL (μ,σ2;x )∂σ2=−n 2σ2+12σ4n ∑i =1(x i −μ)2=0•输⼊入数据程序运⾏行行结果set.seed(1) # 设置随机种⼦子x = rnorm(10) # ⽣生成10个服从标准正态分布的随机数•构建⽅方程组model = function(e,x){n = length(x)c(F1 = sum(x - e[1]),F2 = - n + sum((x - e[1]) ^ 2) / e[2] ^ 2)}•调⽤用函数进⾏行行求解multiroot(f=model,start=c(0,1),x=x)•法⼆二:写出对数似然函数,调⽤用maxLik 包中的函数maxLik 。
r语言入门教程

r语言入门教程R语言是一种广泛应用于数据分析和统计建模的编程语言。
它具有丰富的数据处理和可视化功能,是许多数据科学家和统计学家的首选工具之一。
R语言的基本语法与其他编程语言有些不同,但学习起来并不困难。
以下是一些入门级别的R语言基础知识,帮助你开始使用R进行数据分析和可视化。
1. 安装R和RStudio:首先,你需要下载并安装R语言。
然后,建议安装RStudio,它是一个集成开发环境,可以更好地管理和组织你的R代码和数据。
2. 使用RStudio:当你打开RStudio时,你会看到几个窗口,包括代码编辑器和R控制台。
在代码编辑器中编写代码,然后按下Ctrl + Enter键或点击"Run"按钮来执行代码。
结果将显示在R控制台中。
3. 变量赋值和基本操作:在R中,你可以使用"="或"<-"符号将值分配给变量。
例如,x <- 10会将值10分配给变量x。
你可以使用实数、整数、字符等数据类型。
4. 向量和矩阵:R中的向量是一系列具有相同数据类型的元素。
你可以使用c()函数创建向量,例如:my_vector <- c(1, 2, 3)。
矩阵是一个二维数据结构,你可以使用matrix()函数创建矩阵。
5. 数据框(Data Frame):数据框是R中最常用的数据结构之一,类似于Excel表格。
你可以使用data.frame()函数创建数据框。
可以使用read.csv()或read.table()函数从外部文件加载数据框。
6. 数据处理和转换:R提供了许多内置函数用于数据处理和转换,例如:subset()、merge()、aggregate()等。
这些函数可以对数据进行过滤、合并、汇总等操作。
7. 统计分析和建模:R拥有强大的统计分析和建模功能,你可以使用内置函数进行描述性统计、假设检验、回归分析等。
例如,mean()用于计算均值、t.test()用于执行t检验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R语言简介R语言笔记:数据分析与绘图的编程环境版本1.7R Development Core TeamJune10,2006Contents1绪论与基础11.1R语言环境 (1)1.2相关的软件和文档 (1)1.3R与统计 (2)1.4R与视窗系统 (2)1.5R的交互使用 (2)1.6入门训练 (3)1.7获取函数和功能的帮助信息 (3)1.8R的命令、对大小写的敏感,等等 (3)1.9对已输入命令的记忆和更改 (4)1.10命令文件的执行和输出的转向到文件 (4)1.11数据的保持与对象的清除 (4)2简单操作;数值与向量52.1向量与赋值 (5)2.2向量运算 (5)2.3产生规则的序列 (6)2.4逻辑向量 (7)2.5缺失值 (7)2.6字符向量 (7)2.7索引向量(index vector);数据集子集的选择与修改 (8)2.8对象的其他类型 (9)3对象,模式和属性103.1固有属性:模式和长度 (10)3.2改变对象的长度 (11)3.3属性的获取和设置 (11)3.4对象的类别 (11)4有序因子与无序因子124.1一个特例 (12)4.2函数tapply()与ragged数组 (12)4.3有序因子 (13)5数组和矩阵145.1数组 (14)5.2数组的索引和数组的子块 (14)5.3索引数组 (15)iCONTENTS ii5.4函数array() (16)5.4.1向量,数组的混合运算,重复使用规则 (16)5.5两个数组的外积 (17)5.6数组的广义转置 (17)5.7专门的矩阵功能 (18)5.7.1矩阵乘法 (18)5.7.2线性方程和矩阵的逆 (18)5.7.3特征值和特征向量 (19)5.8奇异值分解与行列式 (19)5.9最小二乘拟合及QR分解 (19)5.10构建分区矩阵,cbind()和rbind() (19)5.11连接函数c(),针对数组的应用 (19)5.12由因子生成频数表 (20)6列表和数据帧216.1列表 (21)6.2构建和修改列表 (22)6.2.1连接列表 (22)6.3数据帧 (22)6.3.1创建数据帧 (22)6.3.2attach()与detach() (23)6.3.3使用数据帧 (23)6.3.4挂接任意列表 (24)6.3.5管理搜索路径 (24)7从文件中读取数据257.1函数read.table() (25)7.2函数scan() (26)7.3内建数据集的存取 (26)7.3.1从其他R功能包中载入数据 (27)7.4编辑数据 (27)8概率分布288.1R—作为一个统计表的集合 (28)8.2检测数据集合的分布 (29)8.3单样本和两样本检验 (32)9语句组、循环和条件操作359.1表达式语句组 (35)9.2控制语句 (35)9.2.1条件执行:if语句 (35)9.2.2重复执行:for循环,repeat和while (35)10编写自己的函数3710.1简单示例 (37)10.2定义新的二元操作符 (38)10.3指定的参数和默认值 (38)10.4参数’...’.. (39)10.5函数内的赋值 (39)10.6更多高级示例 (39)CONTENTS iii10.6.1区组设计的效率因子(Efficiency factors) (39)10.6.2删除打引数组中的所有名称 (40)10.6.3递归的数值积分 (41)10.7范畴(scope) (41)10.8定制环境 (43)10.9类别,通用函数和对象定位 (44)11R的统计模型4511.1定义统计模型;公式 (45)11.1.1对比(contrasts) (48)11.2线性模型 (48)11.3用于释放模型信息的通用函数 (48)11.4方差分析与模型比较 (49)11.4.1方差分析表(ANOVA tables) (49)11.5更新拟合模型 (50)11.6广义线性模型 (50)11.6.1族(families) (51)11.6.2函数glm() (51)11.7非线性最小二乘和最大似然模型 (53)11.7.1最小二乘 (53)11.7.2最大似然 (54)11.8一些非标准的模型 (55)12图形过程5612.1高级绘图命令 (56)12.1.1函数plot() (56)12.1.2显示多元数据 (57)12.1.3显示图形 (58)12.1.4高级绘图函数的参数 (58)12.2低级绘图命令 (59)12.2.1数学注释 (61)12.2.2Hershey矢量字体 (61)12.3图形的交互 (61)12.4使用图形参数 (62)12.4.1持续性变更(Permanent changes):par()函数 (62)12.4.2临时性变更:图形函数的参数 (63)12.5图形参数列表 (63)12.5.1图形元素 (63)12.5.2坐标轴和标记 (64)12.5.3图边缘(Figure margins) (65)12.5.4多图环境 (65)12.6设备驱动 (67)12.6.1文本文档的PostScript图表 (67)12.6.2多重图形设备 (67)12.7动态图形 (68)Chapter1绪论与基础1.1R语言环境R是一套由数据操作、计算和图形展示功能整合而成的套件。
包括:•有效的数据存储和处理功能,•一套完整的数组(特别是矩阵)计算操作符,•拥有完整体系的数据分析工具,•为数据分析和显示提供的强大图形功能,•一套(源自S语言)完善、简单、有效的编程语言(包括条件、循环、自定义函数、输入输出功能)。
在这里使用”环境”(environment)是为了说明R的定位是一个完善、统一的系统,而非其他数据分析软件那样作为一个专门、不灵活的附属工具。
R很适合被用于发展中的新方法所进行的交互式数据分析。
由于R是一个动态的环境,所以新发布的版本并不总是与之前发布的版本完全兼容。
某些用户欢迎这些变化因为新技术和新方法的所带来的好处;有些则会担心旧的代码不再可用。
尽管R试图成为一种真正的编程语言,但是大家不要认为一个由R编写的程序可以长命百岁。
1.2相关的软件和文档R可以被当作S语言(由Rick Becker,John Chambers和AllanWilks在Bell实验室开发)的实现工具,或者S-Plus系统的基本形态。
S语言的发展变化可以参考John Chambers与其他人合作的四本书。
对R来说,基本的参考书是The New S Language:A Programming Environment for Data Analysis and Graphics(Richard A.Becker,John M.Chambers and Allan R.Wilks)。
对于1991年发布的S(S version3)可以参考Statistical Models in S(edited by John M.Chambers and Trevor J.Hastie)。
更多的参考书目请查看本手册的相应部分。
此外,S-Plus的相关文档都可以用于R,只是要注意R与S执行工具之间的差别。
1CHAPTER1.绪论与基础2 1.3R与统计在我们对R语言环境的介绍中并没有提到统计,不过很多人都把R作为一个统计系统来使用。
我们倾向于把它当作环境,使得经典和现代统计技术在其中得到应用。
一部分已经被内建在基本的R语言环境中,但是更多的是以包的形式提供的。
由8个包是随着R一同提供的(称作标准包),其它的可以通过CRAN的成员网站获得(通过)。
通过R可以使用绝大多数的经典或者最新的统计方法,不过用户需要花一些功夫来找出这种方法。
S(和R)与其他主流的统计系统在本质上有一个很重要的不同。
在S中,统计分析通常由一系列的步骤完成,同时将交互的结果存储在对象中。
所以,尽管SAS和SPSS在一个回归或者判别分析中会给出丰富的输出结果,R只是给出一个最小的输出,而将结果保存在一个适当的对象中由R函数进行后续查询。
1.4R与视窗系统使用R最便捷的方式是在一个运行视窗系统的图形工作站上。
这份指南就是为拥有这项便利的用户准备的。
尽管我们绝大部分的内容都是来讲R环境的一般应用,我们还是会时不时的提到R在X window系统下的应用。
与操作系统的直接互动对多数用户来说都是必要的。
在这份指南中我们主要讨论在UNIX系统下的互动,所以Windows下的R用户需要做出一些小的调整。
对工作站的定制是一项直接而有效但又单调乏味的过程,在这里我们并不会作更深入的讨论。
如果您在这方面遇到了困难可以向你身边的专家寻求帮助。
1.5R的交互使用R程序在等待输入命令时会给出提示符,默认的提示符是>,与UNIX的shell提示符是相同的。
不过如果你愿意的话,我们可以轻松的更改R的提示符。
在这里我们先假定UNIX的shell提示符是$。
在UNIX下使用R可以按照下面的推荐步骤来做:1.创建一个独立的子目录来存储解决这个问题所用的数据文件,将目录命名为work.这个目录将作为你当前任务的工作目录.$mkdir work$cd work2.启动R的程序$R3.使用R的各种命令4.退出R>q()此时您会被询问是否保存您在R任务中的数据。
你可以回答yes,no或cancel(使用缩略字符也可以)分别对应退出前保存数据,不保存数据退出或回到R任务中。
被存储的数据在之后的R任务中可以继续使用。
之后的R任务就更简单了。
1.令work成为工作目录,并启动R程序。
$cd work$RCHAPTER1.绪论与基础32.使用R,在任务结束时用q()来中止。
在Windows下使用R的步骤与上面基本相同。
创建一个文件夹作为工作目录,并将其设定R快捷方式的在”起始位置”中。
然后双击图标启动R。
1.6入门训练我们非常推荐读者们在继续进行之前通过一个示例来获取在计算机上使用R的感觉。
这个示例由示例训练给出。
1.7获取函数和功能的帮助信息和UNIX中的man命令一样,R拥有一个内建的帮助功能。
对于任意一个指定的函数,例如solve,命令是>help(solve)或者>?solve对于由特殊字符指定的功能,这些参数必须用单引号或双引号括起来,使之成为一个“字符串”:同时对于某些含有if,for或者function的合成词也要这样处理。
>help("[[")不论是单引号还是双引号都可以包含在另一个中,例如字符串:”It’s im-portant”。
我们的惯例是使用双引号。
一般情况下帮助文档的HTML格式都是被安装了的,可以通过运行下面的命令>help.start()启动一个Web浏览器(UNIX下是netscape浏览器)来浏览包含超级链接的帮助页面。