八年级第二学期3月份段考数学试卷含答案
八年级第二学期3月份段考数学试题含答案

八年级第二学期3月份段考数学试题含答案一、选择题1.下列计算正确的是( )A =B .2=C .(26=D==2.下列计算正确的是( )A =B =C =D =3.下列各式中,无意义的是( )A B C D .310-4. ) A .-3B .3或-3C .9D .35.下列运算中,正确的是( )A =3B .=-1C D .36.a b =--则( ) A .0a b +=B .0a b -=C .0ab =D .220a b +=7.对于已知三角形的三条边长分别为a ,b ,c ,求其面积的问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦给出求其面积的海伦公式:S =,其中2a b cp ++=,若一个三角形的三边长分别为2,3,4,则其面积( )A B C D8.已知12x =⋅,n 是大于1的自然数,那么(n x 的值是( ). A .12007B .12007-C .()112007n- D .()112007n-- 9.下列各式计算正确的是( )A B .C .D10.下列说法中正确的是( )A ±5B .两个无理数的和仍是无理数C .-3没有立方根.D .11.下列运算正确的是( )A =B .(28-=C 12=D 1=12.下列二次根式中是最简二次根式的是( )AB CD二、填空题13.已知x =()21142221x x x x -⎛⎫+⋅= ⎪-+-⎝⎭_________ 14.若mm 3﹣m 2﹣2017m +2015=_____.15.下面是一个按某种规律排列的数阵:根据数阵排列的规律,第 5 行从左向右数第 3 个数是 ,第 n (n 3≥ 且 n 是整数)行从左向右数第 n 2- 个数是 (用含 n 的代数式表示). 16.若实数x ,y ,m 满足等式()223x y m +-=m+4的算术平方根为________.17.1=-==++……=___________.18.n为________.19.x的取值范围是_____20.已知2x=243x x--的值为_______.三、解答题21.阅读材料,回答问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式a =,)111=11互为有理化因式.(1)1的有理化因式是;(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:3==,25384532++====-进行分母有理化.(3)利用所需知识判断:若a=,2b=ab,的关系是.(4)直接写结果:)1=.【答案】(1)1;(2)7-;(3)互为相反数;(4)2019【分析】(1)根据互为有理化因式的定义利用平方差公式即可得出;(2)原式分子分母同时乘以分母的有理化因式(2,化简即可;(3)将a=(4)化简第一个括号内的式子,里面的每一项进行分母有理化,然后利用平方差公式计算即可.【详解】解:(1)∵()()1111=,∴1的有理化因式是1;(22243743--==--(3)∵2a===,2b=-,∴a和b互为相反数;(4))1 ++⨯=)11⨯=)11=20201-=2019,故原式的值为2019.【点睛】本题考查了互为有理化因式的定义及分母有理化的方法,并考查了利用分母有理化进行计算及探究相关式子的规律,本题属于中档题.22.在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式.比如:2224312111-=-=-+=).善于动脑的小明继续探究:当a b m n、、、为正整数时,若2an+=+),则有22(2a m n=+,所以222a m n=+,2b mn=.请模仿小明的方法探索并解决下列问题:(1)当a b m n、、、为正整数时,若2a n=+),请用含有m n、的式子分别表示a b、,得:a=,b=;(2)填空:13-(- 2;(3)若2a m+=(),且a m n、、为正整数,求a的值.【答案】(1)223am n=+,2b mn=;(2)213--;(3)14a=或46.【解析】试题分析:(1)把等式)2a n+=+右边展开,参考范例中的方法即可求得本题答案;(2)由(1)中结论可得:2231324a m nb mn⎧=+=⎨==⎩,结合a b m n、、、都为正整数可得:m=2,n=1,这样就可得到:213(1-=-;(3)将()2a m +=+右边展开,整理可得:225a m n =+,62mn =结合a m n 、、为正整数,即可先求得m n 、的值,再求a 的值即可.试题解析:(1)∵2a n =+),∴223a m n +=++, ∴2232a m n b mn =+=,;(2)由(1)中结论可得:2231324a m n b mn ⎧=+=⎨==⎩,∵a b m n 、、、都为正整数,∴12m n =⎧⎨=⎩或21m n =⎧⎨=⎩ ,∵当m=1,n=2时,223713a m n =+=≠,而当m=2,n=1时,22313a m n =+=, ∴m=2,n=1,∴(2131--;(3)∵222()52a m m n +=+=++ ∴225a m n =+,62mn = , 又∵a m n 、、为正整数, ∴=1=3m n ,, 或者=3=1m n ,,∴当=1=3m n ,时,46a =;当=3=1m n ,,14a =, 即a 的值为:46或14.23.-10 【分析】先根据二次根式的性质和平方差公式化简,然后再进行计算即可 【详解】=(22⎡⎤--⎢⎥⎣⎦=()212--10+.10.【点睛】本题主要考查了二次根式的性质、平方差公式,灵活运用二次根式的性质化简是解答本题的关键.24.计算:(1(2|a ﹣1|,其中1<a 【答案】(1)1;(2)1 【分析】(1)根据二次根式的乘法法则计算;(2)由二次根式的非负性,a 的取值范围进行化简. 【详解】解:(1-1=2-1=1(2)∵1<a ,a ﹣1=2﹣a +a ﹣1=1. 【点睛】本题考查二次根式的性质、二次根式的乘法法则,主要检验学生的计算能力.25.先化简,再求值:2443(1)11m m m m m -+÷----,其中2m =.【答案】22mm-+ 1. 【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.详解:原式=221m m --()÷(31m -﹣211m m --) =221m m --()÷241m m --=221m m --()•122m m m --+-()() =﹣22m m -+=22m m-+当m ﹣2时,原式===﹣1+=1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.26.计算:0(3)|1|π-+.【答案】【分析】根据二次根式的意义和性质以及零次幂的定义可以得到解答. 【详解】解:原式11=+=【点睛】本题考查实数的运算,熟练掌握二次根式的运算和零次幂的意义是解题关键.27.(1|5-+;(2)已知实数a 、b 、c 满足|3|a +=,求2(b a +的值.【答案】(1)5;(2)4 【分析】(1)先利用二次根式的乘法法则和绝对值的意义计算,再进行回头运算即可; (2)先根据二次根式有意义的条件确定b 的值,再根据非负数的和的意义确定a ,c 的值,然后再计算代数式的值即可. 【详解】解:(15-+5)=+5=+5=(2)由题意可知:5050b b -≥⎧⎨-≥⎩,解得5b =由此可化简原式得,30a +=30a ∴+=,20c -= 3a ∴=-,2c =22((534b a ∴+=--=【点睛】可不是考查了二次根式的混合运算以及二次根式的化简求值,熟练掌握运算法则和运算顺序是解答此题的关键.28.先化简,再求值:221()a ba b a b b a-÷-+-,其中a =2b =- 【答案】1a b -+,12-. 【分析】先把分式进行化简,得到最简分式,然后把a 、b 的值代入计算,即可得到答案. 【详解】 解:原式1()()a b a b aa b a b b a b b--=⨯-⨯+-+()()a b a b a b b a b -=--++()b bb a =-+1a b=-+,当a =2b =原式12==-.【点睛】本题考查了二次根式的混合运算,分式的化简求值,分式的混合运算,解题的关键是熟练掌握运算法则进行解题.29.计算:(1 (2)()()2221-【答案】2)1443 【分析】(1)先化成最简二次根式,然后再进行加减运算即可; (2)套用平方差公式和完全平方式进行运算即可. 【详解】解:(1)原式=23223323,(2)原式(34)(12431)1124311443,故答案为:1443. 【点睛】本题考查二次根式的四则运算,熟练掌握二次根式的四则运算是解决本题的关键.30.先阅读下面的解题过程,然后再解答.a ,b ,使a b m +=,ab n =,即22m +==0)a b ==±>.这里7m =,12n =, 由于437+=,4312⨯=,所以22+==,2===.. 【答案】见解析 【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法. 【详解】根据题意,可知13m =,42n =, 由于7613+=,7642⨯=,所以2213+=,====【点睛】此题考查二次根式的性质与化简,解题关键在于求得13m =,42n =.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】5==,=,(24312=⨯=,选项D 正确.2.B解析:B 【分析】根据二次根式加法法则,二次根式的乘法法则计算后判断即可得到答案. 【详解】=3= , ∴A 、C 、D 均错误,B 正确, 故选:B. 【点睛】此题考查二次根式的加法法则,二次根式的乘法法则,熟记计算法则是正确解题的关键.3.A解析:A 【分析】直接利用二次根式有意义的条件、负整数指数幂的性质分析得出答案. 【详解】AB ,有意义,不合题意;CD 、33110=10-,有意义,不合题意; 故选A. 【点睛】此题主要考查了二次根式有意义的条件、负整数指数幂的性质,正确把握二次根式的定义是解题关键.4.D解析:D根据二次根式的性质进行计算即可.【详解】|3|3=.故选:D.【点睛】(0)0(0)(0)a aa aa a><⎧⎪===⎨⎪-⎩.5.D解析:D【分析】根据二次根式的加减乘除法则逐项判断即可得.【详解】A314=+=,此项错误B、23==-,此项错误C2428===⨯=,此项错误D、3=,此项正确故选:D.【点睛】本题考查了二次根式的加减乘除运算,熟记二次根式的运算法则是解题关键.6.C解析:C【分析】直接利用二次根式的性质,将已知等式左边化简,可以得到a与b中至少有一个为0,进而分析得出答案即可.【详解】解:∵a b=--,∴a-b=-a-b,或b-a=-a-b∴a= -a,或b=-b, ∴a=0,或b=0, ∴ab=0, ∴0ab=.故选:C.【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.解析:A【分析】根据公式解答即可.【详解】根据题意,若一个三角形的三边长分别为2,3,4,则2+349=222a b c p +++== ∴其面积为S ====故选:A .【点睛】本题考查二次根式的应用、数学常识等知识,难度较难,掌握相关知识是解题关键.8.C解析:C【解析】【分析】令a =112x a a ⎛⎫=- ⎪⎝⎭112a a ⎛⎫=+ ⎪⎝⎭,2007n a =,进而得到x【详解】令a =112x a a ⎛⎫=- ⎪⎝⎭112a a ⎛⎫=+ ⎪⎝⎭,2007n a =,∴x 1111122a a a a a ⎛⎫⎛⎫--+=- ⎪ ⎪⎝⎭⎝⎭,∴原式=111()(1)(1)2007n n n n a a -=-=-. 故选C .【点睛】 本题考查了二次根式的混合运算.熟练掌握二次根式混合运算法则是解答本题的关键.9.D解析:D【解析】不是同类二次根式,因此不能计算,故不正确.根据同类二次根式,可知,故不正确;根据二次根式的性质,可知,故不正确;3==,故正确.故选D.解析:D【分析】根据算术平方根和平方根的概念,无理数的概念立方根的概念,和二次根式的概念逐一判断即可.【详解】5=,故A 选项错误;0ππ-+=,故B 选项错误;-3=,故C 选项错误;D 选项正确;故选D .【点睛】本题考查了算术平方根和平方根的区别,无理数、二次根式和立方根的概念,题目较为综合,熟练掌握相关概念是本题的关键.11.B解析:B【分析】根据二次根式的性质及运算法则依次计算各项后即可解答.【详解】选项A A 错误;选项B ,(2428-=⨯=,选项B 正确;选项C 14==,选项C 错误;选项D 1,选项D 错误.综上,符合题意的只有选项B .故选B .【点睛】本题考查了二次根式的性质及运算法则,熟练运用二次根式的性质及运算法则是解决问题的关键.12.A解析:A【分析】根据最简二次根式的定义判断即可.【详解】A 是最简二次公式,故本选项正确;BCD =故选A .【点睛】本题考查了最简二次根式,掌握最简二次根式的定义是解题的关键.二、填空题13.【分析】利用完全平方公式化简,得到;化简分式,最后将代入化简后的分式,计算即可.【详解】将代入得:故答案为:【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在解析:1-【分析】利用完全平方公式化简x =1x =;化简分式,最后将1x =代入化简后的分式,计算即可.【详解】1x =====()211422(2)(2)2221(2)(2)2(1)x x x x x x x x x x x -++-+-⎛⎫+⋅= ⎪-+--+-⎝⎭ 1x x =-将1x =1=-故答案为:1-【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在于化简x =熟练掌握相关知识点是解题关键.14.4030【分析】利用平方差公式化简m ,整理要求的式子,将m 的值代入要求的式子计算即可.【详解】m== m==+1,∴m3-m2-2017m+2015=m2(m ﹣1)﹣2017m+2015解析:4030【分析】利用平方差公式化简m ,整理要求的式子,将m 的值代入要求的式子计算即可.【详解】mm ), ∴m 3-m 2-2017m +2015=m 2(m ﹣1)﹣2017m +2015= )22017)+2015=(2017+2015﹣2=4030.故答案为4030.【点睛】本题主要考查二次根式的化简以及二次根式的混合运算.15.;.【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表格中的数据可得,第5行从左向右数第3=∵第(n-1,∴第n(n≥3且n是整数)行从左向右数第n-2个数是..【点睛】本题是对数字变化规律的考查,观察出被开方数是连续自然数并且每一行的最后一个数的被开方数是所在的行数乘比行数大1的数是解题的关键.16.3【解析】【分析】先根据二次根式有意义的条件得出x+y的值,再根据非负数的性质列出关于x,y,m的方程组,求出m的值,进而可得出结论.【详解】依题意得:,解得:x=1,y=1,m=5,∴3解析:3【解析】【分析】先根据二次根式有意义的条件得出x+y的值,再根据非负数的性质列出关于x,y,m的方程组,求出m的值,进而可得出结论.【详解】依题意得:35302302x y mx y mx y+--=⎧⎪+-=⎨⎪+=⎩,解得:x=1,y=1,m=5,∴==3.故答案为3.【点睛】本题考查了二次根式有意义得条件及非负数的性质,熟知二次根式具有非负性是解答此题的关键.17.2018【分析】先根据已知等式归纳类推出一般规律,再根据二次根式的加减法与乘法运算法则即可得.【详解】第1个等式为:,第2个等式为:,第3个等式为:,归纳类推得:第n 个等式为:(其中,解析:2018【分析】先根据已知等式归纳类推出一般规律,再根据二次根式的加减法与乘法运算法则即可得.【详解】第11=,第2=,第3=归纳类推得:第n 1=-n 为正整数),则2020++,2020=+,=, 20202=-,2018=,故答案为:2018.【点睛】本题考查了二次根式的加减法与乘法运算,依据已知等式,正确归纳出一般规律是解题关键.18.7【分析】把28分解因数,再根据二次根式的定义判断出n 的最小值即可.【详解】解:∵28=4×7,4是平方数,∴若是整数,则n 的最小正整数值为7,故答案为7.【点睛】本题考查了二次根式解析:7【分析】把28分解因数,再根据二次根式的定义判断出n 的最小值即可.【详解】解:∵28=4×7,4是平方数,n 的最小正整数值为7,故答案为7.【点睛】本题考查了二次根式的定义,把28分解成平方数与另一个数相乘的形式是解题的关键.19.x≥4【解析】试题分析:根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4.故答案为x≥4.点睛:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然解析:x≥4【解析】试题分析:根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4. 故答案为x≥4.点睛:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然后列不等式求解即可,是一个中考常考的简单题.20.-4【分析】把代入计算即可求解.【详解】解:当时,=-4故答案为:-4【点睛】本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题解析:-4【分析】把2x =243x x --计算即可求解.【详解】解:当2x =243--x x((2=---24234383=--+=-4故答案为:-4【点睛】本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
2022-2023学年山东省菏泽市开发区多校联考八年级(下)月考数学试卷(3月份)+答案解析(附后)

2022-2023学年山东省菏泽市开发区多校联考八年级(下)月考数学试卷(3月份)1. 下列不等式中,是一元一次不等式的是( )A.B.C.D.2. 下列判断不正确的是( )A. 若,则 B. 若,则 C. 若,则D. 若,则3. 若等腰三角形中有两边长分别为3和7,则这个三角形的周长为( )A. 13B. 13或17C. 10D. 174.用反证法证明命题“在中,若,则”,首先应假设( )A. B.C. D.5. 如图,,,,要根据“HL ”证明,则还需要添加一个条件是( )A. B.C.D.6. 有一个角是的直角三角形,斜边为1cm ,则斜边上的高为( )A.B.C. D.7. 如图,在中,,,BD 、CE 分别是、的角平分线,则图中的等腰三角形有( )A. 5个B. 4个C. 3个D. 2个8. 如图,,OE平分,交OA于点D,,垂足为若,则OD的长为 ( )A. 2B.C. 4D.9. 下面是教师出示的作图题.已知:线段a,h,小明用如图所示的方法作,使,AB上的高作法:①作射线AM,以点A为圆心、※为半径画弧,交射线AM于点B;②分别以点A,B为圆心、为半径画弧,两弧交于点D,E;③作直线DE,交AB于点P;④以点P为圆心、⊕为半径在AM上方画弧,交直线DE于点C,连接AC,对于横线上符号代表的内容,下列说法不正确的是( )A.※代表“线段a的长” B. 代表“任意长”C. 代表“大于的长”D. ⊕代表“线段h的长”10. 已知点C在线段BE上,分别以BC、CE为边作等边三角形ABC和等边三角形DCE,连接AE与CD相交于点N,连接BD与AC相交于点M,连接OC、MN,则①;②≌;③;④是等边三角形;⑤OC平分;⑥;以上结论正确的个数是( )A. 3个B. 4个C. 5个D. 6个11. 若的解集是,则a的取值范围是______.12. 在实数范围内定义一种新运算“⊕”,其运算规则为:如:则不等式的解集是______ .13. 如图,在中,,,则的度数为______ .14.如图,已知的周长是21,OB,OC分别平分和,于D,且,的面积是______.15. 如图,在中,AC的垂直平分线DE交AC于点D,交BC于点E,,则的度数为______ .16. 如图,等腰三角形ABC的底边BC长为6,面积是18,腰AC的垂直平分线EF分别交AC,AB于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则的周长的最小值为______.17. 解下列不等式,并把解集在数轴上表示出来.18. 一次数学竞赛中,共有20道题,规定答对一道题得6分,答错或不答一道题扣2分;80分以上含80分可以获奖,问若要获奖,至少要答对几道题?19. 在等边的三条边AB,BC,CA上,分别取点D,E,F,使得,连接DE,EF,FD,求证:是等边三角形.20. 如图,点C在线段AB上,,,,于点求证:≌;求证:CF平分21. 已知:如图中,,BD平分,CD平分,过D作直线平行于BC,交AB,AC于E,求证:是等腰三角形;求的周长.22. 如图1,在中,,,直线m经过点A,直线m,直线m,垂足分别为点D、求证:≌;如图2,将中的条件改为:在中,,D、A、E三点都在直线m上,并且有,其中为任意锐角或钝角.请问结论≌是否成立?如成立,请给出证明;若不成立,请说明理由.拓展应用:如图3,D,E是D,A,E三点所在直线m上的两动点三点互不重合,点F为平分线上的一点,且和均为等边三角形,连接BD,CE,若,求证:是等边三角形.答案和解析1.【答案】D【解析】【分析】本题考查一元一次不等式的识别.主要依据一元一次不等式的定义进行辨别.含有一个未知数并且未知数的次数是一次的不等式叫一元一次不等式.【解答】解:A分母中含有未知数,所以不是一元一次不等式,不符合题意;B是一元二次不等式,不符合题意;C是二元一次不等式,不符合题意;D是一元一次不等式,符合题意.故选2.【答案】D【解析】解:A、在不等式的两边同时加2,不等式仍成立,即,正确,不符合题意;B、在不等式的两边同时乘以,不等号方向改变,即,正确,不符合题意;C、在不等式的两边同时乘以2,不等式仍成立,即,正确,不符合题意;D、当时,,原变形错误,符合题意.故选:根据不等式的基本性质进行判断.本题考查的是不等式的基本性质:不等式两边加或减同一个数或式子,不等号的方向不变;不等式两边乘或除以同一个正数,不等号的方向不变;不等式两边乘或除以同一个负数,不等号的方向改变.3.【答案】D【解析】解:若3为腰长,7为底边长,由于,则三角形不存在;若7为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为故选:求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为3和7,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.4.【答案】A【解析】解:反证法证明命题“在中,若,则”时,首先假设,故选:根据反证法的步骤中,第一步是假设结论不成立,反面成立解答即可.本题考查的是反证法的应用,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.5.【答案】D【解析】【分析】本题考查了全等三角形的判定定理的应用,能灵活运用全等三角形的判定定理进行推理是解此题的关键.根据垂直定义求出,再根据全等三角形的判定定理推出即可.【解答】解:条件是,理由是:,,,在和中,,,故选6.【答案】C【解析】解:如下图所示:,于点D,,,,,,,,故选项A错误,选项B错误,选项C正确,选项D错误.故选:根据题目画出相应的图形,由题意可以求得BC、AC的长,由,,可以求得CD 的长,从而可以解答本题.本题考查角的直角三角形,解题的关键是画出合适的三角形,灵活变化,找出所求问题需要的条件.7.【答案】A【解析】解:共有5个.,是等腰三角形;、CE分别是、的角平分线,,,是等腰三角形,,是等腰三角形;,,,又BD是的角平分线,,是等腰三角形;、CE分别平分,,,,,,,,,即是等腰三角形由可得,即是等腰三角形.综上所述,共有5个等腰三角形.故选:根据已知条件和等腰三角形的判定定理,对图中的三角形进行一一分析,即可得出答案.此题主要考查学生对角的平分线,等腰三角形判定和三角形内角和定理的理解和掌握,属于中档题.8.【答案】C【解析】解:过点E作于点H,如图所示:平分,,,,OE平分,,,,,,,,,,,,故选:过点E作于点H,根据角平分线的性质可得,再根据平行线的性质可得的度数,再根据含角的直角三角形的性质可得DE的长度,再证明,即可求出OD的长.本题考查了角平分线的性质,含角的直角三角形的性质,平行线的性质等,熟练掌握这些性质是解题的关键.9.【答案】B【解析】解:作法:①作射线AM,以点A为圆心、“线段a的长”为半径画弧,交射线AM于点B;②分别以点A,B为圆心、“大于二分之一AB的长”为半径画弧,两弧交于点D,E;③作直线DE,交AB于点P;④以点P为圆心、“线段h的长”为半径在AM上方画弧,交直线DE于点C,连接AC,所以说法不正确的是故选:根据基本作图方法即可完成填空.本题考查作图-复杂作图,解题的关键是理解题意,灵活运用所学知识解决问题.10.【答案】D【解析】解:三角形ABC和三角形DCE都是等边三角形,,,,,≌,,故①正确;,又,,,故③正确;,,,≌,故②正确;,又,是等边三角形,故④正确;如图,过C作,,≌,中BD边上的高与中AE边上的高对应相等,即,点C在的角平分线上,即CO平分,故⑤正确;如图,在BO上截取,则是等边三角形,,,又,,≌,,,故⑥正确;故选:依据等边三角形的性质,判定≌,≌,≌,再分别依据全等三角形的对应边相等,对应角相等,对应边上的高相等,即可得到正确的结论.本题主要考查了全等三角形的判定与性质,等边三角形的性质与判断的综合运用,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.11.【答案】【解析】解:,且不等式的解集是,,解得:故答案为:根据不等式的基本性质3,结合题意可得,解之即可.本题主要考查解一元一次不等式,解题的关键是掌握不等式的基本性质和解一元一次不等式的能力.12.【答案】【解析】解:,,不等式即为:,解得,故答案为:根据新定义运算,列出不等式,然后解不等式即可.本题考查了新定义运算,解一元一次不等式,根据新定义得出不等式是解题的关键.13.【答案】【解析】解:,,,,为的外角,,,,,即,故答案为:先根据等腰三角形的性质,得出,,根据三角形的外角得出,根据三角形内角和,结合,求出的度数即可.本题主要考查了等腰三角形的性质,三角形外角的性质,解题的关键是熟练掌握等边对等角.14.【答案】42【解析】【分析】本题考查了角平分线性质,三角形的面积,主要考查学生运用定理进行推理的能力.过O作于E,于F,连接OA,根据角平分线性质求出,根据的面积等于的面积、的面积以及的面积之和,即可求出答案.【解答】解:如图,过O作于E,于F,连接OA,,OC分别平分和,,,,即,的面积是:故答案为:15.【答案】【解析】解:垂直平分线段AC,,,,,,故答案为:证明,利用三角形内角和定理求解即可.本题考查直角三角形的性质,线段的垂直平分线的性质等知识,解题关键是灵活运用所学知识解决问题,属于中考常考题型.16.【答案】9【解析】解:连接AD,是等腰三角形,点D是BC边的中点,,,解得,是线段AC的垂直平分线,点A关于直线EF的对称点为点C,,,的长为的最小值,的周长最短故答案为:连接AD,AM,由于是等腰三角形,点D是BC边的中点,故,再根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点C,,推出,故AD的长为的最小值,由此即可得出结论.本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.17.【答案】解:,,,,,,解集在数轴上表示为:去括号得,,移项得,,合并同类项得,,系数化为1得,,解集在数轴上表示为:,移项得,,合并同类项得,,系数化为1得,,解集在数轴上表示为:,去分母得,,去括号得,,移项得,,合并同类项得,,系数化为1得,解集在数轴上表示为:【解析】去分母,去括号,移项,合并同类项,系数化成1即可;去括号,移项,合并同类项,系数化成1即可;移项,合并同类项,系数化成1即可;去分母,去括号,移项,合并同类项,系数化成1即可.本题考查了解一元一次不等式,在数轴上表示不等式的解集,数形结合是解题的关键.在表示解集时“”,“”要用实心圆点表示;“<”,“>”要用空心圆点表示.18.【答案】解:设答对x题,那么答错或者不答的有题解得:答:至少要答对15题.【解析】根据题意,设答对x题,则答对获得的分数为6x,而答错损失的分数为,由这次竞赛获奖必须达到80分,列出不等式求解即可.此题主要考查了一元一次不等式的应用,根据题意得出正确的不等关系是解题关键.19.【答案】证明:是等边三角形,,,,,在和中,,≌,在和中,,≌,≌,,是等边三角形.【解析】根据等边三角形的性质得出,,,进一步证得,即可证得≌≌,根据全等三角形的性质得出,即可证得是等边三角形.此题考查了等边三角形性质,全等三角形的性质和判定的应用,熟练掌握全等三角形的判定与性质是解题的关键.20.【答案】证明:,,在和中,,≌,≌,,又,平分【解析】根据平行线性质求出,根据SAS推出≌;根据全等三角形性质推出,根据等腰三角形性质即可证明CF平分本题考查了平行线性质,全等三角形的性质和判定,等腰三角形性质的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.21.【答案】证明:,,平分,,,,是等腰三角形;,,平分,,,,,,的周长为:【解析】首先根据平行线的性质可得,再根据角平分线的定义可得,可得,据此即可证得;同理可得,根据的周长,求解即可.本题考查了等腰三角形的判定和性质,平行线的性质,角平分线的定义等,熟练掌握等腰三角形的判定和性质是解题的关键.22.【答案】证明:如图1,直线m,直线m,,,,在和中,,≌解:≌成立,证明:当为钝角时,如图2,,,,,在和中,,≌当为锐角时,如图,,,,,在和中,,≌证明:如图3,和均为等边三角形,,,,,由得≌,,,,,,在和中,,≌和,,,,是等边三角形.【解析】由,推导出,即可根据全等三角形的判定定理“AAS”证明≌;当为钝角时,由,推导出,即可根据全等三角形的判定定理“AAS”证明≌;当为锐角时,用同样的方法可证明≌;先由和均为等边三角形,得,,,则,而,由得≌,则,,可推导出,即可证明≌和,得,,则,即可证明是等边三角形.此题重点考查同角的余角相等、三角形内角和定理、全等三角形的判定与性质、等边三角形的判定与性质、数形结合与分类讨论数学思想的运用等知识与方法,此题综合性强,难度较大,属于考试压轴题.。
人教版八年级(下)学期3月份段考数学试卷含答案

人教版八年级(下)学期3月份段考数学试卷含答案一、选择题1.下列各式中,运算正确的是( ) A .222()-=-B .284⨯=C .2810+=D .222-=2.下列根式是最简二次根式的是( ) A .4B .21x +C .12D .40.53.下列计算正确的是( ) A .336+=B .3323+=C .336⨯=D .3333+=4.当0x =时,二次根式42x -的值是( ) A .4B .2C .2D .05.已知实数a 在数轴上的位置如图所示,则化简2||(-1)a a +的结果为( )A .1B .﹣1C .1﹣2aD .2a ﹣16.已知x 132x 232,则x₁²+x₂²等于( ) A .8B .9C .10D .117.下列各式中,无意义的是( ) A 23-B ()333-C ()23-D .310-8.下列各式中,正确的是( ) A 16B .16C 2668⨯=D 42783=- 49.已知44220,24,180x y x y x yx y>+=++=、.则xy=( )A .8B .9C .10D .1110.若12x x +-有意义,则字母x 的取值范围是( ) A .x≥1B .x≠2C .x≥1且x =2D ..x≥-1且x ≠211.下列计算正确的是( )A 235=B 623=C 23(3)86-=-D 321=12.12+63的值应在( ) A .1和2之间B .3和4之间C .4和5之间D .5和6之间二、填空题13.化简并计算:()()()()()()()...112231920xx x x x x x x ++++=+++++++________.(结果中分母不含根式) 14.计算(π-3)02-211(223)-4--22--()的结果为_____. 15.若a ,b ,c 是实数,且21416210a b c a b c ++=-+-+--,则2b c +=________.16.222a a ++-1的最小值是______.17.已知x ,y 为实数,y =22991x x -+-+求5x +6y 的值________.18.已知4a,化简:2(3)|2|a a +--=_____.19.实数a 、b 在数轴上的位置如图所示,则化简()222a b a b -+-=_____.20.1+x有意义,则x 的取值范围是____. 三、解答题21.阅读材料,回答问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式a a a =,)21211=a a 2121互为有理化因式.(1)231的有理化因式是 ;(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:3233333==⨯, ()()25353521538215415535353++++====--+323+进行分母有理化. (3)利用所需知识判断:若25a =+,25b =a b ,的关系是 .(4)直接写结果:)1=.【答案】(1)1;(2)7-;(3)互为相反数;(4)2019【分析】(1)根据互为有理化因式的定义利用平方差公式即可得出;(2)原式分子分母同时乘以分母的有理化因式(2,化简即可;(3)将a=(4)化简第一个括号内的式子,里面的每一项进行分母有理化,然后利用平方差公式计算即可.【详解】解:(1)∵()()1111=,∴1的有理化因式是1;(2227 -==-(3)∵2a===,2b=-,∴a和b互为相反数;(4))1 ++⨯=)11⨯=)11=20201-=2019,故原式的值为2019.【点睛】本题考查了互为有理化因式的定义及分母有理化的方法,并考查了利用分母有理化进行计算及探究相关式子的规律,本题属于中档题.22.(112=3==;……写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【答案】(1)1142=52555-=,115636-=;(2)2111n n n --=;(3)证明见解析. 【解析】 【分析】(1)根据题目中的例子直接写出结果; (2)根据(1)中的特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题. 【详解】解:(1)由例子可得, ④为:11-525=4=25,⑤11-636=56, (2)如果n 为正整数,用含n 的式子表示这个运算规律:211-n n =n -1, (3)证明:∵n 是正整数, ∴211-n n =2n -1n =n -1n. 即211-n n =n -1n. 故答案为(1)11-525=45=25,11-636=5;(2)211-n n = n -1n;(3)证明见解析. 【点睛】本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.23.先化简,再求值:a+212a a -+,其中a =1007. 如图是小亮和小芳的解答过程.(1) 的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质: ; (3)先化简,再求值:269a a -+a =﹣2018. 【答案】(1)小亮(22a (a <0)(3)2013. 【解析】试题分析:(1,判断出小亮的计算是错误的;(2的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可. 试题解析:(1)小亮(2(a <0)(3)原式=a+2(3-a )=6-a=6-(-2007)=2013.24.计算:(1(041--;(2⎛- ⎝【答案】(1;(2)【解析】试题分析:根据二次根式的性质及分母有理化,化简二次根式,然后合并同类二次根式即可解答.试题解析:(1(041--(2⎛- ⎝-0-=25.先化简再求值:4y x ⎛- ⎝,其中30x -=.【答案】(2x - 【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x ,y 的值,继而将x 、y 的值代入计算可得答案. 【详解】解:4y x ⎛- ⎝((=-(2x =-∵ 30x - ∴ 3,4x y == 当3,4x y ==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.26.先化简,再求值:a ,其中【答案】2a-1,【分析】先根据二次根式的性质进行化简,再代入求值即可. 【详解】解:1a =-∴原式=1a a --=21a -当1a =-∴原式=(211-=1-【点睛】此题主要考查化简求值,正确理解二次根式的性质是解题关键.27.计算(2)2;(4)【答案】(1)2)9-;(3)1;(4)【分析】(1)根据二次根式的性质和绝对值的代数意义进行化简后合并即可; (2)根据完全平方公式进行计算即可; (3)根据二次根式的乘除法法则进行计算即可; (4)先进行乘法运算,再合并即可得到答案. 【详解】解:==(2)2=22-=63-=9-=1;(4)===【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.28.计算:(1)0 1 2⎛⎫ ⎪⎝⎭(2)(4【答案】(1)-5;(2)9【分析】(1)第一项利用算术平方根的定义计算,后一项利用零指数幂法则计算,即可得到结果;(2)利用平方差公式计算即可.【详解】(1)0 1 2⎛⎫ ⎪⎝⎭41 =--,5=-;(2)(4=-167=.9【点睛】本题考查了二次根式的混合运算以及零指数幂,熟练掌握平方差公式是解题的关键.29.计算(1-(2)(()21【答案】(1);(2)24+【分析】(1)先将各二次根式化为最简二次根式,再进行合并即可得到答案;(2)原式运用平方差公式和完全平方公式把括号展开后,再合并同类二次根式即可得到答案.【详解】解:(1=+2=(-+2=2-(2)(()21---=22(181)=452181--+=24+.【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则和运算顺序是解答此题的关键.30.已知x²+2xy+y²的值.【答案】16【解析】分析:(1)根据已知条件先计算出x+y=4,再利用完全平方公式得到x²+2xy+y²=(x+y)²,然后利用整体代入的方法计算.本题解析:∵x² +2xy+y² =(x+y)²,∴当∴x²+2xy+y²=(x+y)²=(2−=16.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】=(a≥0,b≥0),被开数相同的二次根式可以合并进行计算即可.【详解】=,故原题计算错误;A2B=,故原题计算正确;C=D、2不能合并,故原题计算错误;故选B.【点睛】此题主要考查了二次根式的混合运算,关键是掌握二次根式乘法、性质及加减法运算法则.2.B解析:B【分析】可以根据最简二次根式的定义进行判断.【详解】A,原根式不是最简二次根式;B=,原根式不是最简二次根式;C2==D、=4故选B.【点睛】本题考查最简二次根式的定义,熟练掌握最简二次根式的定义及二次根式的化简方法是解题关键.3.B解析:B 【分析】根据二次根式加法法则,二次根式的乘法法则计算后判断即可得到答案. 【详解】=3= , ∴A 、C 、D 均错误,B 正确, 故选:B. 【点睛】此题考查二次根式的加法法则,二次根式的乘法法则,熟记计算法则是正确解题的关键.4.B解析:B 【分析】把x=0 【详解】 解:当x=0时,=2,故选:B . 【点睛】本题考查了二次根式的定义和二次根式的性质,能灵活运用二次根式的性质进行计算是解题的关键.5.A解析:A 【分析】先由点a 在数轴上的位置确定a 的取值范围及a-1的符号,再代入原式进行化简即可 【详解】由数轴可知0<a <1,所以,||1a a a =+-=1,选A . 【点睛】此题考查二次根式的性质与化简,实数与数轴,解题关键在于确定a 的大小6.C解析:C 【详解】12x x +==12321x x ==-=,所以()2221212122x x x x x x +=+-=(22112210-⨯=-=,故选:C .【点睛】对于形如2212x x +的式子,改变其中两个字母的位置后,并不改变代数式的值,通常将具有这个特点的代数式称为轮换对称式,如1211+x x ,1221x x x x +,12x x -等,轮换对称式都可以用12x x +,12x x 来表示,所以求轮换对称式的值,一般是先将式子用12x x +,12x x 来表示,然后再整体代入计算.7.A解析:A【分析】直接利用二次根式有意义的条件、负整数指数幂的性质分析得出答案.【详解】AB,有意义,不合题意;CD 、33110=10-,有意义,不合题意; 故选A.【点睛】 此题主要考查了二次根式有意义的条件、负整数指数幂的性质,正确把握二次根式的定义是解题关键.8.C解析:C【分析】根据算术平方根与平方根的定义、二次根式的加法与乘除法逐项判断即可.【详解】A 4=,此项错误B 、4=±,此项错误C2==,此项正确D== 故选:C .【点睛】本题考查了算术平方根与平方根的定义、二次根式的加法与乘除法,掌握二次根式的运算法则是解题关键.9.D解析:D【分析】利用完全平方公式、平方差公式化简第二个等式即可.【详解】44180+=配方得22222180⎡⎤+-+⋅=⎣⎦ 222180⎡⎤⎡⎤+=⎣⎦⎣⎦222()180x y +-=22162(2)180xy x xy y +-+=22122()180xy x y ++=将2224x y +=代入得:12224180xy +⨯=计算得:11xy =故选:D.【点睛】本题考查了完全平方公式、平方差公式的综合应用,熟记公式是解题关键,这两个公式是常考点,需重点掌握. 10.D解析:D【分析】直接利用二次根式的有意义的条件分析得出答案.【详解】有意义,则x+1≥0且x-2≠0, 解得:x≥-1且x≠2.故选:D .【点睛】本题考查了二次根式有意义的条件,正确把握相关性质是解题关键.11.B解析:B【分析】根据二次根式加减运算和二次根式的性质逐项排除即可.【详解】与A选项错误;===B选项正确;=-=,所以C选项错误;321与D选项错误;故选答案为B.【点睛】本题考查了二次根式加减运算和二次根式的性质,掌握同类二次根式的定义和二次根式的性质是解答本题的关键.12.B解析:B【分析】原式利用多项式除以单项式法则计算,估算确定出范围即可.【详解】=∵1<2<4,∴1<2,即3<<4,则原式的值应在3和4之间.故选:B.【点睛】本题考查了二次根式的混合运算,以及无理数的估算,解题的关键是熟练掌握运算法则进行解题.二、填空题13.【分析】根据=,将原式进行拆分,然后合并可得出答案.【详解】解:原式==.故答案为.【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观【分析】-,将原式进行拆分,然后合并可得出答案. 【详解】解:原式====220400x x x-.【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观察.14.﹣6【解析】根据零指数幂的性质,二次根式的性质,负整指数幂的性质,可知(π-3)0=1﹣(3﹣2)﹣4×﹣4=1﹣3+2﹣2﹣4=﹣6.故答案为﹣6.解析:﹣6【解析】根据零指数幂的性质01(0)a a =≠,二次根式的性质,负整指数幂的性质1(0)p p a a a -=≠,可知(π-3)0-21-2()=1﹣(3﹣)﹣﹣4=1﹣﹣﹣4=﹣6. 故答案为﹣6.15.21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得,,的值,从而得到答案.【详解】∵∴∴∴∴∴∴∴.【点睛】本题考查了二次根式、完全平方公式的知识;解题的解析:21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得a ,b ,c 的值,从而得到答案.【详解】∵10a b c ++=∴100a b c ---=∴2221490⎡⎤⎡⎤⎡⎤-+-+-=⎣⎦⎣⎦⎣⎦∴2221)2)3)0++=∴123=== ∴111429a b c -=⎧⎪-=⎨⎪-=⎩∴2511a b c =⎧⎪=⎨⎪=⎩∴2251121b c +=⨯+=.【点睛】本题考查了二次根式、完全平方公式的知识;解题的关键是熟练掌握二次根式、完全平方公式、一元一次方程的性质,从而完成求解.16.0【解析】【分析】先将化简为就能确定其最小值为1,再和1作差,即可求解。
江苏省南通市崇川区南通田家炳中学2022-2023学年八年级下学期3月月考数学试题

江苏省南通市崇川区南通田家炳中学2022-2023学年八年级下学期3月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.若平行四边形中两个内角的度数比为1∶3,则其中较小的内角是( )A .30°B .45°C .60°D .75°2.下列图象中,表示y 是x 的函数的个数有( )A .1个B .2个C .3个D .4个3.如图,要使平行四边形ABCD 成为矩形,需添加的条件是( )A .B .C .D .AB BC =AC BD ⊥AC BD =12∠=∠4.下列式子中,表示是的正比例函数的是( )y x A .B .C .D .2y x 2y x =3xy =23y x=5.如图,在平行四边形中,平分,交边于E ,平分,ABCD AE BAD ∠CD BF ABC ∠交边于F ,,,则的长为( )CD 8AD =10AB =EFA .2B .4C .5D .66.如图,矩形沿对角线折叠,已知长,宽,那么折叠后ABCD BD 8cm BC =6cm AB =重合部分的面积是( )A .B .C .D .248cm 224cm 218.75cm 218cm 7.如图,正方形中,点P 和H 分别在边上,且,,ABCD AD AB 、BP CH =15AB =,则BE 的长是( )8BH =A .B .5C .7D .158120178.如图,在中,,,,分别是角平分线和中线,过点C ABC 8AB =5AC =AD AE 作于点F ,连接,则线段的长为( )CF AD ⊥EF EFA .B .3C .4D .1329.如图(折线ABCDE )描述了一辆汽车在某一直路上行驶的过程中,汽车离出发地的距离s (千米)与行驶时间t (小时)之间的变量关系.根据图中提供的信息,给出下列说法:①汽车共行驶了100千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中(含停留过程)的平均速度为千米/时;④汽车出发后3小时至4.5小4009时之间,其行驶的速度在逐渐减小.其中正确的有( )A .1个B .2个C .3个D .4个10.如图,正方形的边长为4,点M 为边上一动点,将沿直线翻ABCD DC BCM BM 折,使得点C 落在同一平面内的点处,连接并延长交正方形一边于点N .当C 'DC 'ABCD 时,的长为( )BN DM =CMA .B .2或8-28-C .2D .2或2二、填空题11.函数中自变量x 的取值范围是__.13y x =-12.将直线向上平移1个单位长度,可得直线的表达式为________.22y x =--y =13.菱形的两条对角线的长分别为6和8,则这个菱形的周长为_____.14.如图,在菱形ABCD 中,点E 是CD 上一点,连接AE 交对角线BD 于点F ,连接CF ,若∠AED =50°,则∠BCF =__________度.15.关于x 的一次函数的图象经过第一、二、四象限,则a 的取值范围()1y a x a =-+是________.16.若一次函数的图象与一次函数的图象的交点坐标为,则y x a =-+y x b =+(),8m ________.a b +=17.如图,在四边形中,与不平行,M ,N 分别是,的中点,ABCD AB CD AD BC ,,则的长度的取值范围是________.10AB =6CD =MN18.如图,菱形中,,,E ,F 分别是边和对角线上ABCD 60ABC ∠=︒8AB =BC BD 的点,且,则的最小值为________.BE DF =AE AF +三、解答题19.已知y 与成正比例,当时,,求:3x -6x =18y =(1)y 与x 的函数解析式;(2)当时,求x 的值.12y =20.如图,▱ABCD 的对角线AC ,BD 相交于点O ,点E 、F 在AC 上,且AF =CE .求证:BE =DF .21.一次函数的图象由直线向下平移得到,且过点.()0y kx b k =+≠3y x =()1,2A (1)求一次函数的解析式;(2)求直线与坐标轴围成的三角形的面积.y kx b =+22.如图,菱形的对角线相交于点是的中点,点在ABCD AC BD 、O E ,AD F G 、边上,,.CD EF CD ⊥OG ∥E F(1)求证:四边形是矩形;OEFG (2)若,求的长.=5=4FG EF ,CG 23.模型建立:如图1,等腰直角三角形中,,,直线经ABC 90ACB ∠=︒CB CA =ED 过点,过作于,过作于.C A AD ED ⊥D B BE ED ⊥E(1)求证:;BEC CDA ≌(2)模型应用:已知直线:与轴交于点.将直线绕着点逆时针旋转1l 443y x =--y A 1l A 至,如图2,求的函数解析式;45︒2l 2l 24.已知正方形ABCD ,点F 是射线DC 上一动点(不与C ,D 重合).连接AF 并延长交直线BC 于点E ,交BD 于H ,连接CH ,过点C 作CG ⊥HC 交AE 于点G .(1)若点F 在边CD 上,如图1.①证明:∠DAH =∠DCH ;②猜想:△GFC 的形状并说明理由.(2)取DF 中点M ,连接MG .若MG =2.5,正方形边长为4,求BE 的长.25.如图,在平面直角坐标系中,直线:分别与x 轴,y 轴交于点B ,C .直1l 142y x =-+线:.2L 13y x =(1)直接写出点B ,C 的坐标:B ________;C ________.(2)若D 是直线上的点,且的面积为6,求直线的函数表达式;2L COD △CD (3)在(2)的条件下,且当点D 在第一象限时,设P 是射线上的点,在平面内存在CD 点Q .使以O ,C ,P ,Q 为顶点的四边形是菱形,请直接求点Q 的坐标.26.在平面直角坐标系xOy 中,对于两点A ,B ,给出如下定义:以线段AB 为边的正方形称为点A ,B 的“确定正方形”.如图为点A ,B 的“确定正方形”的示意图.(1)如果点M 的坐标为(0,1),点N 的坐标为(3,1),那么点M ,N 的“确定正方形”的面积为___________;(2)已知点O 的坐标为(0,0),点C 为直线上一动点,当点O ,C 的“确定y x b =+正方形”的面积最小,且最小面积为2时,求b 的值.(3)已知点E 在以边长为2的正方形的边上,且该正方形的边与两坐标轴平行,对角线交点为P (m ,0),点F 在直线上,若要使所有点E ,F 的“确定正方形”2y x =--的面积都不小于2,直接写出m 的取值范围.参考答案:1.B【分析】首先设平行四边形中两个内角分别为x °,3x °,由平行四边形的邻角互补,即可得x +3x =180,继而求得答案.【详解】解:设平行四边形中两个内角分别为x °,3x °,则x +3x =180,解得:x =45°,∴其中较小的内角是45°.故选:B .【点睛】此题考查了平行四边形的性质.注意平行四边形的邻角互补.2.B【分析】根据函数的定义:设在某变化过程中有两个变量x 、y ,如果对于x 在某一范围内的每一个确定的值,y 都有唯一确定的值与它对应,那么就称y 是x 的函数,x 叫做自变量,据此判断即可.【详解】解:属于函数的有故y 是x 的函数的个数有2个,故选:B .【点睛】本题考查了函数的定义,熟记定义是本题的关键.3.C【分析】根据矩形的判定定理逐一判断即可.【详解】解:A.添加,可判断平行四边形ABCD 为菱形,不符合题意;AB BC =B.添加,可判断平行四边形ABCD 为菱形,不符合题意;AC BD ⊥C.添加,可判断平行四边形ABCD 为矩形,符合题意;AC BD =D.添加,可判断平行四边形ABCD 为菱形,不符合题意;12∠=∠故选:C .【点睛】本题考查了矩形的判定定理,注意:矩形的判定定理有:①有一个角是直角的平行四边形是矩形,②有三个角是直角的四边形是矩形,③对角线相等的平行四边形是矩形.4.C【分析】根据正比例函数的定义求解即可.【详解】解:A 、是二次函数,故此选项错误;2y x =B 、比例函数,故此选项错误;2y x =反C 、是正比例函数,故此选项正确;3x y =D 、不是函数,故此选项错误;23y x =故选C .【点睛】此题主要考查了正比例函数的定义,关键是掌握正比例函数的关系式.5.D【分析】,根据平行四边形的性质,得到,,得到,再结合平分AB CD =AB CD ∥DEA EAB ∠=∠AE ,证明,同理可得,即可得到,即可解答.BAD ∠DA DE =CF CB =EF ED FC DC =+-【详解】解:四边形是平行四边形,ABCD ,,,AB CD ∴∥10AB CD ==8AD BD ==,,DEA EAB ∴∠=∠CFB ABF ∠=∠平分,平分,AE BAD ∠BF ABC ∠,,BAE DAE DEA ∴∠=∠=∠CFB ABF FBC ∠=∠=∠,,8DA DE ∴==8CB CF ==.88106EF DE CF DC ∴=+-=+-=故选:D .【点睛】本题考查了平行四边形的性质,角平分线的性质,等角对等边,熟练运用性质解题是解答的关键.6.C【分析】由矩形的性质易得,那么可用表示出,利用的三边关DE BE =DE C E 'Rt C DE '△系即可求得长,然后三角形面积公式求解即可.DE 【详解】解:∵四边形是矩形,ABCD∴,AD CB ∥∴,ADB DBC ∠=∠∵C BD DBC '∠=∠∴,ADB EBD ∠=∠∴,DE BE =∴,8C E DE '=-∵,6C D AB '==∴,()22268DE DE +-=∴,254DE =∴.()2118.75cm 2BDE S DE CD =⨯=△故选:C .【点睛】本题考查了矩形的性质,折叠的性质,解决此类问题,应利用折叠找到相应的直角三角形,利用勾股定理求得所需线段长度.7.D【分析】由正方形的性质可得,再根据全等三角形的性质可得90AB BC A ABC =∠=∠=︒,,利用余角性质可得,再利用三角形面积法可得答案.ABP BCH ∠=∠90BEC ∠=︒【详解】解:∵四边形是正方形,ABCD ∴,90AB BC A ABC =∠=∠=︒,∵,BP CH =∴,()Rt ABP Rt BCH HL ≌∴,ABP BCH ∠=∠∵,9090BCH BHC ABP PBC ∠+∠=︒∠+∠=︒,∴,90BCE CBE ∠+∠=︒∴,BE CH ⊥∵,158AB BC BH ===,17,CH ∴==11,22CH BE BH BC ∴⋅=⋅即1117158,22BE ⨯=⨯⨯120.17BE ∴=故选: D.【点睛】此题考查的是正方形的性质、全等三角形的判定与性质,掌握其性质定理是解决此题的关键.8.A【分析】延长交于G ,根据等腰三角形的判定和性质得到,,CF AB 4AG AC ==FG CF =进而求出,根据三角形中位线定理计算即可.BG 【详解】解:延长交于G ,CF AB∵为的角平分线,,AD ABC CG AD ⊥∴是等腰三角形,ACG ∴,,5AG AC ==FG CF =∴,BG AB AG =-=-=853∵为的中线,AE ABC ∴是的中位线,EF BCG ∴,1322EF BG ==故选:A .【点睛】本题考查的是三角形的中位线定理、等腰三角形的判定与性质,正确作出辅助线是解题的关键.9.B【分析】根据图象可以得到首先从出发点匀速行驶1.5小时,走了80千米,然后在第1.5小时到2小时时停止运动,从2小时到3小时,继续沿原来的方向走了1小时,走了20千米到达目的地,然后匀速返回出发点,在距出发4.5小时是返回,据此即可判断.【详解】解:①汽车从出发地到目的地走了100千米,又回到出发地因而共行驶了200千米,故①错误;②汽车在行驶途中停留了2−1.5=0.5(小时),故②正确;③汽车在整个行驶过程中的平均速度为:200÷4.5=(千米/时),故③正确;4009④汽车出发后3小时至4.5小时之间行驶的速度不变,故④错误.综上所述,正确的有②③,共2个,故B 正确.故选:B .【点睛】本题主要考查了利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决,需注意计算单位的统一.10.B【分析】分两种情形:如图1中,当时,连接交于.如图2中,当BN DM =CC 'BM J BN DM =时,过点作于.分别求解即可.C 'C T CD '⊥T 【详解】解:如图1中,当时,连接交于.BN DM =CC 'BM J,,BN DM = BN DM ∥四边形是平行四边形,∴BNDM ,BM DN ∴ ,,由折叠知,,,BMC NDM ∴∠=∠BMC DC M ∠'=∠'MC MC '=BMC BMC ∠=∠',NDM DC M ∴∠=∠',MC MD ∴'=.122CM DM CD ∴===如图2中,当时,过点作于.BN DM =C 'C T CD '⊥T,,CB CD = BN DM =,CN CM MC ∴=='在和中,BCM DCN ,CB CD BCM DCN CM CN =⎧⎪∠=∠⎨⎪=⎩,(SAS)BCM DCN ∴ ≌,CDN CBM ∴∠=∠,,90CBM BCC ∠+∠'=︒ 90BCC C CD ∠'+∠'=︒,CBM C CD ∴∠=∠','C CD CDN ∴∠=∠,C D C C ∴'=',C T CD '⊥ ,2DT TC ∴==,C T CN ' ∥,DC C N ∴'=',12C T CN ∴'=设,则,,C T x '=2CN CM MC x =='=TM,22x ∴=4x ∴=-8CM ∴=-综上所述,的值为2或CM 8-故选B .【点睛】本题考查翻折变换,正方形的性质,平行四边形的判定和性质,全等三角形的判定和性质,三角形中位线定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考填空题中的压轴题.11.x≠3【详解】根据题意得x ﹣3≠0,解得x≠3.故答案为x≠3.12.##21x --12x--【分析】根据一次函数图象的平移规则,上加下减,求解即可.【详解】解:将直线向上平移1个单位长度,可得直线的表达式为22y x =--;22121y x x =--+=--故答案为:.21x --【点睛】本题考查一次函数图象的平移.熟练掌握一次函数图象的平移规则,上加下减,是解题的关键.13.20【分析】根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.【详解】解:如图,根据题意得AO=×8=4,BO=×6=3,1212∵四边形ABCD 是菱形,∴AB=BC=CD=DA ,AC ⊥BD .∴△AOB 是直角三角形.∴.5AB ===∴此菱形的周长为:5×4=20故答案为:20.14.50【分析】根据题意,先通过菱形的性质求证,可得,再根据ADF CDF ≅ DAF DCF ∠=∠三角形内角和定理及同旁内角的关系进行角度的求解即可.【详解】∵四边形ABCD 是菱形∴,,ADF CDF ∠=∠AD CD =//AD CB在与中ADF △CDF AD CD ADF CDFDF DF =⎧⎪∠=∠⎨⎪=⎩∴()ADF CDF SAS ≅ ∴DAF DCF∠=∠∵//AD CB∴180ADE DCF FCB ∠+∠+∠=︒∵180ADE DAF AED ∠+∠+∠=︒∴BCF AED∠=∠∵50AED ∠=︒∴,50BCF ∠=︒故答案为:50.【点睛】本题主要考查了菱形的性质,三角形全等的判断及性质,平行线的性质,三角形内角和定理等,熟练掌握相关几何综合求解方法是解决本题的关键.15.01a <<【分析】利用一次函数图象所经过的象限确定k 、b 的范围,从而求出a 的范围.【详解】解:∵一次函数的图象经过第一、二、四象限,()1y a x a =-+∴,解得:,100a a -<⎧⎨>⎩01a <<故答案为:.01a <<【点睛】本题考查一次函数图象与系数的关系,熟记相关知识是解题的关键.16.16【分析】根据一次函数与一次函数的图象的交点坐标为,所以y x a =-+y x b =+(),8m (),8m 可以满足两个一次函数关系式,利用待定系数法把代入,再把两个关系式相加即可.(),8m 【详解】解:∵一次函数与一次函数的图象的交点坐标为,y x a =-+y x b =+(),8m∴,88m a m b -+=+=,∴,88m a m b -+++=+∴.16a b +=故答案为:16.【点睛】此题主要考查了两条直线相交问题,关键是把握凡是图象经过的点都能满足解析式.17.28MN <<【分析】连接,取的中点为E ,连接,,结合题中条件可得,BD BD EM EN 152EM AB ==,根据三角形三边之间的关系,即可解答.132EN CD ==【详解】解:如图,连接,取的中点为E ,连接,,BD BD EM EN M ,N 分别是,的中点,AD BC ,,∴152EM AB ==132EN CD ==在中,,EMN EM EN MN EM EN -<<+即.28MN <<故答案为:.28MN <<【点睛】本题考查了三角形的中位线,三角形三边之间的关系,作出正确的辅助线是解题的关键.18.【分析】如图,的下方作,使得,连接,.证明BC 30CBT ∠=︒BT AD =ET AT ,推出,,根据求解即可.()SAS ADF TBE ∆≅∆AF ET =AE AF AE ET +=+AE ET AT +≥【详解】解:如图,的下方作,使得,连接,.BC 30CBT ∠=︒BT AD =ET AT四边形是菱形,,ABCD 60ABC ∠=︒,,60ADC ABC ∴∠=∠=︒1302ADF ADC ∠=∠=︒,,,AD BT = 30ADF TBE ∠=∠=︒DF BE =,()SAS ADF TBE ∴∆≅∆,AF ET ∴=,,603090ABT ABC CBT ∠=∠+∠=︒+︒=︒ 2AB AD BT ===AT ∴=,AE AF AE ET ∴+=+,AE ET AT +≥AE AF ∴+≥的最小值为AE AF ∴+故答案为【点睛】本题主要考查了菱形的性质、全等三角形的判定和性质、两点之间线段最短等知识点,正确添加常用辅助线、构造全等三角形是解答本题的关键.19.(1)618y x =-(2)5【分析】(1)设,将,代入求解即可得到答案;()()30y k x k =-≠6x =18y =(2)将代入解析式求解即可得到答案;12y =【详解】(1)解:设()()30y k x k =-≠由题意,得()6318k -=∴6k =∴;()63618y x x =-=-(2)解:当时,有12y =61812x -=解得:;5x =【点睛】本题考查待定系数法求解析式与已知函数值求自变量的值,解题的关键根据题意设出解析式.20.证明见解析.【分析】根据平行四边形的性质可得OA =OC ,OD =OB ,再由全等三角形的判定证△BEO ≌△DFO 即可;【详解】证明:∵四边形ABCD 是平行四边形,∴OA =OC ,OD =OB ,∵AF =CE ,∴AF -OA =CE -OC ,即OF =OE ,在△BEO 和△DFO 中,,OB OD BOE DOF OE OF =⎧⎪∠=∠⎨⎪=⎩∴△BEO ≌△DFO (SAS ),∴BE =DF .【点睛】本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(1)31y x =-(2)16【分析】(1)根据平移可得,再将代入函数解析式,求出b 的值即可.3k =()1,2A 3y x b =+(2)先求出函数图象与x 、y 轴的交点坐标,根据三角形面积公式即可求解.【详解】(1)∵一次函数的图象由直线向下平移得到,()0y kx b k =+≠3y x =∴3k =∴函数解析式为:3y x b=+∵过点()1,2A ∴,312b ⨯+=∴1b =-∴所求函数的解析式为:31y x =-(2)在中31y x =-令,得0x =1y =-即图象与y 轴交点为()0,1-令,得0y =13x =即图象与x 轴交点为1,03⎛⎫ ⎪⎝⎭∴1111236S =⨯⨯=【点睛】本题考查了利用待定系数法求一次函数解析式、两点法确定函数图像;关键在于解出k 、b 值以及正确运用三角形面积公式求解.22.(1)见解析;(2)2.【分析】(1)证是的中位线,得,再由,得四边形是OE ACD OE CD ∥OG EF ∥OEFG 平行四边形,然后证出,即可得出结论;=90EFG ∠︒(2)由矩形的性质得,再由菱形的性质得,然后求出=OE FG =AD CD AC BD ⊥,,由勾股定理得,即可求解.1====22OE AD DE CD AD OE ,=3DF 【详解】(1)证明:∵四边形是菱形,ABCD ,=OA OC ∴是的中点,E AD 是的中位线,OE ∴ACD ,OE CD ∴∥,OG EF ∥ ∴四边形是平行四边形,OEFG ,EF CD ⊥,=90EFG ∴∠︒∴平行四边形是矩形;OEFG (2)解:由(1)得:四边形是矩形,OEFG ,==5OE FG ∴∵四边形是菱形,ABCD ,=AD CD AC BD ∴⊥,,=90AOD ∴∠︒是的中点,E AD ∴,1===5==2=102OE AD DE CD AD OE ,在中,,Rt DEF △3DF ==.10532CG CD FG DF ∴=--=--=【点睛】本题考查了菱形的性质,三角形中位线定理,矩形的判定和性质,平行四边形的判定与性质,直角三角形斜边上的中线性质,勾股定理等知识;熟练掌握三角形中位线定理,证明四边形为矩形是解题的关键.OEFG 23.(1)见解析(2)147y x =--【分析】(1)根据直角三角形的性质推出,再由等腰三角形的性质,即可12∠=∠BC CA =推出;()AAS BEC CDA ≌(2)过点作于点,交直线于点,过点作轴于点,由旋转的B BM AB ⊥B 2l M M MN x ⊥N 性质得,易知为等腰直角三角形,由(1)可知:,由45BAM ∠=︒ABM ABO BMN ≌△△全等的性质得到点的坐标,再利用待定系数法求解即可.M 【详解】(1)证明:,,AD ED ⊥BE ED ⊥,∴90E D ∠=∠=︒,∴1+3=90∠∠︒又,90ACB ∠=︒,∴2390∠+∠=︒,∴12∠=∠在和中BEC CDA ,12E D BC CA ∠=∠⎧⎪∠=∠⎨⎪=⎩.∴()AAS BEC CDA ≌(2)解:如图2,过点作于点,交直线于点,过点作轴于点B BM AB ⊥B 2l M M MN x ⊥,N 由条件知,45BAM ∠=︒为等腰直角三角形,ABM ∴ 由(1)可知:,ABO BMN ≌△△,,∴MN BO =NB OA =∵直线:,1l 443y x =--,,∴()0,4A -()3,0B -,,,∴3MN BO ==4BN OA ==7ON =,∴()7,3M --设:,2l ()0y kx b k =+≠,∴374k b b-=-+⎧⎨-=⎩,,∴17k =-4b =-:.∴2l 147y x =--【点睛】此题考查一次函数综合题,等腰直角三角形,全等三角形的判定与性质,解题的关键在于正确作出辅助线.24.(1)①证明见解析;②△GFC 是等腰三角形,理由见解析;(2)BE 的长为1或7.【分析】(1)①根据正方形的性质可得AD =CD ,∠ADH =∠CDH ,利用SAS 可证明△ADH ≌△CDH ,即可得∠DAH =∠DCH ;②由正方形的性质可得∠DAH +∠AFD =90°,由CG ⊥HC 可得∠DCH +∠FCG =90°,根据∠AFD =∠CFG ,可得∠CFG =∠FCG ,即可证明CG =FG ,可得△GFC 是等腰三角形;(2)当点F 在线段CD 上时,连接DE ,根据正方形的性质及角的和差关系可得∠E =∠GCE ,即可证明CG =EG ,由△GFC 是等腰三角形可得CG =GF ,可得点G 为EF 中点,即可证明GM 是△FDE 的中位线,根据中位线的性质可求出DE 的长,利用勾股定理可求出CE 的长,进而根据BE =BC +CE 即可求出BE 的长;当点F 在DC 延长线上时,连接DE ,同理可得MG 为△FDE 的中位线,可求出DE 的长,利用勾股定理可求出CE 的长,根据BE =BC -CE 即可求出BE 的长.【详解】(1)①∵四边形ABCD 是正方形,∴AB =BC =CD =AD ,∠ADB =∠CDB =45°,在△ADH 和△CDH 中,,AD CD ADH CDH DH DH =⎧⎪∠=∠⎨⎪=⎩∴△ADH ≌△CDH ,∴∠DAH =∠DCH .②△GFC 是等腰三角形,理由如下:∵四边形ABCD 是正方形,CG ⊥HC ,∴∠ADF =∠HCG =90°,∴∠DAH +∠AFD =DCH +∠DCG =90°,∵∠DAH =∠DCH ,∠HFD =∠CFG ,∴∠CFG =∠GCF ,∴CF =CG ,∴△GFC 是等腰三角形.(2)如图,当点F 在线段CD 上时,连接DE ,∵四边形ABCD 是正方形,∴∠CEF +∠CFG =90°,∠GCE +∠GCF =90°,∵∠CFG =∠GCF ,∴∠CEF =∠GCE ,∴CG=EG,∵CG=FG,∴FG=EG,∵点M是DF的中点,∴GM是△DFE的中位线,∵GM=2.5,∴DE=2GM=5,∵正方形ABCD的边长为4,∴CE=3,=∴BE=BC+CE=4+3=7.如图,当点F在DC的延长线上时,连接DE,同理可得:MG为△DFE的中位线,∴DE=2GM=5,∴CE,∴BE=BC-CE=4-3=1,综上所述:BE 的长为1或7.【点睛】本题考查正方形的性质、全等三角形的判定与性质及三角形中位线的性质,熟练掌握相关性质及判定定理是解题关键.25.(1);()8,0()0,4(2)或4y x =-+543y x =+(3)或或()2,2Q -()4,4(-【分析】(1)将代入解析式,求得点B 坐标;将代入解析式,求得点C 坐标;0x =0y =(2)设,可得即为以为底边上的高,列方程,即可解答.1,3D x x ⎛⎫ ⎪⎝⎭x COD △CO (3)分两种情况讨论,即为边或为对角线两种情况讨论,由菱形的性质和两点距离OC OC 公式可求解.【详解】(1)解:直线:分别与x 轴,y 轴交于点B ,C , 1l 142y x =-+将代入,可得,0x =1l 10442y =-⨯+=,()0,4C ∴将代入,可得,0y =1l 1042x =-+解得,8x =.()8,0B ∴(2)解:D 是直线上的点,2L ,∴1,3D x x ⎛⎫ ⎪⎝⎭由条件得,,1462x ⋅⋅=∴,3x =∴,3x =±∴或,()3,1D ()3,1--设CD 的解析式为:4y kx =+①当时,()3,1D ,∴341k +=,∴1k =-对应的解析式为∴4y x =-+②当时,()3,1D --,∴341k -+=-,∴53k =对应的解析式为∴543y x =+综上,直线CD 的解析式为或.4y x =-+543y x =+(3)解:当点D 在第一象限时,直线的解析式为,CD 4y x =-+设点,()(),40P a a a -+≥①当以为边时,OC若四边形为菱形时:,可得方程:OCPQ 4OC CP ==4=解得,1a =2a =-,()4P ∴-,,4PQ OC == PQ OC ∥;(Q ∴-若四边形为菱形时:,可得方程:OCQP 4OC PO ==4=解得,(舍去),14a =20a =,()4,0P ∴同理可得;()4,4Q ②当以为对角线时,OC 与互相垂直平分,OC PQ P 点的纵坐标为2,即,,∴42a -+=2a =,()2,2P ∴.()2,2Q ∴-综上所述,点Q 的坐标为或或.()2,2-()4,4(-【点睛】本题是一次函数综合题,考查了一次函数的性质,待定系数法求解析式,菱形的性质,两点距离公式,利用分类讨论思想解决问题是本题的关键.26.(1)9;(2)OC ⊥直线于点C ;① ;② ;(3)y x b =+2b =2b =±6, 2.m m ≤-≥【分析】(1)求出线段MN 的长度,根据正方形的面积公式即可求出答案;(2)根据面积求出OC ⊥直线于点C ,再分情况分别OC =y x b =+求出b ;(3)分两种情况:当点E 在直线y=-x-2是上方和下方时,分别求出点P 的坐标,由此得到答案.【详解】解:(1)∵M(0,1),N (3,1),∴MN ∥x 轴,MN=3,∴点M ,N 的“确定正方形”的面积为,339⨯=故答案为:9;(2)∵点O ,C 的“确定正方形”面积为2,∴OC =∵点O ,C 的“确定正方形”面积最小,∴OC ⊥直线于点C .y x b =+① 当b>0时,如图可知OM =ON ,△MON 为等腰直角三角形,可求OC NC MC ===∴ 2.b =② 当时,同理可求0b < 2.b =-∴ 2.b =±(3)如图2中,当正方形ABCD 在直线y=-x-2的下方时,延长DB 交直线y=-x-2于H ,∴BH ⊥直线y=-x-2,当时,点E 、F 的“确定正方形”的面积的最小值是2,此时P (-6,0);如图3中,当正方形ABCD 在直线y=-x-2的上方时,延长DB 交直线y=-x-2于H ,∴BH ⊥直线y=-x-2,当时,点E 、F 的“确定正方形”的面积的最小值是2,此时P (2,0),观察图象可知:当或时,所有点E 、F 的“确定正方形”的面积都不小于26m ≤-2m ≥【点睛】此题是一次函数的综合题,考查一次函数的性质,正方形的性质,正确理解题中的正方形的特点画出图象求解是解题的关键.。
八年级第二学期3月份段考数学试题含答案

八年级第二学期3月份段考数学试题含答案一、选择题1.下列计算正确的是( )A 1BCD ±2.下列计算正确的是( )A =B .12=C 3=D .14= 3.下列各式中,正确的是( )A 2=±B =C 3=-D 2=4.已知5x =-,则2101x x -+的值为( )A .-B .C .2-D .0 5.下列各式一定成立的是( )A 2a b =+B 21a =+C 21a =-D ab =6.x 的取值范围是( )A .x≥2020B .x≤2020C .x> 2020D .x< 20207.a b =--则( )A .0a b +=B .0a b -=C .0ab =D .220a b +=8.若2019202120192020a =⨯-⨯,b =,c a ,b ,c 的大小关系是( )A .a b c <<B .a c b <<C .b a c <<D .b c a << 9.下列说法错误的个数是( )a =;④数轴上的点都表示有理数A .1个B .2个C .3个D .4个10.=a 、x 、y是两两不同的实数,则22223x xy y x xy y+--+的值是( ) A .3 B .13 C .2 D .5311.“分母有理化”是我们常用的一种化简的方法,如:7==+x =>,故0x >,由22332x ==-=,解得x=结果为( )A .5+B .5+C .5D .5- 12.下列二次根式中,最简二次根式是( )A B C D二、填空题13.已知,-1,则x 2+xy +y 2=_____.14.计算(π-3)0-21-2()的结果为_____. 15.设12211112S =++,22211123S =++,32211134S =++,设...S =S=________________ (用含有n 的代数式表示,其中n 为正整数).16.已知aa 3+5a 2﹣4a ﹣6的值为_____.17.已知a ,b 是正整数,若有序数对(a ,b )使得的值也是整数,则称(a ,b )是的一个“理想数对”,如(1,4)使得=3,所以(1,4)是的一个“理想数对”.请写出其他所有的“理想数对”: __________.18.使式子2x +有意义的x 的取值范围是______.19.已知4a |2|a -=_____.20.如果0xy >.三、解答题21.计算 (1)2213113a a a a a a +--+-+-;(2)已知a 、b +b =0.求a 、b 的值(3)已知abc =1,求111a b c ab a bc b ac c ++++++++的值【答案】(1)22223a a a ----;(2)a =-3,b ;(3)1. 【分析】(1)先将式子进行变形得到()()113113a a a a a a +--+-+-,此时可以将其化简为1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭,然后根据异分母的加减法法则进行化简即可;(2)根据二次根式及绝对值的非负性得到2a +6=0,b =0,从而可求出a 、b ; (3)根据abc =1先将所求代数式转化:11b ab ab bc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,然后再进行分式的加减计算即可. 【详解】解:(1)原式=()()113113a a a a a a +--+-+- =1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭ =1113a a --+- =()()()()3113a a a a -++-+- =22223a a a ----;(20b =,∴2a +6=0,b =0,∴a =-3,b ;(3)∵abc =1, ∴11b ab ab bc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++, ∴原式=1111a ab ab a ab a ab a ++++++++=11 a ab ab a++++=1.【点睛】本题考查了分式的化简求值和二次根式、绝对值的非负性,分式中一些特殊求值题并非一味的化简,代入,求值,熟练掌握转化、整体思想等解题技巧是解答这类题目的关键.22.阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如53,231+这样的式子,其实我们还可以将其进一步化简:(一) 553533 333⨯==⨯;(二)2231)=31 31(31)(31)-=-++-(;(三)22231(3)1(31)(31)=31 31313131--+-===-++++.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简25+3:①参照(二)式化简25+3=__________.②参照(三)式化简5+3=_____________(2)化简:++++315+37+599+97+.【答案】见解析.【分析】(1)原式各项仿照题目中的分母有理化的方法计算即可得到结果;(2)原式各项分母有理化,计算即可.【详解】解:(1)①; ②;(2)原式故答案为:(1)①;②【点睛】此题主要考查了二次根式的有理化,解答此题要认真阅读前面的分析,根据题目的要求选择合适的方法解题.23.像552)=1a a =a (a ≥0)、b b ﹣1)=b ﹣1(b ≥0)……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因552 +12﹣1,353﹣5因式.进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题:(1)33;(2)2332+--; (3)2018201720172016的大小,并说明理由.【答案】(123(2)32(3)< 【解析】分析:(13×3=1,确定互为有理化因式,由此计算即可;(2)确定分母的有理化因式为23与23+3232然后分母有理化后计算即可;(3201820172017201620182017与20172016,20182017+20172016+,然后比较即可. 详解:(1) 原式23333⋅23; (2)原式=2332+=223+(3)根据题意,2018201720182017-=+2017201620172016=+, 2018201720172016>2018201720172016<++, 2018201720172016>点睛:此题是一个阅读题,认证读题,了解互为有理化因式的实际意义,以及特点,然后根据特点变形解题是关键.24.计算(a+b aba b-+)÷(ab b++ab a--ab)(a≠b).【答案】-+a b【解析】试题分析:先计算括号内的,然后把除法转化为乘法,约分即可得出结论.试题解析:解:原式=a ab b aba b++-+÷()()()()()()a a ab b b a b a b a bab a b a b--+-+-+-=a b+÷()()2222a a ab b ab b a bab a b a b----++-=a b+·()()()ab a b a bab a b-+-+=-a b+.25.先化简,再求值:a+212a a-+,其中a=1007.如图是小亮和小芳的解答过程.(1)的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质:;(3)先化简,再求值:269a a-+a=﹣2018.【答案】(1)小亮(22a(a<0)(3)2013.【解析】试题分析:(12a,判断出小亮的计算是错误的;(22a的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可.试题解析:(1)小亮(22a(a<0)(3)原式=()23a-a+2(3-a)=6-a=6-(-2007)=2013.26.(1)计算:(2)先化简,再求值:(()8a a a a +--,其中14a =.【答案】(1)2)82-a ,【分析】(1)分别根据二次根式的除法法则、二次根式的性质、二次根式的乘法法则计算和化简各项,再合并同类二次根式即可;(2)分别根据平方差公式和单项式乘以多项式的法则计算各项,再把a 的值代入化简后的式子计算即可.【详解】(1)==;(2)(()8a a a a +--2228a a a =--+82a =-,当14a =时,原式1824⎫=⨯-=⎪⎭. 【点睛】本题考查了整式的乘法和二次根式的混合运算,属于常考题型,熟练掌握基本知识是解题的关键.27.先观察下列等式,再回答下列问题:111111112=+-=+;111112216=+-=+1111133112=+-=+(1) (2)请你按照上面各等式反映的规律,用含n 的等式表示(n 为正整数).【答案】(1)1120(2)()111n n++(n为正整数)【解析】试题分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.试题解析:(1)=1+14−141+=1120,1 1 20(2)1n−1n1+=1+()1n n1+ (n为正整数).a=,也考查了二次根式的运算.此题是一道阅读题目,通过阅读找出题目隐含的条件.总结:找规律的题目,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.28.计算(1(2)(()21-【答案】(1);(2)24+【分析】(1)先将各二次根式化为最简二次根式,再进行合并即可得到答案;(2)原式运用平方差公式和完全平方公式把括号展开后,再合并同类二次根式即可得到答案.【详解】解:(1=2+=(2-+=2(2)(()21-=22(181)---=452181--+=24+.【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则和运算顺序是解答此题的关键.29.2020(1)-【答案】1【分析】先计算乘方,再化简二次根式求解即可.【详解】2020(1)-=1=1.【点睛】本题考查了二次根式的混合运算,先把二次根式化为最简二次根式,再合并即可.30.计算下列各题:(1(2)2-.【答案】(1)2)2--【分析】(1)根据二次根式的运算顺序和运算法则计算即可;(2)利用平方差、完全平方公式进行计算.【详解】解:(1)原式==;(2)原式22(5=--+525=---2=--【点睛】本题考查二次根式的加减乘除混合运算,熟练掌握运算法则和乘法公式是关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】2÷故选A.2.B解析:B【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】A不符合题意;∵12=,故选项B符合题意;C不符合题意;∵=D不符合题意;故选:B.【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.3.B解析:B【分析】本题可利用二次根式的化简以及运算法则判断A、B、C选项;利用立方根性质判断D选项.【详解】A,故该选项错误;B==C3=,故该选项错误;D11223334=(2)2==,故该选项错误;故选:B.【点睛】本题考查二次根式以及立方根,二次根式计算时通常需要化为最简二次根式,然后按照运算法则求解即可,解题关键是细心.4.D【分析】把x的值代入原式计算即可求出值.【详解】解:当时,原式=()2-10×()+1+1=0.故选:D.【点睛】本题考查了二次根式的化简求值,熟练掌握运算法则是解题的关键.5.B解析:B【分析】分别利用二次根式的性质化简求出即可.【详解】解;A2=|a+b|,故此选项错误;B2+1,正确;C,无法化简,故此选项错误;D,故此选项错误;故选:B.【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.6.A解析:A【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】∴x-2020≥0,解得:x≥2020;故选:A.【点睛】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.7.C【分析】直接利用二次根式的性质,将已知等式左边化简,可以得到a与b中至少有一个为0,进而分析得出答案即可.【详解】=--,解:∵a b∴a-b=-a-b,或b-a=-a-bab=.∴a= -a,或b=-b, ∴a=0,或b=0, ∴ab=0, ∴0故选:C.【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.8.A解析:A【分析】利用平方差公式计算a,利用完全平方公式和二次根式的化简求出b,利用二次根式大小的比较办法,比较b、c得结论.【详解】解:a=2019×2021-2019×2020=(2020-1)(2020+1)-(2020-1)×2020=20202-1-20202+2020=2019;∵20222-4×2021=(2021+1)2-4×2021=20212+2×2021+1-4×2021=20212-2×2021+1=(2021-1)2=20202,∴b=2020;>∴c>b>a.故选:A.【点睛】本题考查了完全平方公式、平方差公式、二次根式的化简、二次根式大小的比较等知识点.变形2019×2021-2019×2020解决本题的关键.9.C解析:C根据无理数定义判断①;根据平方根的算法判断②;利用二次根式的性质化简判断③;根据数轴的特点,判断④.【详解】无限不循环小数才是无理数,①错误;3 =,3的平方根是②正确;a=,③错误;数轴上的点可以表示所有有理数和无理数,④错误故选:C.【点睛】本题考查无理数的定义、平方根的计算、二次根式的性质以及数轴表示数,紧抓相关定义是解题关键.10.B解析:B【分析】根据根号下的数要是非负数,得到a(x-a)≥0,a(y-a)≥0,x-a≥0,a-y≥0,推出a≥0,a≤0,得到a=0,代入即可求出y=-x,把y=-x代入原式即可求出答案.【详解】由于根号下的数要是非负数,∴a(x-a)≥0,a(y-a)≥0,x-a≥0,a-y≥0,a(x-a)≥0和x-a≥0可以得到a≥0,a(y-a)≥0和a-y≥0可以得到a≤0,所以a只能等于0,代入等式得,所以有x=-y,即:y=-x,由于x,y,a是两两不同的实数,∴x>0,y<0.将x=-y代入原式得:原式=()()()()2222313x x x xx x x x+---=--+-.故选B.【点睛】本题主要考查对二次根式的化简,算术平方根的非负性,分式的加减、乘除等知识点的理解和掌握,根据算术平方根的非负性求出a、x、y的值和代入求分式的值是解此题的关键.11.D【分析】 根据题中给的方法分别对633633--+和3232-+进行化简,然后再进行合并即可.【详解】设633633x =--+,且633633-<+,∴0x <,∴26332(633)(633)633x =---+++,∴212236x =-⨯=,∴6x =-,∵3252632-=-+, ∴原式5266=--536=-,故选D .【点睛】本题考查了二次根式的混合运算,涉及了分母有理化等方法,弄清题意,理解和掌握题中介绍的方法是解题的关键.12.A解析:A【解析】试题分析:最简二次根式是指不能继续化简的二次根式,A 、原式=;B 、是最简二次根式,不能化简;C 、原式=;D 、原式=. 考点:最简二次根式 二、填空题13.10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y )2﹣xy=(2)2﹣(+1)(﹣1)=12﹣2=10.故答案为10.解析:10【解析】根据完全平方式的特点,可得x 2+xy+y 2=(x+y )2﹣xy=(3233﹣1)=12﹣2=10.故答案为10.14.﹣6【解析】根据零指数幂的性质,二次根式的性质,负整指数幂的性质,可知(π-3)0=1﹣(3﹣2)﹣4×﹣4=1﹣3+2﹣2﹣4=﹣6.故答案为﹣6.解析:﹣6【解析】根据零指数幂的性质01(0)a a =≠,二次根式的性质,负整指数幂的性质1(0)p p a a a -=≠,可知(π-3)0-21-2()=1﹣(3﹣)﹣4×2﹣4=1﹣﹣﹣4=﹣6. 故答案为﹣6.15.【分析】先根据题目中提供的三个式子,分别计算的值,用含n 的式子表示其规律,再计算S 的值即可.【详解】解:∵,∴;∵,∴;∵,∴;……∵,∴;∴.故答案为:【点睛】本题解析:221n n n ++ 【分析】n 的式子表示其规律,再计算S 的值即可.【详解】 解:∵1221191=124S =++311122===+-; ∵222114912336S =++=7111116623===+=+-; ∵32211169134144S =++=1311111121234===+=+-; …… ∵()()()222222111111n n n S n n n n ++=++=++,()()2111111111n n n n n n n n ++===+=+-+++;∴...S =1111111112231n n =+-++-++-+…+ 111n n =+-+. 221n n n +=+ 故答案为:221n n n ++ 【点睛】本题为规律探究问题,难度较大,根据提供的式子发现规律,并表示规律是解题的关键,同时要注意对于式子()11111n n n n =-++的理解. 16.-4【分析】先将a 进行化简,然后再进一步分组分解代数式,最后代入求得答案即可.【详解】解:当a =-=-=-3时,原式=a3+6a2+9a -(a2+6a+9)-7a+3=a(a+3)2-(解析:-4【分析】先将a 进行化简,然后再进一步分组分解代数式,最后代入求得答案即可.【详解】解:当a-3时, 原式=a 3+6a 2+9a -(a 2+6a +9)-7a +3=a (a +3)2-(a +3)2-7a +3=7a -7-7a +3=-4.故答案为:-4.【点睛】本题综合运用了二次根式的化简,提公因式及完全平方公式法分解因式,熟练掌握分母有理化的方法及因式分解的方法是解题的关键.17.(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9)【解析】试题解析:当a=1,=1,要使为整数,=1或时,分别为4和3,得出(1,4)和(1,1)是的“理想数对”,解析:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9)【解析】试题解析:当a =1,要使或12时,分别为4和3,得出(1,4)和(1,1)是的“理想数对”,当a =412,要使+或12时,分别为3和2,得出(4,1)和(4,4)是的“理想数对”,当a =913,要使16时,=1,得出(9,36)是的“理想数对”,当a =1614,要使14时,=1,得出(16,16)是的“理想数对”,当a =3616,要使13时,=1,得出(36,9)是的“理想数对”, 即其他所有的“理想数对”:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9).故答案为:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9). 18.且【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:,解得且,故答案为:且.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分解析:3x ≤且2x ≠-【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:2030x x +≠⎧⎨-≥⎩, 解得3x ≤且2x ≠-,故答案为:3x ≤且2x ≠-.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分式和二次根式的定义是解题关键.19.-5【分析】根据a 的取值范围化简二次根式及绝对值,再根据整式的加减法计算法则计算得到答案.【详解】∵,∴a+3<0,2-a>0,∴-a-3-2+a=-5,故答案为:-5.【点睛】此解析:-5【分析】根据a 的取值范围化简二次根式及绝对值,再根据整式的加减法计算法则计算得到答案.【详解】∵4a ,∴a+3<0,2-a>0,|2|a -=-a-3-2+a=-5,故答案为:-5.【点睛】此题考查二次根式的化简,绝对值的化简,整式的加减法计算法则,正确化简代数式是解题的关键.20.【分析】由,且,即知,,据此根据二次根式的性质化简可得.【详解】∵,且,即,∴,,∴,故答案为:.【点睛】本题主要考查了二次根式的性质与化简,熟练掌握二次根式的性质是解题的关键.解析:-【分析】由0xy >,且20xy -≥,即•0y xy -≥知0x <,0y <,据此根据二次根式的性质化简可得.【详解】∵0xy >,且20xy -≥,即•0y xy -≥,∴0x <,0y <,==-故答案为:-【点睛】本题主要考查了二次根式的性质与化简,熟练掌握二次根式的性质是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
人教版八年级第二学期3月份段考数学试题含答案

一、选择题1.△ABC 的三边分别为,,a b c ,下列条件能推出△ABC 是直角三角形的有( ) ①222a c b -=;②2()()0a b a b c -++=;③ ∠A =∠B -∠C; ④∠A ∶∠B ∶∠C =1∶2∶3 ;⑤111,,345a b c ===;⑥10,a = 24,b = 26c = A .2个 B .3个 C .4个 D .5个2.如图,在Rt ABC ∆中,90, 5 ,3ACB AB cm AC cm ︒∠=== ,动点P 从点B 出发,沿射线BC 以1 /cm s 的速度移动,设运动的时间为t 秒,当∆ABP 为等腰三角形时,t 的值不可能为( )A .5B .8C .254D .2583.已知三角形的三边长分别为a ,b ,c ,且a+b=10,ab=18,c=8,则该三角形的形状是( )A .等腰三角形B .直角三角形C .钝角三角形D .等腰直角三角形4.如图,正方形ABCD 的边长为8,M 在DC 上,且DM=2,N 是AC 上的一动点,则DN+MN 的最小值是( )A .8B .9C .10D .125.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为( )A .20B .24C .994D .5326.在平面直角坐标系内的机器人接受指令“[α,A]”(α≥0,0°<A <180°)后的行动结果为:在原地顺时针旋转A 后,再向正前方沿直线行走α.若机器人的位置在原点,正前方为y 轴的负半轴,则它完成一次指令[4,30°]后位置的坐标为( )A .(-2,23)B .(-2,-23)C .(-2,-2)D .(-2,2)7.如图,BD 为ABCD 的对角线,45,DBC DE BC ︒∠=⊥于点E ,BF ⊥DC 于点F ,DE 、BF 相交于点H ,直线BF 交线段AD 的延长线于点G ,下列结论:①12CE BE = ;②A BHE ∠=∠;③AB=BH;④BHD BDG ∠=∠;⑤222BH BG AG +=;其中正确的结论有( )A .①②③B .②③⑤C .①⑤D .③④8.将一根 24cm 的筷子,置于底面直径为 15cm ,高 8cm 的装满水的无盖圆柱形水杯中,设筷子浸没在杯子里面的长度为 hcm ,则 h 的取值范围是( )A .h≤15cmB .h≥8cmC .8cm≤h≤17cmD .7cm≤h≤16cm9.已知直角三角形纸片ABC 的两直角边长分别为6,8,现将ABC 按如图所示的方式折叠,使点A 与点B 重合,则BE 的长是( )A .72B .74C .254D .15410.已知三角形的两边分别为3、4,要使该三角形为直角三角形,则第三边的长为( )A .5B 7C .57D .3或4二、填空题11.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S1,S2,S3,若S 1+S 2+S 3=10,则S2的值是_________.∠+∠=__________°(点A,B,C是12.如图所示的网格是正方形网格,则ABC ACB网格线交点).13.如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2018的坐标是_____.14.已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP 是腰长为5的等腰三角形时,点P的坐标为_____.15.在ABC ∆中,90BAC ∠=︒,以BC 为斜边作等腰直角BCD ∆,连接DA ,若22AB =,42AC =,则DA 的长为______.16.在△ABC 中,若222225,75a b a b c -+===,,则最长边上的高为_____.17.如图是由边长为1的小正方形组成的网格图,线段AB ,BC ,BD ,DE 的端点均在格点上,线段AB 和DE 交于点F ,则DF 的长度为_____.18.如图,在等边△ABC 中,AB =6,AN =2,∠BAC 的平分线交BC 于点D ,M 是AD 上的动点,则BM +MN 的最小值是_____.19.如图,Rt △ABC 中,∠C =90°,AB =5,BC =4,斜边AB 的垂直平分线DE 交边BC 于点D ,连接AD ,线段CD 的长为_________.20.如图,在四边形ABCD 中,AD =4,CD =3,∠ABC =∠ACB =∠ADC =45°,则2________BD =.三、解答题21.如图,,90,8,6,,ABC B AB cm BC cm P Q ︒∆∠===是边上的两点,点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 沿B C A →→运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)出发2秒后,求线段PQ 的长;(2)求点Q 在BC 上运动时,出发几秒后,PQB 是等腰三角形;(3)点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.22.(1)计算:1312248233⎛÷ ⎝ (2)已知a 、b 、c 满足2|2332(30)0a b c -+-=.判断以a 、b 、c 为边能否构成三角形?若能构成三角形,说明此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.23.如图,在等腰直角三角形ABC 中,∠ACB =90°,AC=BC ,AD 平分∠BAC ,BD ⊥AD 于点D ,E 是AB 的中点,连接CE 交AD 于点F ,BD =3,求BF 的长.24.定义:如图1,平面上两条直线AB、CD相交于点O,对于平面内任意一点M,点M到直线AB、CD的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”为(0,0)的点有1个,即点O.(1)“距离坐标”为(1,0)的点有个;(2)如图2,若点M在过点O且与直线AB垂直的直线l上时,点M的“距离坐标”为(p,q),且∠BOD = 150︒,请写出p、q的关系式并证明;(3)如图3,点M的“距离坐标”为(1,3),且∠DOB = 30︒,求OM的长.25.如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D在边AB上,点E在边AC的左侧,连接AE.(1)求证:AE=BD;(2)试探究线段AD、BD与CD之间的数量关系;(3)过点C作CF⊥DE交AB于点F,若BD:AF=1:2,CD36,求线段AB 的长.26.如图,△ABC中AC=BC,点D,E在AB边上,连接CD,CE.(1)如图1,如果∠ACB=90°,把线段CD逆时针旋转90°,得到线段CF,连接BF,①求证:△ACD≌△BCF;②若∠DCE=45°,求证:DE2=AD2+BE2;(2)如图2,如果∠ACB=60°,∠DCE=30°,用等式表示AD,DE,BE三条线段的数量关系,说明理由.27.已知ABC ∆中,90ACB ∠=︒,AC BC =,过顶点A 作射线AP .(1)当射线AP 在BAC ∠外部时,如图①,点D 在射线AP 上,连结CD 、BD ,已知21AD n =-,21AB n =+,2BD n =(1n >).①试证明ABD ∆是直角三角形;②求线段CD 的长.(用含n 的代数式表示)(2)当射线AP 在BAC ∠内部时,如图②,过点B 作BD AP ⊥于点D ,连结CD ,请写出线段AD 、BD 、CD 的数量关系,并说明理由.28.如图1,在平面直角坐标系中,直线AB 经过点C (a ,a ),且交x 轴于点A (m ,0),交y 轴于点B (0,n ),且m ,n 6m -n ﹣12)2=0.(1)求直线AB 的解析式及C 点坐标;(2)过点C 作CD ⊥AB 交x 轴于点D ,请在图1中画出图形,并求D 点的坐标;(3)如图2,点E (0,﹣2),点P 为射线AB 上一点,且∠CEP =45°,求点P 的坐标.29.如图,在边长为2正方形ABCD 中,点O 是对角线AC 的中点,E 是线段OA 上一动点(不包括两个端点),连接BE .(1)如图1,过点E 作EF BE ⊥交CD 于点F ,连接BF 交AC 于点G .①求证:BE EF =;②设AE x =,CG y =,求y 与x 的函数关系式,并写出自变量x 的取值范围. (2)在如图2中,请用无刻度的直尺作出一个以BE 为边的菱形.30.如图1,已知△ABC 是等边三角形,点D ,E 分别在边BC ,AC 上,且CD =AE ,AD 与BE 相交于点F .(1)求证:∠ABE =∠CAD ;(2)如图2,以AD 为边向左作等边△ADG ,连接BG .ⅰ)试判断四边形AGBE 的形状,并说明理由;ⅱ)若设BD =1,DC =k (0<k <1),求四边形AGBE 与△ABC 的周长比(用含k 的代数式表示).【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据勾股定理的逆定理,三角形的内角和定理,分别对每个选项进行判断,即可得到答案.【详解】解:∵222a c b -=,得222a b c =+,符合勾股定理逆定理,则①正确;∵2()()0a b a b c -++=,得到222a c b +=,符合勾股定理逆定理,则②正确; ∵∠A =∠B -∠C ,得∠B=∠A+∠C ,∵∠A+∠B+∠C=180°,∴∠B=90°,故③正确;∵∠A ∶∠B ∶∠C =1∶2∶3,∠A+∠B+∠C=180°, ∴318090123C ∠=︒⨯=︒++,故④正确; ∵222111()()()453+≠,则⑤不能构成直角三角形,故⑤错误;∵222102426+=,则⑥能构成直角三角形,故⑥正确;∴能构成直角三角形的有5个;故选择:D.【点睛】本题考查了勾股定理的逆定理,以及三角形的内角和定理,解题的关键是熟练掌握用勾股定理的逆定理和三角形内角和定理进行判断三角形是直角三角形. 2.C解析:C【分析】根据ABP △为等腰三角形,分三种情况进行讨论,分别求出BP 的长度,从而求出t 值即可.【详解】在Rt ABC 中,222225316BC AB AC =-=-=,4BC cm ∴=,①如图,当AB BP =时, 5 ,5BP cm t ==;②如图,当AB AP =时,∵AC BP ⊥,∴28 BP BC cm ==,8t =;③如图,当BP AP =时,设AP BP xcm ==,则4,3( )CP x cm AC cm =-=,∵在Rt ACP 中,222AP AC CP =+,∴()22234x x =+-, 解得:258x =, ∴258t =, 综上所述,当ABP △为等腰三角形时,5t =或8t =或258t =. 故选:C .【点睛】本题考查了勾股定理,等腰三角形的性质,注意分类讨论.3.B解析:B【解析】【分析】根据完全平方公式利用a+b=10,ab=18求出22a b +,即可得到三角形的形状.【详解】∵a+b=10,ab=18,∴22a b +=(a+b )2-2ab=100-36=64,∵,c=8,∴2c =64,∴22a b +=2c ,∴该三角形是直角三角形,故选:B.【点睛】此题考查勾股定理的逆定理,完全平方公式,能够利用完全平方公式由已知条件求出22是解题的关键.a b4.C解析:C【解析】【分析】要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解.【详解】解:∵正方形是轴对称图形,点B与点D是关于直线AC为对称轴的对称点,∴连接BN,BD,则直线AC即为BD的垂直平分线,∴BN=ND∴DN+MN=BN+MN连接BM交AC于点P,∵点 N为AC上的动点,由三角形两边和大于第三边,知当点N运动到点P时,BN+MN=BP+PM=BM,BN+MN的最小值为BM的长度,∵四边形ABCD为正方形,∴BC=CD=8,CM=8−2=6,BCM=90°,∴BM==10,∴DN+MN的最小值是10.故选:C.【点睛】此题考查正方形的性质和轴对称及勾股定理等知识的综合应用,解题的难点在于确定满足条件的点N的位置:利用轴对称的方法.然后熟练运用勾股定理.5.B解析:B【分析】设小正方形的边长为x,则矩形的一边长为(a+x),另一边为(b+x),根据矩形的面积的即等于两个三角形的面积之和,也等于长乘以宽,列出方程,化简再代入a,b的值,得出x2+7x=12,再根据矩形的面积公式,整体代入即可.【详解】设小正方形的边长为x,则矩形的一边长为(a+x),另一边为(b+x),根据题意得 :2(ax+x 2+bx )=(a+x )(b+x ),化简得 :ax+x 2+bx-ab=0,又∵ a = 3 , b = 4 ,∴x 2+7x=12;∴该矩形的面积为=(a+x )(b+x )=(3+x )(4+x )=x 2+7x+12=24.故答案为B.【点睛】本题考查了勾股定理的证明以及运用和一元二次方程的运用,求出小正方形的边长是解题的关键.6.B解析:B【解析】根据题意,如图,∠AOB=30°,OA=4,则AB=2,OB=23,所以A(-2,-23),故选B.7.B解析:B【分析】根据直角三角形的意义和性质可以得到解答.【详解】解:由题意,90BHE HBE C HBE A C ∠+∠=∠+∠=︒∠=∠,∴A BHE C ∠=∠=∠,②正确;∵∠DBC=45°,DE ⊥BC ,∴∠EDB=∠DBC=45°,∴BE=DE∴Rt BEH Rt DEC ≅,∴BH=CD=AB ,③正确;∵AB CD BF CD ⊥,,∴AB ⊥CD ,∴222AB BG AG +=即 222BH BG AG +=,⑤正确,∵没有依据支持①④成立,∴②③⑤正确故选B .【点睛】本题考查直角三角形的意义和性质,灵活应用有关知识求解是解题关键.8.C解析:C【分析】筷子浸没在水中的最短距离为水杯高度,最长距离如下图,是筷子斜卧于杯中时,利用勾股定理可求得.当筷子笔直竖立在杯中时,筷子浸没水中距离最短,为杯高=8cmAD是筷子,AB长是杯子直径,BC是杯子高,当筷子如下图斜卧于杯中时,浸没在水中的距离最长由题意得:AB=15cm,BC=8cm,△ABC是直角三角形∴在Rt△ABC中,根据勾股定理,AC=17cm∴8cm≤h≤17cm故选:C【点睛】本题考查勾股定理在实际生活中的应用,解题关键是将题干中生活实例抽象成数学模型,然后再利用相关知识求解.9.C解析:C【分析】根据图形翻折变换的性质可知,AE=BE,设AE=x,则BE=x,CE=8-x,再在Rt△BCE中利用勾股定理即可求出BE的长度.【详解】解:∵△ADE翻折后与△BDE完全重合,∴AE=BE,设AE=x,则BE=x,CE=8﹣x,在Rt△BCE中,BE2=BC2+CE2,即x2=62+(8﹣x)2,解得,x=254,∴BE=254.故选:C.【点睛】本题考查了图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.10.C解析:C根据勾股定理和分类讨论的方法可以求得第三边的长,从而可以解答本题.【详解】由题意可得,当3和4为两直线边时,第三边为:2243+=5,当斜边为4时,则第三边为:2243-=7,故选:C【点睛】本题考查勾股定理,解答本题的关键是明确题意,利用勾股定理和分类讨论的数学思想解答.二、填空题11.103.【解析】试题解析:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=10,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=10,故3x+12y=10,x+4y=103,所以S2=x+4y=103.考点:勾股定理的证明.12.45【分析】如下图,延长BA至网络中的点D处,连接CD. ABC ACB DAC∠+∠=∠,只需证△ADC是等腰直角三角形即可【详解】如下图,延长BA至网络中的点D处,连接CD设正方形网络每一小格的长度为1则根据网络,BC=5,∴其中BD、DC、BC边长满足勾股定理逆定理∴∠CDA=90°∵AD=DC∴△ADC是等腰直角三角形∴∠DAC=45°故答案为:45°【点睛】本题是在网格中考察勾股定理的逆定理,解题关键是延长BA,构造处△ABC的外角∠CAD 13.(0,21009)【解析】【分析】本题点A坐标变化规律要分别从旋转次数与点A所在象限或坐标轴、点A到原点的距离与旋转次数的对应关系.【详解】∵∠OAA1=90°,OA=AA1=1,以OA1为直角边作等腰Rt△OA1A2,再以OA2为直角边作等腰Rt△OA2A3,…,∴OA1,OA2=)2,…,OA2018=)2018,∵A1、A2、…,每8个一循环,∵2018=252×8+2∴点A2018的在y轴正半轴上,OA2018=2018=21009,故答案为(0,21009).【点睛】本题是平面直角坐标系下的规律探究题,除了研究动点变化的相关数据规律,还应该注意象限符号.14..(3,4)或(2,4)或(8,4).【分析】题中没有指明△ODP的腰长与底分别是哪个边,故应该分情况进行分析,从而求得点P的坐标.【详解】解:(1)OD是等腰三角形的底边时,P就是OD的垂直平分线与CB的交点,此时OP=PD≠5;(2)OD是等腰三角形的一条腰时:①若点O是顶角顶点时,P点就是以点O为圆心,以5为半径的弧与CB的交点,在直角△OPC中,CP3,则P的坐标是(3,4).②若D是顶角顶点时,P点就是以点D为圆心,以5为半径的弧与CB的交点,过D作DM⊥BC于点M,在直角△PDM中,PM3,当P在M的左边时,CP=5﹣3=2,则P的坐标是(2,4);当P在M的右侧时,CP=5+3=8,则P的坐标是(8,4).故P的坐标为:(3,4)或(2,4)或(8,4).故答案为:(3,4)或(2,4)或(8,4).【点睛】本题考查了等腰三角形的性质和勾股定理的运用等知识,注意正确地进行分类,考虑到所有可能的情况并进行分析求解是解题的关键.15.6或2.【分析】由于已知没有图形,当Rt△ABC固定后,根据“以BC为斜边作等腰直角△BCD”可知分两种情况讨论:①当D点在BC上方时,如图1,把△ABD绕点D逆时针旋转90°得到△DCE,证明A、C、E三点共线,在等腰Rt△ADE中,利用勾股定理可求AD长;②当D点在BC下方时,如图2,把△BAD绕点D顺时针旋转90°得到△CED,证明过程类似于①求解.【详解】解:分两种情况讨论:①当D点在BC上方时,如图1所示,把△ABD绕点D逆时针旋转90°,得到△DCE,则∠ABD=∠ECD,2,AD=DE,且∠ADE=90°在四边形ACDB中,∠BAC+∠BDC=90°+90°=180°,∴∠ABD+∠ACD=360°-180°=180°,∴∠ACD+∠ECD=180°,∴A、C、E三点共线.∴222在等腰Rt△ADE中,AD2+DE2=AE2,即2AD2=(2)2,解得AD=6②当D 点在BC 下方时,如图2所示,把△BAD 绕点D 顺时针旋转90°得到△CED ,则CE=AB=22,∠BAD=∠CED ,AD=AE 且∠ADE=90°,所以∠EAD=∠AED=45°, ∴∠BAD=90°+45°=135°,即∠CED=135°,∴∠CED+∠AED=180°,即A 、E 、C 三点共线.∴AE=AC-CE=42-22=22在等腰Rt △ADE 中,2AD 2=AE 2=8,解得AD=2.故答案为:6或2.【点睛】本题主要考查了旋转的性质、勾股定理,解决这类等边(或共边)的两个三角形问题,一般是通过旋转的方式作辅助线,转化线段使得已知线段于一个特殊三角形中进行求解. 16.125【分析】 解方程222225,7a b a b +=-=可求得a=4,b=3,故三角形ABC 是直角三角形,在利用三角形的面积转化得到斜边上的高.【详解】解:∵222225,7a b a b +=-=,将两个方程相加得:2232a =,∵a >0,∴a=4代入得:22425b +=,∵b >0,∴b=3,∵a=3,b=4,c=5满足勾股定理逆定理,∴△ABC 是直角三角形,如下图,∠ACB=90°,CD ⊥AB ,1122ABC SAC BC AB CD =⋅⋅=⋅⋅ , 即:1134522CD ⋅⋅=⋅⋅, 解得:CD=125, 故答案为:125. 【点睛】 本题考查求解三角形的高,解题关键是利用三角形的面积进行转化,在同一个三角形中,一个底乘对应高等于另一个底乘对应高.17.2【分析】连接AD 、CD ,由勾股定理得:22435AB DE ==+=,224225BD =+=22125CD AD =+=,得出AB =DE =BC ,222BD AD AB +=,由此可得△ABD 为直角三角形,同理可得△BCD 为直角三角用形,继而得出A 、D 、C 三点共线.再证明△ABC ≌△DEB ,得出∠BAC =∠EDB ,得出DF ⊥AB ,BD 平分∠ABC ,再由角平分线的性得出DF =DG =2即可的解.【详解】连接AD 、CD ,如图所示:由勾股定理可得, 22435AB DE==+=,224225BD =+=,22125CD AD ==+=, ∵BE=BC=5,∴AB=DE =AB =BC ,222BD AD AB +=,∴△ABD 是直角三角形,∠ADB =90°,同理可得:△BCD 是直角三角形,∠BDC =90°,∴∠ADC =180°,∴点A 、D 、C 三点共线,∴225AC AD BD ===,在△ABC 和△DEB 中,AB DE BC EB AC BD =⎧⎪⎨⎪=⎩=,∴△ABC ≌△DEB(SSS),∴∠BAC =∠EDB ,∵∠EDB+∠ADF =90°,∴∠BAD+∠ADF =90°,∴∠BFD =90°,∴DF ⊥AB ,∵AB=BC ,BD ⊥AC ,∴BD 平分∠ABC ,∵DG ⊥BC ,∴DF =DG =2.【点睛】本题考查全等三角形的性质与判定以及勾股定理的相关知识,解题的关键是熟练掌握勾股定理和过股定理的逆定理.18.7【解析】【分析】通过作辅助线转化BM ,MN 的值,从而找出其最小值求解.【详解】解:连接CN ,与AD 交于点M .则CN 就是BM +MN 的最小值.取BN 中点E ,连接DE ,如图所示:∵等边△ABC 的边长为6,AN =2,∴BN =AC ﹣AN =6﹣2=4,∴BE =EN =AN =2,又∵AD 是BC 边上的中线,∴DE 是△BCN 的中位线,∴CN =2DE ,CN ∥DE ,又∵N 为AE 的中点,∴M 为AD 的中点,∴MN 是△ADE 的中位线,∴DE =2MN ,∴CN =2DE =4MN ,∴CM =34CN .在直角△CDM 中,CD =12BC =3,DM =12AD =2,∴CM =∴CN =43=. ∵BM +MN =CN ,∴BM +MN 的最小值为.故答案是:【点睛】考查等边三角形的性质和轴对称及勾股定理等知识的综合应用.19.78. 【解析】∵∠C =90°,AB =5,BC =4,∴AC .∵AB 的垂直平分线DE 交边BC 于点D ,∴BD =AD .设CD =x ,则AD =BD =4-x ,在Rt △ACD 中,2223(4)x x +=- ,解得:78x =.故答案为:78. 20.41【解析】作AD′⊥AD ,AD′=AD ,连接CD′,DD ′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD ,即∠BAD=∠CAD′,在△BAD 与△CAD ′中,;BA CA BAD CAD AD AD ===⎧⎪∠∠'⎨⎪⎩∴△BAD ≌△CAD′(SAS ), ∴BD=CD′,∠DAD′=90°,由勾股定理得22AD AD +' ,∠D′DA+∠ADC=90°,由勾股定理得22DC DD +' 41BD 2=41.故答案是:41.三、解答题21.(1)出发2秒后,线段PQ 的长为2132)当点Q 在边BC 上运动时,出发83秒后,△PQB 是等腰三角形;(3)当t 为5.5秒或6秒或6.6秒时,△BCQ 为等腰三角形.【分析】(1)由题意可以求出出发2秒后,BQ 和PB 的长度,再由勾股定理可以求得PQ 的长度; (2)设所求时间为t ,则可由题意得到关于t 的方程,解方程可以得到解答; (3)点Q 在边CA 上运动时,ΔBCQ 为等腰三角形有三种情况存在,对每种情况进行讨论可以得到解答.【详解】(1)BQ=2×2=4cm ,BP=AB−AP=8−2×1=6cm ,∵∠B=90°,由勾股定理得:22224652213BQ BP +=+==∴出发2秒后,线段PQ的长为213;(2)BQ=2t,BP=8−t由题意得:2t=8−t解得:t=8 3∴当点Q在边BC上运动时,出发83秒后,△PQB是等腰三角形;(3) ∵∠ABC=90°,BC=6,AB=8,∴AC=2268+=10.①当CQ=BQ时(图1),则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=5,∴BC+CQ=11,∴t=11÷2=5.5秒;②当CQ=BC时(如图2),则BC+CQ=12∴t=12÷2=6秒③当BC=BQ时(如图3),过B点作BE⊥AC于点E,∴BE=6824105 AB BCAC⋅⨯==,所以22BC BE-=185=3.6,故CQ=2CE=7.2,所以BC+CQ=13.2,∴t=13.2÷2=6.6秒.由上可知,当t为5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.【点睛】本题考查三角形的动点问题,利用分类讨论思想和方程方法、综合力学的运动知识和三角形边角的有关知识求解是解题关键.22.(1)423;(2)以a、b、c为边能构成三角形,此三角形的形状是直角三角形,6【分析】(1)根据二次根式的加减法法则、除法法则和二次根式的性质求出即可;(2)先根据绝对值,偶次方、算术平方根的非负性求出a、b、c的值,再根据勾股定理的逆定理得出三角形是直角三角形,再求出面积即可.【详解】解:(1)1312248233⎛÷⎝=2(63343)233÷=28(3)(23) 3÷=423;(2)以a、b、c为边能构成三角形,此三角形的形状是直角三角形,理由是:∵a、b、c满足2|a2332b(c30)0-+-=,∴a﹣3=0,2﹣b=0,c300,∴a=3,b=2,c30∵32303302,3302,∴以a、b、c为边能组成三角形,∵a=3,b=2,c30∴a2+b2=c2,∴以a、b、c为边能构成直角三角形,直角边是a和b,则此三角形的面积是123322⨯⨯=36.【点睛】此题考查了计算能力,掌握二次根式的加减法法则、除法法则和二次根式的性质,绝对值,偶次方、算术平方根的非负性,勾股定理的逆定理是解题的关键.23.BF的长为32【分析】先连接BF,由E为中点及AC=BC,利用三线合一可得CE⊥AB,进而可证△AFE≌△BFE,再利用AD为角平分线以及三角形外角定理,即可得到∠BFD为45°,△BFD为等腰直角三角形,利用勾股定理即可解得BF.【详解】解:连接BF.∵CA=CB,E为AB中点∴AE=BE,CE⊥AB,∠FEB=∠FEA=90°在Rt△FEB与Rt△FEA中,BE AEBEF AEFFE FE=⎧⎪∠=∠⎨⎪=⎩∴Rt△FEB≌Rt△FEA又∵AD平分∠BAC,在等腰直角三角形ABC中∠CAB=45°∴∠FBE=∠FAE=12∠CAB=22.5°在△BFD中,∠BFD=∠FBE+∠FAE=45°又∵BD⊥AD,∠D=90°∴△BFD为等腰直角三角形,BD=FD=3∴222232BF BD FD BD=+==【点睛】本题主要考查等腰直角三角形的性质及判定、三角形全等的性质及判定、三角形外角、角平分线,解题关键在于熟练掌握等腰直角三角形的性质.24.(1)2;(2)32q p =;(3)27OM = 【分析】(1)根据“距离坐标”的定义结合图形判断即可;(2)过M 作MN ⊥CD 于N ,根据已知得出MN q =,OM p =,求出∠MON =60°,根据含30度直角三角形的性质和勾股定理求出223MN MO NO p =-=即可解决问题;(3)分别作点M 关于AB 、CD 的对称点F 、E ,连接EF 、OE 、OF ,连接MF 、ME 分别交AB 、CD 于P 点、Q 点,首先证明OM OE OF EF ===,求出2MF =,23ME =,然后过F 作FG QM ⊥,交QM 延长线于G ,根据含30度直角三角形的性质求出1FG =,3MG =,再利用勾股定理求出EF 即可.【详解】解:(1)由题意可知,在直线CD 上,且在点O 的两侧各有一个,共2个,故答案为:2;(2)过M 作MN CD ⊥于N ,∵直线l AB ⊥于O ,150BOD ∠=︒,∴60MON ∠=︒,∵MN q =,OM p =,∴1122NO MO p ==, ∴2232MN MO NO p =-=, ∴32q p =; (3)分别作点M 关于AB 、CD 的对称点F 、E ,连接EF 、OE 、OF ,连接MF 、ME 分别交AB 、CD 于P 点、Q 点.∴OFP OMP △≌△,OEQ OMQ △≌△,∴FOP MOP ∠=∠,EOQ MOQ ∠=∠,OM OE OF ==,∴260EOF BOD ∠=∠=︒,∴△OEF 是等边三角形,∴OM OE OF EF ===,∵1MP =,3MQ =, ∴2MF =,23ME =,∵30BOD ∠=︒,∴150PMQ ∠=︒,过F 作FG QM ⊥,交QM 延长线于G ,∴30FMG ∠=︒,在Rt FMG △中,112FG MF ==,则3MG =, 在Rt EGF 中,1FG =,33EG ME MG =+=,∴22(33)127EF =+=,∴27OM =.【点睛】本题考查了轴对称的应用,含30度直角三角形的性质,勾股定理以及等边三角形的判定和性质等,正确理解题目中的新定义是解答本题的关键.25.(1)见解析;(2)BD 2+AD 2=2CD 2;(3)AB =2+4.【分析】(1)根据等腰直角三角形的性质证明△ACE ≌△BCD 即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论;(3)连接EF ,设BD =x ,利用(1)、(2)求出EF=3x ,再利用勾股定理求出x ,即可得到答案.【详解】(1)证明:∵△ACB 和△ECD 都是等腰直角三角形∴AC =BC ,EC =DC ,∠ACB =∠ECD =90°∴∠ACB ﹣∠ACD =∠ECD ﹣∠ACD∴∠ACE =∠BCD ,∴△ACE ≌△BCD (SAS ),∴AE =BD .(2)解:由(1)得△ACE ≌△BCD ,∴∠CAE =∠CBD ,又∵△ABC 是等腰直角三角形,∴∠CAB =∠CBA =∠CAE =45°,∴∠EAD =90°,在Rt △ADE 中,AE 2+AD 2=ED 2,且AE =BD ,∴BD 2+AD 2=ED 2,∵ED =2CD ,∴BD 2+AD 2=2CD 2,(3)解:连接EF ,设BD =x ,∵BD :AF =1:2AF =2x ,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △FAE 中,EF 22AF AE +22(22)x x +3x , ∵AE 2+AD 2=2CD 2,∴222(223)2(36)x x x ++=,解得x =1,∴AB =2+4.【点睛】此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.26.(1)①详见解析;②详见解析;(2)DE 2= EB 2+AD 2+EB ·AD ,证明详见解析【分析】(1)①根据旋转的性质可得CF=CD ,∠DCF=90°,再根据已知条件即可证明△ACD ≌△BCF ;②连接EF ,根据①中全等三角形的性质可得∠EBF=90°,再证明△DCE ≌△FCE 得到EF=DE即可证明;(2)根据(1)中的思路作出辅助线,通过全等三角形的判定及性质得出相等的边,再由勾股定理得出AD,DE,BE之间的关系.【详解】解:(1)①证明:由旋转可得CF=CD,∠DCF=90°∵∠ACD=90°∴∠ACD=∠BCF又∵AC=BC∴△ACD≌△BCF②证明:连接EF,由①知△ACD≌△BCF∴∠CBF=∠CAD=∠CBA=45°,∠BCF=∠ACD,BF=AD∴∠EBF=90°∴EF2=BE2+BF2,∴EF2=BE2+AD2又∵∠ACB=∠DCF=90°,∠CDE=45°∴∠FCE=∠DCE=45°又∵CD=CF,CE=CE∴△DCE≌△FCE∴EF=DE∴DE2= AD2+BE2⑵DE2=EB2+AD2+EB·AD理由:如图2,将△ADC绕点C逆时针旋转60°,得到△CBF,过点F作FG⊥AB,交AB 的延长线于点G,连接EF,∴∠CBE=∠CAD,∠BCF=∠ACD, BF=AD∵AC=BC,∠ACB=60°∴∠CAB=∠CBA =60°∴∠ABE=120°,∠EBF=60°,∠BFG=30°∴BG=12BF,3∵∠ACB=60°,∠DCE=30°,∴∠ACD+∠BCE=30°,∴∠ECF=∠FCB+∠BCE=30°∵CD=CF ,CE=CE∴△ECF ≌△ECD∴EF=ED在Rt △EFG 中,EF 2=FG 2+EG 2又∵EG=EB+BG∴EG=EB+12BF , ∴EF 2=(EB+12BF )2+(32BF )2 ∴DE 2= (EB+12AD )2+(3AD )2 ∴DE 2= EB 2+AD 2+EB ·AD【点睛】本题考查了全等三角形的性质与旋转模型,解题的关键是找出全等三角形,转换线段,并通过勾股定理的计算得出线段之间的关系.27.(1)①详见解析;(2)222222CD n n =+-(1n >);(2)2AD BD CD -=,理由详见解析.【分析】(1)①根据勾股定理的逆定理进行判断;②过点C 作CE ⊥CD 交DB 的延长线于点E ,利用同角的余角相等证明∠3=∠4,∠1=∠E ,进而证明△ACD ≌△BCE ,求出DE 的长,再利用勾股定理求解即可.(2)过点C 作CF ⊥CD 交BD 的延长线于点F ,先证∠ACD=∠BCF ,再证△ACD ≌△BCF ,得CD=CF ,AD=BF ,再利用勾股定理求解即可.【详解】(1)①∵()()()22222222212214AD BD n n n n n +=-+=-++()()22222211n n n =++=+ 又∵()2221AB n =+∴222AD BD AB +=∴△ABD 是直角三角形②如图①,过点C 作CE ⊥CD 交DB 的延长线于点E ,∵∠3+∠BCD=∠ACD=90°,∠4+∠BCD=∠DCE=90° ∴∠3=∠4由①知△ABD 是直角三角形∴1290∠+∠=︒又∵290E ∠+∠=︒∴∠1=∠E在ACD ∆和BCE ∆中,A 34E AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△BCE∴CD CE =,AD BE =∴221DE BD BE BD AD n n =+=+=+- 又∵CD CE =,90DCE ∠=︒ ∴由勾股定理得222DE CD DE CD =+=∴22CD =222222n n =+-(1n >) (2)AD 、BD 、CD 的数量关系为:2AD BD CD -=,理由如下:如图②,过点C 作CF ⊥CD 交BD 的延长线于点F ,∵∠ACD=90°+∠5,∠BCF=90°+∠5∴∠ACD=∠BCF∵BD ⊥AD∴∠ADB=90°∴∠6+∠7=90°∵∠ACB=90°∴∠9=∠8=90°又∵∠6=∠8∴∠7=∠9ACD ∆和BCF ∆中97AC BCACD BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ACD ≌△BCF∴CD=CF ,AD=BF又∵∠DCF=90°∴由勾股定理得DF ==又DF=BF-BD=AD-BD∴AD BD -=【点睛】本题考查的是三角形全等、勾股定理及其逆定理,掌握三角形全等的判定方法及勾股定理及其逆定理是关键.28.(1)y =-2x +12,点C 坐标(4,4);(2)画图形见解析,点D 坐标(-4,0);(3)点P 的坐标(143-,643) 【分析】(1)由已知的等式可求得m 、n 的值,于是可得直线AB 的函数解析式,把点C 的坐标代入可求得a 的值,由此即得答案;(2)画出图象,由CD ⊥AB 知1AB CD k k =-可设出直线CD 的解析式,再把点C 代入可得CD 的解析式,进一步可求D 点坐标;(3)如图2,取点F (-2,8),易证明CE ⊥CF 且CE =CF ,于是得∠PEC =45°,进一步求出直线EF 的解析式,再与直线AB 联立求两直线的交点坐标,即为点P .【详解】解:(1n ﹣12)2=0,∴m =6,n =12,∴A (6,0),B (0,12),设直线AB 解析式为y =kx +b , 则有1260b k b =⎧⎨+=⎩,解得212k b =-⎧⎨=⎩, ∴直线AB 解析式为y =-2x +12,∵直线AB 过点C (a ,a ),∴a=-2a+12,∴a=4,∴点C坐标(4,4).(2)过点C作CD⊥AB交x轴于点D,如图1所示,设直线CD解析式为y=12x+b′,把点C(4,4)代入得到b′=2,∴直线CD解析式为y=12x+2,∴点D坐标(-4,0).(3)如图2中,取点F(-2,8),作直线EF交直线AB于P,图2∵直线EC解析式为y=32x-2,直线CF解析式为y=-23x+203,∵32×(-23)=-1,∴直线CE⊥CF,∵EC=13CF=13∴EC=CF,∴△FCE是等腰直角三角形,∴∠FEC=45°,∵直线FE解析式为y=-5x-2,由21252y x y x =-+⎧⎨=--⎩解得143643x y ⎧=-⎪⎪⎨⎪=⎪⎩, ∴点P 的坐标为(1464,33-). 【点睛】本题是一次函数的综合题,综合考查了坐标系中两直线的垂直问题、两条直线的交点问题和求特殊角度下的直线解析式,并综合了勾股定理和等腰直角三角形的判定和性质,解题的关键是熟知坐标系中两直线垂直满足121k k =-,一次函数的交点与对应方程组的解的关系.其中,第(3)小题是本题的难点,寻找到点F (-2,8)是解题的突破口.29.(1)①见解析;②()22012x y x x-=<<-;(2)见解析 【解析】【分析】(1)①连接DE ,如图1,先用SAS 证明△CBE ≌△CDE ,得EB=ED ,∠CBE =∠1,再用四边形的内角和可证明∠EBC =∠2,从而可得∠1=∠2,进一步即可证得结论;②将△BAE 绕点B 顺时针旋转90°,点E 落在点P 处,如图2,用SAS 可证△PBG ≌△EBG ,所以PG=EG =2-x -y ,在直角三角形PCG 中,根据勾股定理整理即得y 与x 的函数关系式,再根据题意写出x 的取值范围即可.(2)由(1)题已得EB=ED ,根据正方形的对称性只需再确定点E 关于点O 的对称点即可,考虑到只有直尺,可延长BE 交AD 于点M ,再连接MO 并延长交BC 于点N ,再连接DN 交AC 于点Q ,问题即得解决.【详解】(1)①证明:如图1,连接DE ,∵四边形ABCD 是正方形,∴CB=CD ,∠BCE =∠DCE =45°,又∵CE=CE ,∴△CBE ≌△CDE (SAS ),∴EB=ED ,∠CBE =∠1,∵∠BEC =90°,∠BCF =90°,∴∠EBC +∠EFC =180°,∵∠EFC +∠2=180°,∴∠EBC =∠2,∴∠1=∠2.∴ED=EF ,∴BE=EF .②解:∵正方形ABCD的边长为2,∴对角线AC =2.将△BAE 绕点B 顺时针旋转90°,点A 与点C 重合,点E 落在点P 处,如图2, 则△BAE ≌△BCP ,∴BE =BP ,AE=CP=x ,∠BAE =∠BCP =45°,∠EBP =90°,由①可得,∠EBF =45°,∴∠PBG =45°=∠EBG ,在△PBG 与△EBG 中,PB EB PBG EBG BG BG =⎧⎪∠=∠⎨⎪=⎩,∴△PBG ≌△EBG (SAS ).∴PG=EG =2-x -y ,∵∠PCG =∠GCB +∠BCP =45°+45°=90°,∴在Rt △PCG 中,由222PC CG PG +=,得()2222x y x y +=--,化简,得()22012x y x x-=<<-. (2)如图3,作法如下:①延长BE 交AD 于点M ,②连接MO 并延长交BC 于点N ,③连接DN 交AC 于点Q ,④连接DE 、BQ ,则四边形BEDQ 为菱形.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、四边形的内角和、勾股定理和菱形的作图等知识,其中通过三角形的旋转构造全等三角形是解决②小题的关键,利用正方形的对称性确定点Q 的位置是解决(2)题的关键.30.(1)详见解析;(2)ⅰ)四边形AGBE 是平行四边形,证明详见解析;ⅱ)222133k k k k ++++. 【解析】【分析】(1)只要证明△BAE ≌△ACD ;(2)ⅰ)四边形AGBE 是平行四边形,只要证明BG=AE ,BG ∥AE 即可;ⅱ)求出四边形BGAE 的周长,△ABC 的周长即可;【详解】(1)证明:如图1中,∵△ABC 是等边三角形,∴AB =AC ,∠BAE =∠C =60°,∵AE =CD ,∴△BAE ≌△ACD ,∴∠ABE =∠CAD .(2)ⅰ)如图2中,结论:四边形AGBE 是平行四边形.。
辽宁省沈阳市和平区峥嵘中学2021-2022学年八年级下学期第二次月考数学试题(含答案解析)

辽宁省沈阳市和平区峥嵘中学2021-2022学年八年级下学期第二次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.观察如图所示的图形,绕着它的中心旋转120°后能与自身重合有()A .1个B .2个C .3个D .4个2.下面是四位同学解方程过程中去分母的一步,其中正确的是()A .2+x=x ﹣1B .2﹣x=1C .2+x=1﹣x D .2﹣x=x ﹣13.若分式3a ba 中的,ab 的值同时扩大到原来的3倍,则分式的值()A .是原来的3倍B .是原来的127C .是原来的19D .是原来的134.如图,在四边形ABCD 中,AD ∥BC ,∠BCD =90°,将四边形ABCD 沿AB 方向平移得到四边形A 'B 'C 'D ',BC 与C 'D '相交于点E ,若BC =8,CE =3,C 'E =2,则阴影部分的面积为()A .B .13C .D .265.已知在正方形的网格中,每个小方格的边长都相等,A ,B 两点在小方格的顶点上,位置如图所示,则以A ,B 为顶点的网格平行四边形的个数为()A .6B .8C .10D .126.新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1~5月份每辆车的销售价格是多少万元?设今年1~5月份每辆车的销售价格为x 万元.根据题意,列方程正确的是()A .50005000(120%)1x x-=+B .50005000(120%)1x x +=+C .50005000(120%)1x x-=-D .50005000(120%)1x x+=-7.如图,在ABC 中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作EF BC ∥交AB 于E ,交AC 于F ,过点O 作OD AC ⊥于D ,下列四个结论:①EF BE CF =+;②1902BOC A ∠=+∠︒;③点O 到ABC 各边的距离相等;④设,OD m AE AF n =+=,则AEF S mn =△.其中正确的结论是()A .①②③B .①②④C .②③④D .①③④8.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,AE =AF ,AC 与EF 相交于点G .下列结论:①AC 垂直平分EF ;②BE +DF =EF ;③当∠DAF =15°时,△AEF 为等边三角形;④当∠EAF =60°时,12ABE CEF S S =△△.其中正确的是()A .①③B .②④C .①③④D .②③④二、填空题9.若分式222x-+的值为0,则x 的值是______.10.若不等式组01x m x m ->⎧⎨-<⎩的解集中每一个x 值均不在25x ≤≤的范围内,则m 的取值范围是______.11.在平行四边形ABCD 中,∠A =30°,AD =BD =4,则平行四边形ABCD 的面积等于______________.12.如图,过边长为5的等边ABC 的边AB 上一点P ,作PE AC ⊥于E ,Q 为BC 延长线上一点,当PA CQ =时,连PQ 交AC 边于D ,则DE 的长为_____.13.如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点F 、G 分别在边,BC CD 上,P 为AE 的中点,连接PG ,则PG 的长为_________.三、解答题14.在A ,B 两地间仅有一条长为360千米的笔直公路,若甲,乙两车分别从A 、B 两地同时出发,匀速前往终点B ,A 两地,乙车速度是甲车速度的34倍,乙车比甲车晚到90分钟,求乙车每小时行驶多少千米?15.如图,ABC 和BDE △都是等腰直角三角形,90ACB DBE ∠=∠=︒,连接CD ,以CA ,CD 为邻边作CAFD Y ,连接CE ,BF .(1)如图1,当D 在BC 边上时,请直接写出CE 与BF 的关系;(2)如图2,将图1中的BDE △绕点B 顺时针旋转到图2的位置,其他条件不变,(1)中的结论是否成立?若成立,请给予证明;若不存在,请说明理由;(3)若3AC =,2BD =,将图1中的BDE △绕点B 顺时针旋转一周,当BD 与直线BC 夹角为30°时,请直接写出CE 的值.16.如图①,点E 为正方形ABCD 内一点,∠AEB =90°,将Rt △ABE 绕点B 按顺时针方向旋转90°,得到△CBE '(点A 的对应点为点C ).延长AE 交CE '于点F ,连接DE .猜想证明:(1)四边形BE 'FE 的形状是______;(2)如图②,若DA =DE ,请猜想线段CF 与FE 的数量关系并加以证明;(3)如图①,若AB =15,CF =3,求DE 的长.参考答案:1.B【分析】根据旋转的性质,对题中图形进行分析,判定正确选项.【详解】解∶①旋转120°后,图形可以与原来的位置重合,故正确;②旋转120°后,图形无法与原来的位置重合,故错误;③旋转120°后,图形无法与原来的位置重合,故错误;④旋转120°后,图形与原来的位置重合,故正确.故选∶B .【点睛】本题考查图形的旋转与重合,理解旋转图形的定义是解决本题的关键.2.D【详解】解:方程的两边同乘(x ﹣1),即可得2﹣x=x ﹣1.故选:D .3.C【分析】根据分式的基本性质即可求出答案.【详解】原式3333a 3b a b 1a b(3a)9a 9a +++===⨯;故选C .【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.4.B【分析】利用平移的性质得到B ′C ′=BC =8,BC ∥B ′C ′,CD ∥C ′D ′,S 梯形ABCD =S 梯形A ′B ′C ′D ′,然后根据S 阴影部分=S 梯形BB ′C ′E 进行计算.【详解】解:∵四边形ABCD 沿AB 方向平移得到四边形A 'B 'C 'D ',∴B ′C ′=BC =8,BC ∥B ′C ′,CD ∥C ′D ′,S 梯形ABCD =S 梯形A ′B ′C ′D ′,∴C ′D ′⊥BE ,∴S 阴影部分=S 梯形BB ′C ′E =12(8﹣3+8)×2=13.故选:B .【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.5.D【详解】分析:根据平行四边形的定义:两组对边平行的四边形是平行四边形,显然图中以A 、B 为顶点的网格平行四边形的个数为12个,分以AB 为边和以AB 为对角线两种思路求解.详解:如图所示,根据平行四边形的定义,则以AB 为边的网格平行四边形有6个,以AB 为对角线的网格平行四边形有6个,则共有12个.故选D.点睛:本题考查了平行四边形的判定,此题要能够根据平行四边形的定义,分别以AB 为边或对角线找到所有的平行四边形.6.A【分析】首先根据所设今年每辆车的价格,可表示出去年的价格,同样根据销售总额的关系可表示出今年的销售总额,然后再根据去年和今年1~5月份销售汽车的数量相同建立方程即可得解.【详解】∵今年1~5月份每辆车的销售价格为x 万元,∴去年每辆车的销售价格为(x+1)万元,则有()5000120%50001x x-=+故选A.【点睛】此题主要考查分式方程的应用,解题的关键是找出题中去年和今年的关系.7.A【分析】根据角平分线的定义和三角形的内角和即可对②进行判断;根据平行线的性质和角平分线的定义可得,EBO EOB FCO COF ∠=∠∠=∠,再根据等角对等边即得,BE EO OF CF ==,进而可对①进行判断;过O 作OM AB ⊥于M ,作ON BC ⊥于N ,连接OA ,可得ON OD OM m ===,可得12AEF AOE AOF S S S mn =+=即可对④进行判断;根据角平分线的性质即可对③进行判断.【详解】解:∵在ABC 中,ABC ∠和ACB ∠的平分线相交于点O ,∴11,,18022OBC ABC OCB ACB A ABC ACB ∠=∠∠=∠∠+∠+∠=︒,∴1902OBC OCB A ∠+∠=︒-∠,∴()1180902BOC OBC OCB A ∠=︒-∠+∠=︒+∠;故②正确;∵在ABC 中,ABC ∠和ACB ∠的平分线相交于点O ,∴,OBC OBE OCB OCF ∠=∠∠=∠,∵EF BC ∥,∴,OBC EOB OCB FOC ∠=∠∠=∠,∴,EOB OBE FOC OCF ∠=∠∠=∠,∴,BE OE CF OF ==,∴EF OE OF BE CF =+=+,故①正确;过点O 作OM AB ⊥于M ,作ON BC ⊥于N ,连接OA ,∵在ABC 中,ABC ∠和ACB ∠的平分线相交于点O ,∴ON OD OM m ===,∴()11112222AEF AOE AOF S S S AE OM AF OD OD AE AF mn =+=⋅+⋅=⋅+=△△△;故④错误;∵在ABC 中,ABC ∠和ACB ∠的平分线相交于点O ,∴点O 到ABC 各边的距离相等,故③正确.故选:A .【点睛】本题考查了平行线的性质、等腰三角形的判定、三角形的内角和定理和角平分线的性质,属于基础题型,熟练掌握角平分线的性质等基本知识是解题关键.8.C【分析】①通过条件可以得出△ABE ≌△ADF ,从而得出∠BAE =∠DAF ,BE =DF ,由正方形的性质就可以得出EC =FC ,就可以得出AC 垂直平分EF ,②设BC =x ,CE =y ,由勾股定理就可以得出EF 与x 、y 的关系,表示出BE 与EF ,即可判断BE +DF 与EF 关系不确定;③当∠DAF =15°时,可计算出∠EAF =60°,即可判断△EAF 为等边三角形,④当∠EAF=60°时,设EC =x ,BE =y ,由勾股定理就可以得出x 与y 的关系,表示出BE 与EF ,利用三角形的面积公式分别表示出CEF S △和ABE S ,再通过比较大小就可以得出结论.【详解】解:①四边形ABCD 是正方形,∴AB =AD ,∠B =∠D =90°.在Rt △ABE 和Rt △ADF 中,AE AFAB AD =⎧⎨=⎩,∴Rt △ABE ≌Rt △ADF (HL ),∴BE =DF ,∵BC =CD ,∴BC ﹣BE =CD ﹣DF ,即CE =CF ,∵AE =AF ,∴AC 垂直平分EF .故①正确;②设BC =a ,CE =y ,则BE =DF =a -y ,∴BE +DF =2(a ﹣y ),EF y ,∴BE +DF 与EF 关系不确定,只有当y =(2)a 时成立,故②错误;③当∠DAF =15°时,∵Rt △ABE ≌Rt △ADF ,∴∠DAF =∠BAE =15°,∴∠EAF =90°﹣2×15°=60°,又∵AE =AF∴△AEF 为等边三角形.故③正确;④当∠EAF =60°时,则△AEF 是等边三角形,设EC =x ,BE =y ,则CF =x ,∴AB =BC =x +y ,22222EF CE CF x =+=,∴222AE x =,∵222AB BE AE +=,即()2222x y y x =++,∴()22x y x y =+,∵21122CEF S CE CF x =⋅=V ,()12ABE AB B y S E x y =⋅=+ ,∴12ABE CEF S S =△△.故④正确.综上所述,正确的有①③④,故选:C .【点睛】本题属于四边形综合题,是中考填空题或选择题的压轴题,考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质是解题的关键.9.2【分析】根据分式值为0的条件解答即可.【详解】∵分式222xx x-+的值为0,∴22020x x x ⎧-=⎨+≠⎩,∴202x x x =±⎧⎨≠≠-⎩,,∴2x =.故答案为:2.【点睛】本题考查分式值为0的条件,解一元二次方程.掌握分式值为0的条件:分子为0,分母不为0是解题关键.10.1m ≤或5m ≥【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解来确定不等式组的解集,再结合解集中任意一个x 的值都不在25x ≤≤的范围内可得答案.【详解】解:01x m x m ->⎧⎨-<⎩①②,解不等式①,得x >m ,解不等式②,得1x m <+,所以不等式组的解集是1m x m <<+,不等式组01x m x m ->⎧⎨-<⎩的解集中每一个x 值均不在25x ≤≤的范围内,12∴+≤或5mm≥,m≥,解得:1m£或5m≥,即m的取值范围是1m£或5m≥.故答案为:1m£或5【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.【分析】过点D作DE⊥AB,垂足为E,分点E在AB上或AB的延长线上两种情况,分别利用三角函数求出AE、DE的长,利用勾股定理求出BE的长,继而可得AB的长,然后利用平行四边形的面积公式进行求解即可.【详解】过点D作DE⊥AB,垂足为E,如图1,点E在AB上,∵∠A=30°,∴DE=ADsin30°=AE=ADcos30°=6,在Rt△DBE中,2=,∴AB=AE+BE=8,∴平行四边形ABCD的面积为8⨯=如图2,点E在AB的延长线上,∵∠A=30°,∴DE=ADsin30°=AE=ADcos30°=6,在Rt△DBE中,2=,∴AB=AE-BE=4,∴平行四边形ABCD的面积为4⨯=故答案为【点睛】本题考查了解直角三角形,平行四边形的面积,正确地画出图形是解题的关键.12.2.5【分析】过点P 作PF BC ∥交AC 于点F ,根据题意可证APF 是等边三角形,根据等腰三角形三线合一证明AE FE =,根据全等三角形判定定理可证PFD QCD ≌△△,DF DC =,进而证明12DE AC =,计算求值即可.【详解】解:过点P 作PF BC ∥交AC 于点F,∵PF BC ∥,ABC 是等边三角形,∴60,60APF B A ︒︒∠=∠=∠=,∴APF 是等边三角形,∴PF PA =,∵PE AC ⊥,∴AE FE =;∵PA CQ =,∴PF CQ =,∵PF BC ∥,∴∠=∠PFD QCD ,在FPD △和QCD 中,PDF QDC PFD QCD PF QC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴PFD QCD ≌△△,∴DF DC =,∴12DF FC =,12EF AF =,∵,DF EF DE FC AF AC +=+=,∴()11112222DE FC AF FC AF AC =+=+=,∵5AC =,∴115 2.522DE AC ==⨯=,故答案为:2.5【点睛】本题考查了平行线性质、等边三角形性质与判定、全等三角形判定与性质,掌握全等三角形判定定理是解题关键.13【分析】连接AC ,根据正方形的性质可得A 、E 、C 三点共线,连接FG 交AC 于点M ,由正方形的性质求和勾股定理可求得EC 和FG ,AC 的长度,从而求得AE ,因为的中点,可得PE 和AP ,再由正方形的性质可得GM 和EM ,FG ,在Rt △PGM 中,求解即可.【详解】解,如下图,连接AC ,连接FG 与AC 交于点M∵四边形ABCD 和四边形EFCG 是正方形,且点F 、G 分别在边,BC CD 上∴A 、E 、C 三点共线,90,90ABC EFC ∠=∠= ,EC FG ⊥,EC FG=在Rt ABC 中,90,3ABC AB BC ∠=== 由勾股定理得:222223318AC AB BC =+=+=∵AC >0∴AC =在Rt EFC 中,90,1EFC EF FC ∠=== 由勾股定理得:22222112EC EF FC =+=+=∵EC >0∴EC =∴AE AC EC =-=又∵P 是AE 的中点,M 是EC 的中点∴12PM AC ==又∵1122GM FG EC ==在Rt PGM 中,由勾股定理得:222PG PM GM =+即:22222PG ⎛⎛=+ ⎝⎭⎝⎭=5∵0PG >∴PG =【点睛】本题考查正方形的性质,勾股定理解三角形等知识点,牢记性质和定理内容,并结合图形灵活应用是解题关键.14.乙车速度为60千米/时【分析】设甲车速度为x 千米/时,则乙车的速度是34x 千米/时,根据“乙车比甲车晚到90分钟”列出方程并解答.【详解】解:设甲车速度为x 千米/时,则乙车的速度是34x 千米/时,依题意得:360903603604x x +=,解得:80x =,经检验:80x =是原方程的解,∴3604x =,答:乙车速度为60千米/时.【点睛】本题考查分式方程解实际应用题,分析题意,找到合适的数量关系是解决问题的关键.15.(1)CE BF =,CE BF ⊥;(2)成立,证明见解析;(3【分析】(1)证明△BEC ≌△DBF (SAS ),由全等三角形的性质得出CE=BF ,∠BCE=∠DFB ,则可得到结论;(2)延长FD 交BC 于点G ,证明△CBE ≌△△FDB (SAS ),由全等三角形的性质得出CE=BF ,∠ECB=∠BFG ,则可得出结论;(3)分两种情况画出图形,由勾股定理可求出答案;【详解】(1)CE BF =,CE BF ⊥;如图,设CE与BF相交于点M,∵△ABC和△BDE均为等腰直角三角形,∠ACB=∠DBE=90°,∴AC=BC,DE=DB,∵四边形CAFD是平行四边形,∴CA=DF=BC,CA∥DF,∠ACB=∠FDB,∴∠CBE=∠FDB=90°,∴△BEC≌△DBF(SAS),∴CE=BF,∠BCE=∠DFB,∵∠DFB+∠DBF=90°,∴∠BCE+∠DBF==90°,∴∠CMB=90°,⊥.∴CE BF(2)成立证明:如图,延长FD交BC于点G.四边形ACDF是平行四边形,=,∴,AC FD//AC FDDGB ACB∴∠=∠=︒,90∴∠=∠+∠,FDB DGB DBG∴∠=︒+∠,FDB DBG90,∠=︒DBE90∴∠=︒+∠,90CBE DBGFDB CBE ∠=∠,ABC 是等腰直角三角形,AC BC ∴=,又AC DF = ,BC DF ∴=,BD BE = ,CBE FDB ∴V V ≌,CE BF ∴=,ECB BFG ∠=∠,90BFG FBG ∠+∠=︒Q ,90ECB FBG ∴∠+∠=︒,CE BF ∴⊥.(3)如(2)题图,由(2)知∠DGB=90°,BF=CE ,∵∠DBC=30°,BD=2,∴DG=1,,∵AC=3,AC=DF ,∴FG=DF+DG=3+1=4,∴BF =,∴,如图所示,延长CB 交DF 于点M ,∵AC∥DF,AC⊥BC,∴BM⊥DF,∴∠BMF=∠BMD=90°,∵∠MBD=30°,BD=2,∴DM=1,,∵AC=DF=3,∴FM=DF-DM=3-1=2,∴BF==,∴,∴CE【点睛】本题是四边形几何变换综合题,考查了平行四边形的性质,全等三角形的判定和性质,等腰直角三角形的性质,旋转的性质,勾股定理,熟练掌握旋转的性质是解题的关键;16.(1)正方形(2)CF=FE'(3)【分析】(1)由旋转的特征可得到∠E′=∠AEB=90°、∠EBE′=90°、BE′=BE,再由∠BEF =180°﹣∠AEB=90°,可判定四边形BE′FE是正方形;(2)过点D作DG⊥AE于点G,由DA=DE得AG=12AE,再证明△ADG≌△BAE,且由四边形BE′FE是正方形,得到FE′=AG=12CE′,可证得结论;(3)过点D 作DG ⊥AE 于点G ,由旋转及四边形BE ′FE 是正方形可得如下关系:AE =CE ′=FE ′+CF =FE ′+3=BE +3,在Rt △BAE 中根据勾股定理求出BE 、AE 的长,由(1)可知,△ADG ≌△BAE ,得到DG =BE ,AG =BE ,再由勾股定理求出DE 的长.【详解】(1)四边形BE ′FE 是正方形.理由如下:由旋转得,∠E ′=∠AEB =90°,∠EBE ′=90°,∵∠BEF =180°﹣∠AEB =90°,∴四边形BE ′FE 是矩形,由旋转得,BE ′=BE ,∴四边形BE ′FE 是正方形.(2)CF =FE ',证明:如图2,过点D 作DG ⊥AE 于点G ,则∠DGA =∠AEB =90°,∵DA =DE ,∴AG =12AE ,∵四边形ABCD 是正方形,∴DA =AB ,∠DAB =90°,∴∠BAE +∠DAG =90°,∵∠ADG +∠DAG =90°,∴∠ADG =∠BAE ,在△ADG 和△BAE 中ADG BAE AGD AEB AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADG ≌△BAE (AA S ),∴AG =BE ;∵四边形BE ′FE 是正方形,∴BE=FE′,∴AG=FE′,由旋转得,AE=CE′,∴12AE=12CE′,∴FE′=12AE=12CE′,∴CF=FE'.(3)如图3,过点D作DG⊥AE于点G,∵BE=FE′,CF=3,∴AE=CE′=FE′+CF=FE′+3=BE+3,∵AE2+BE2=AB2,且AB=15,∴(BE+3)2+BE2=(15)2,解得,BE=9或BE=﹣12(不符合题意,舍去),∴AE=9+3=12,由(2)得,△ADG≌△BAE,∴DG=AE=12,AG=BE=9,∴GE=AE﹣AG=12﹣9=3,∵∠DGE=90°,∴DE=【点睛】此题考查了正方形的性质与判定、旋转的性质、等腰三角形的性质、全等三角形的判定与性质、勾股定理等知识点,解题的关键是正确地作出解题所需要的辅助线,构造全等三角形.。
八年级第二学期3月份段考数学试卷含答案

一、选择题1.如图,长方体的长为15cm ,宽为10cm ,高为20cm ,点B 离点C5cm ,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B 去吃一滴蜜糖,需要爬行的最短距离是( )cm .A .25B .20C .24D .1052.如图,四边形ABCD 中,AC ⊥BD 于O ,AB =3,BC =4,CD =5,则AD 的长为( )A .1B .32C .4D .233.在直角三角形中,自两锐角所引的两条中线长分别为5和210,则斜边长为( ) A .10B .410C .13D .2134.已知等边三角形的边长为a ,则它边上的高、面积分别是( )A .2,24a aB .23,24a aC .233,24a a D .233,44a a 5.如图中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 的边长为6cm 、B 的边长为5cm 、C 的边长为5cm ,则正方形D 的边长为( )A .3cmB 14cmC 5D .4cm6.在ABC 中,90C ∠=︒,30A ∠=︒,12AB =,则AC =( ) A .6B .12C .62D .37.ABC 三边长为a 、b 、c ,则下列条件能判断ABC 是直角三角形的是( )A .a =7,b =8,c =10B .a =41,b =4,c =5C .a =3,b =2,c =5D .a =3,b =4,c =68.如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )A .200mB .300mC .400mD .500m 9.已知一个直角三角形的两边长分别为3和5,则第三边长是( )A .5B .4C .34D .4或3410.《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》中:“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”翻译成数学问题是:如图所示,ABC 中,90ACB ∠=︒,10AC AB +=尺,4BC =尺,求AC 的长. AC 的长为( )A .3尺B .4.2尺C .5尺D .4尺二、填空题11.等腰三角形的腰长为5,一腰上的高为3,则这个等腰三角形底边的长为________ 12.如图,在ABC 中,D 是BC 边中点,106AB AC ==,,4=AD ,则BC 的长是_____________.13.在△ABC 中,AB=15,AC=13,高AD=12,则ABC ∆的周长为_______________. 14.Rt △ABC 中,∠BAC =90°,AB =AC =2,以 AC 为一边.在△ABC 外部作等腰直角三角形ACD ,则线段 BD 的长为_____.15.如图,长方形ABCD 中,∠A =∠ABC =∠BCD =∠D =90°,AB =CD =6,AD =BC =10,点E 为射线AD 上的一个动点,若△ABE 与△A ′BE 关于直线BE 对称,当△A ′BC 为直角三角形时,AE 的长为______.16.如图,30AOB ∠=︒,点,M N 分别在,OA OB 上,且6,8OM ON ==,点,P Q 分别在,OB OA 上运动,则PM PQ QN ++的最小值为______.17.在等腰Rt ABC △中,90C ∠=︒,2AC =,过点C 作直线lAB ,F 是l 上的一点,且AB AF =,则FC =__________.18.如图,Rt△ABC 中,∠BCA =90°,AB =5,AC =2,D 为斜边AB 上一动点(不与点A ,B 重合),DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,连接EF ,则EF 的最小值是_____.19.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,若12315S S S ++=,则2S 的值是__________.20.观察:①3、4、5,②5、12、13,③7、24、25,……,发现这些勾股数的“勾”都是奇数,且从3起就没断过.根据以上规律,请写出第8组勾股数:______.三、解答题21.如图,△ABC 和EDC ∆都是等边三角形,7,3,2AD BD CD ===求:(1)AE长;(2)∠BDC 的度数:(3)AC 的长.22.如图,在矩形ABCD 中,AB=8,BC=10,E 为CD 边上一点,将△ADE 沿AE 折叠,使点D 落在BC 边上的点F 处. (1)求BF 的长; (2)求CE 的长.23.在等腰△ABC 与等腰△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE ,且点D 、E 、C 三点在同一条直线上,连接BD .(1)如图1,求证:△ADB ≌△AEC(2)如图2,当∠BAC =∠DAE =90°时,试猜想线段AD ,BD ,CD 之间的数量关系,并写出证明过程;(3)如图3,当∠BAC =∠DAE =120°时,请直接写出线段AD ,BD ,CD 之间的数量关系式为: (不写证明过程) 24.已知a ,b ,c 88a a -+-=|c ﹣17|+b 2﹣30b +225,(1)求a ,b ,c 的值;(2)试问以a ,b ,c 为边能否构成三角形?若能构成三角形,求出三角形的周长和面积;若不能构成三角形,请说明理由.25.(1)如图1,在Rt ABC ∆中,90ACB ∠=︒,60A ∠=︒,CD 平分ACB ∠. 求证:CA AD BC +=.小明为解决上面的问题作了如下思考:作ADC ∆关于直线CD 的对称图形A DC '∆,∵CD 平分ACB ∠,∴A '点落在CB 上,且CA CA '=,A D AD '=.因此,要证的问题转化为只要证出A D A B ''=即可. 请根据小明的思考,写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD 中,AC 平分BAD ∠,10BC CD ==,17AC =,9AD =,求AB 的长.26.已知:四边形ABCD 是菱形,AB =4,∠ABC =60°,有一足够大的含60°角的直角三角尺的60°角的顶点与菱形ABCD 的顶点A 重合,两边分别射线CB 、DC 相交于点E 、F ,且∠EAP =60°.(1)如图1,当点E 是线段CB 的中点时,请直接判断△AEF 的形状是 . (2)如图2,当点E 是线段CB 上任意一点时(点E 不与B 、C 重合),求证:BE =CF ; (3)如图3,当点E 在线段CB 的延长线上,且∠EAB =15°时,求点F 到BC 的距离.27.如图1,已知△ABC 是等边三角形,点D ,E 分别在边BC ,AC 上,且CD =AE ,AD 与BE相交于点F.(1)求证:∠ABE=∠CAD;(2)如图2,以AD为边向左作等边△ADG,连接BG.ⅰ)试判断四边形AGBE的形状,并说明理由;ⅱ)若设BD=1,DC=k(0<k<1),求四边形AGBE与△ABC的周长比(用含k的代数式表示).28.在平面直角坐标系中,点A(0,4),B(m,0)在坐标轴上,点C,O关于直线AB 对称,点D在线段AB上.(1)如图1,若m=8,求AB的长;(2)如图2,若m=4,连接OD,在y轴上取一点E,使OD=DE,求证:CE=2DE;(3)如图3,若m=43,在射线AO上裁取AF,使AF=BD,当CD+CF的值最小时,请在图中画出点D的位置,并直接写出这个最小值.29.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证:四边形AFCE为菱形.(2)如图1,求AF的长.(3)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,点P的速度为每秒1cm,设运动时间为t秒.①问在运动的过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t和点Q的速度;若不可能,请说明理由.②若点Q的速度为每秒0.8cm,当A、P、C、Q四点为顶点的四边形是平行四边形时,求t 的值.30.(发现)小慧和小雯用一个平面去截正方体,得到一个三角形截面(截出的面),发现截面一定是锐角三角形.为什么呢?她们带着这个疑问请教许老师.(体验)(1)从特殊入手许老师用1个铆钉把长度分别为4和3的两根窄木棒的一端连在一起(如图,),保持不动,让从重合位置开始绕点转动,在转动的过程,观测的大小和的形状,并列出下表:的大小的形状…直角三角形…直角三角形…请仔细体会其中的道理,并填空:_____,_____;(2)猜想一般结论在中,设,,(),①若为直角三角形,则满足;②若为锐角三角形,则满足____________;③若为钝角三角形,则满足_____________.(探索)在许老师的启发下,小慧用小刀在一个长方体橡皮上切出一个三角形截面(如图1),设,,,请帮助小慧说明为锐角三角形的道理.(应用)在小慧的基础上,小雯又切掉一块“角”,得到一个新的三角形截面(如图2),那么的形状是()A.一定是锐角三角形B.可能是锐角三角形或直角三角形,但不可能是钝角三角形C.可能是锐角三角形或直角三角形或钝角三角形【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】分三种情况讨论:把左侧面展开到水平面上,连结AB;把右侧面展开到正面上,连结AB,;把向上的面展开到正面上,连结AB;然后利用勾股定理分别计算各情况下的AB,再进行大小比较.【详解】把左侧面展开到水平面上,连结AB,如图1()2210205925537AB =++==把右侧面展开到正面上,连结AB ,如图2()()222010562525AB =++==把向上的面展开到正面上,连结AB ,如图3()()2210205725529AB =++==925725625>>∴53752925>> ∴需要爬行的最短距离为25cm 故选:A . 【点睛】本题考查了平面展开及其最短路径问题:先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.2.B解析:B【分析】设OA=a,OB=b,OC=c,OD=d,根据勾股定理求出a2+b2=AB2=9,c2+b2=BC2=16,c2+d2=CD2=25,即可证得a2+d2=18,由此得到答案.【详解】设OA=a,OB=b,OC=c,OD=d,由勾股定理得,a2+b2=AB2=9,c2+b2=BC2=16,c2+d2=CD2=25,则a2+b2+c2+b2+c2+d2=50,∴a2+d2+2(b2+c2)=50,∴a2+d2=50﹣16×2=18,∴AD=221832a d+==,故选:B.【点睛】此题考查勾股定理的运用,根据题中的已知条件得到直角三角形,再利用勾股定理求出未知的边长,解题中注意直角边与斜边.3.D解析:D【分析】根据已知设AC=x,BC=y,在Rt△ACD和Rt△BCE中,根据勾股定理分别列等式,从而求得AC,BC的长,最后根据勾股定理即可求得AB的长.【详解】如图,在△ABC中,∠C=90°,AD、BE为△ABC的两条中线,且AD=210,BE=5,求AB的长.设AC=x,BC=y,根据勾股定理得:在Rt△ACD中,x2+(12y)2=(210)2,在Rt△BCE中,(12x)2+y2=52,解之得,x=6,y=4,∴在Rt△ABC中,2264213AB=+=,故选:D.【点睛】此题考查勾股定理的运用,在直角三角形中,已知两条边长时,可利用勾股定理求第三条边的长度.4.C解析:C【分析】作出等边三角形一边上的高,利用直角三角形中,30°角所对的直角边等于斜边的一半,得出BD ,利用勾股定理即可求出AD ,再利用三角形面积公式即可解决问题.【详解】解:如图作AD ⊥BC 于点D .∵△ABC 为等边三角形,∴∠B =60°,∠B AD =30° ∴1122BD AB a == 由勾股定理得,2222213()2AD AB BD a a a =-=-= ∴边长为a 的等边三角形的面积为12×a ×32a =34a 2, 故选:C .【点睛】本题考点涉及等边三角形的性质、含30°角的直角三角形、勾股定理以及三角形面积公式,熟练掌握相关性质定理是解题关键.5.B解析:B【解析】【分析】先求出S A 、S B 、S C 的值,再根据勾股定理的几何意义求出D 的面积,从而求出正方形D 的边长.【详解】解∵S A =6×6=36cm 2,S B =5×5=25cm 2,Sc=5×5=25cm 2,又∵1010A B C D S S S S +++=⨯ ,∴36+25+25+S D =100,∴S D =14,∴正方形D 14故选:B.【点睛】本题考查了勾股定理,熟悉勾股定理的几何意义是解题的关键. 6.D解析:D【分析】根据直角三角形的性质求出BC,根据勾股定理计算,得到答案.【详解】解:∵∠C=90°,∠A=30°,∴BC=12AB=6,由勾股定理得,=故选:D.【点睛】本题考查的是直角三角形的性质、勾股定理,掌握在直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.7.B解析:B【分析】根据勾股定理逆定理对每个选项一一判断即可.【详解】A、∵72+82≠102,∴△ABC不是直角三角形;B、∵52+42=)2,∴△ABC是直角三角形;C、∵2222,∴△ABC不是直角三角形;D、∵32+42≠62,∴△ABC不是直角三角形;故选:B.【点睛】本题主要考查勾股定理逆定理,熟记定理是解题关键.8.D解析:D【分析】由于BC∥AD,那么有∠DAE=∠ACB,由题意可知∠ABC=∠DEA=90°,BA=ED,利用AAS可证△ABC≌△DEA,于是AE=BC=300,再利用勾股定理可求AC,即可求CE,根据图可知从B到E的走法有两种,分别计算比较即可.【详解】解:如图所示,∵BC∥AD,∴∠DAE=∠ACB,又∵BC⊥AB,DE⊥AC,∴∠ABC=∠DEA=90°,又∵AB=DE=400m,∴△ABC≌△DEA,∴EA=BC=300m,在Rt△ABC中,22500AB BC m+=∴CE=AC-AE=200,从B到E有两种走法:①BA+AE=700m;②BC+CE=500m,∴最近的路程是500m.故选D.【点睛】本题考查了平行线的性质、全等三角形的判定和性质、勾股定理.解题的关键是证明△ABC≌△DEA,并能比较从B到E有两种走法.9.D解析:D【详解】解:∵一个直角三角形的两边长分别为3和5,∴①当5是此直角三角形的斜边时,设另一直角边为x,则由勾股定理得到:x22-;53②当5是此直角三角形的直角边时,设另一直角边为x,则由勾股定理得到:x22+3453故选:D10.B解析:B【分析】-尺,利竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(10)x用勾股定理解题即可.【详解】解:设竹子折断处离地面x 尺,则斜边为(10)x -尺,根据勾股定理得:2224(10)x x +=-.解得: 4.2x =,∴折断处离地面的高度为4.2尺,故选:B .【点睛】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.二、填空题11.310或10【详解】分两种情况:(1)顶角是钝角时,如图1所示:在Rt △ACO 中,由勾股定理,得AO 2=AC 2-OC 2=52-32=16,∴AO=4,OB=AB+AO=5+4=9,在Rt △BCO 中,由勾股定理,得BC 2=OB 2+OC 2=92+32=90,∴BC=310;(2)顶角是锐角时,如图2所示:在Rt △ACD 中,由勾股定理,得AD 2=AC 2-DC 2=52-32=16,∴AD=4,DB=AB-AD=5-4=1.在Rt △BCD 中,由勾股定理,得BC 2=DB 2+DC 2=12+32=10,∴10 ;综上可知,这个等腰三角形的底的长度为1010.【点睛】本题考查了勾股定理及等腰三角形的性质,难度适中,分情况讨论是解题的关键.12.413【分析】延长AD至点E,使得DE=AD=4,结合D是中点证得△ADC≌△EDB,进而利用勾股定理逆定理可证得∠E=90°,再利用勾股定理求得BD长进而转化为BC长即可.【详解】解:如图,延长AD至点E,使得DE=AD=4,连接BE,∵D是BC边中点,∴BD=CD,又∵DE=AD,∠ADC=∠EDB,∴△ADC≌△EDB(SAS),∴BE=AC=6,又∵AB=10,∴AE2+BE2=AB2,∴∠E=90°,∴在Rt△BED中,2222=++=,64213BD BE DE∴BC=2BD=13故答案为:13【点睛】本题考查了全等三角形的判定及性质、勾股定理及其逆定理,正确作出辅助线是解决本题的关键.13.32或42【分析】根据题意画出图形,分两种情况:△ABC是钝角三角形或锐角三角形,分别求出边BC,即可得到答案【详解】当△ABC是钝角三角形时,∵∠D=90°,AC=13,AD=12,∴2222-=-=,13125CD AC AD∵∠D=90°,AB=15,AD=12,∴2222=-=-,BD AB AD15129∴BC=BD-CD=9-5=4,∴△ABC的周长=4+15+13=32;当△ABC是锐角三角形时,∵∠ADC=90°,AC=13,AD=12,∴2222=-=-=,CD AC AD13125∵∠ADB=90°,AB=15,AD=12,∴2222=-=-=,15129BD AB AD∴BC=BD-CD=9+5=14,∴△ABC的周长=14+15+13=42;综上,△ABC的周长是32或42,故答案为:32或42.【点睛】此题考查勾股定理的实际应用,能依据题意正确画出图形分类讨论是解题的关键.14.4或2510【分析】分三种情况讨论:①以A为直角顶点,向外作等腰直角三角形DAC;②以C为直角顶点,向外作等腰直角三角形ACD;③以AC为斜边,向外作等腰直角三角形ADC.分别画图,并求出BD.【详解】①以A为直角顶点,向外作等腰直角三角形DAC,如图1.∵∠DAC=90°,且AD=AC,∴BD=BA+AD=2+2=4;②以C为直角顶点,向外作等腰直角三角形ACD,如图2.连接BD,过点D作DE⊥BC,交BC的延长线于E.∵△ABC是等腰直角三角形,∠ACD=90°,∴∠DCE=45°.又∵DE⊥CE,∴∠DEC=90°,∴∠CDE=45°,∴CE=DE=2222⨯=.在Rt△BAC中,BC2222=+=22,∴BD22222222BE DE()()=+=++= 25;③以AC为斜边,向外作等腰直角三角形ADC,如图3.∵∠ADC=90°,AD=DC,且AC=2,∴AD=DC=AC sin45°=2222⨯=.又∵△ABC、△ADC是等腰直角三角形,∴∠ACB=∠ACD=45°,∴∠BCD=90°.又∵在Rt△ABC中,BC2222=+=22,∴BD222222210BC CD=+=+=()().故BD的长等于4或510.故答案为4或510.【点睛】本题考查了等腰直角三角形的性质、勾股定理等知识.解题的关键是分情况考虑问题,15.2或18【分析】分两种情况:点E在AD线段上,点E为AD延长线上的一点,进一步分析探讨得出答案即可.【详解】解:①如图点E 在AD 线段上,△ABE 与△A ′B E 关于直线BE 对称,∴△A ′BE ≌△ABE,∴∠B A′E=∠A=90o ,AB=A ′B∠B A′C =90o ,∴E 、A',C 三点共线,在△ECD 与△CB A′中,{CD A BD BA C DEC ECB='∠=∠'∠=∠,∴△ECD ≌△CB A′,∴CE=BC=10,在RT △CB A′中,A′C=22BC BA -'=22106-=8,∴AE= A′E=CE - A′C=10-8=2;②如图点E 为AD 延长线上,由题意得:∠A"BC+∠A"CB=∠DCE+∠A"CB=90o∴∠A"BC=∠DCE,在△A"BC 与△DCE 中,"={""A CDECD A B A BC DCE∠∠=∠=∠∴△A"BC ≌△DCE,DE= A"C,在RT △ A"BC 中,22"BC BA -22106-∴AE=AD+DE=AD+ A"C=10+8=18;综上所知,AE=2或18.故答案为:2或18.【点睛】此题考查翻折的性质,三角形全等的判定与性质,勾股定理,掌握翻折的性质,分类探讨的思想方法是解决问题的关键.16.10【分析】首先作M 关于OB 的对称点M ′,作N 关于OA 的对称点N ′,连接M ′N ′,即为MP +PQ +QN的最小值,易得△ONN ′为等边三角形,△OMM ′为等边三角形,∠N ′OM ′=90°,继而可以求得答案.【详解】作M 关于OB 的对称点M ′,作N 关于OA 的对称点N ′,连接M ′N ′,即为MP +PQ +QN 的最小值.根据轴对称的定义可知:∠N ′OQ =∠M ′OB =30°,∠ONN ′=60°,OM ′=OM =6,ON ′=ON =8,∴△ONN ′为等边三角形,△OMM ′为等边三角形,∴∠N ′OM ′=90°.在Rt △M ′ON ′中,M ′N ′=22''OM ON +=10. 故答案为10.【点睛】本题考查了最短路径问题,根据轴对称的定义,找到相等的线段,得到直角三角形是解题的关键.17.31+或31-【解析】如图,l AB ,2AC =,作AD l ⊥于点D ,∴1AD =,∵222AF AB ===,且F 有2个, ∴2212213DF DF ==-=∵1DC AD ==,∴1113CF CD DF =+= 2231CF DF CD =-=.点睛:本题考查了勾股定理的运用,通过添加辅助线,可将问题转化到直角三角形中,利用勾股定理解答,考查了学生的空间想象能力.18 【解析】试题分析:根据勾股定理可求出BC=1,然后根据∠BCA =90°,DE ⊥AC ,DF ⊥BC ,证得四边形CEDF 是矩形,连接CD ,则CD=EF ,当CD⊥AB 时,CD 最短,即EF=CD=5.点睛:本题考查了勾股定理的运用,矩形的判定和性质以及垂线段最短的性质,同时也考查了学生综合运用性质进行推理和计算的能力.19.5【分析】根据图形的特征得出四边形MNKT 的面积设为x ,将其余八个全等的三角形面积一个设为y ,从而用x ,y 表示出1S ,2S ,3S ,得出答案即可.【详解】解:将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y , 正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,12310S S S ++=,∴得出18S y x ,24S y x ,3S x =, 12331215S S S x y ,故31215x y, 154=53x y , 所以245S x y , 故答案为:5.【点睛】 此题主要考查了图形面积关系,根据已知得出用x ,y 表示出1S ,2S ,3S ,再利用12315S S S ++=求出是解决问题的关键.20.17,144,145【分析】由题意观察题干这些勾股数,根据所给的勾股数找出三个数之间的关系即可.【详解】解:因为这些勾股数的“勾”都是奇数,且从3起就没断过,所以从3、5、7…依次推出第8组的“勾”为17,继续观察可知弦-股=1,利用勾股定理假设股为m ,则弦为m+1,所以有22217(1)m m +=+,解得144m =,1145m +=,即第8组勾股数为17,144,145.故答案为17,144,145.【点睛】本题属规律性题目,考查的是勾股数之间的关系,根据题目中所给的勾股数及勾股定理进行分析即可.三、解答题21.(1)3;(2)150°;(3)13.【分析】(1)根据等边三角形的性质可利用SAS 证明△BCD ≌△ACE ,再根据全等三角形的性质即得结果;(2)在△ADE 中,根据勾股定理的逆定理可得∠AED =90°,进而可求出∠AEC 的度数,再根据全等三角形的性质即得答案;(3)过C 作CP ⊥DE 于点P ,设AC 与DE 交于G ,如图,根据等边三角形的性质和勾股定理可得PE 与CP 的长,进而可得AE =CP ,然后即可根据AAS 证明△AEG ≌△CPG ,于是可得AG =CG ,PG =EG ,根据勾股定理可求出AG 的长,进一步即可求出结果.【详解】解:(1)∵△ABC 和△EDC 都是等边三角形,∴BC =AC ,CD =CE =DE =2,∠ACB =∠DCE =60°,∴∠BCD =∠ACE ,在△BCD 与△ACE 中,∵BC =AC ,∠BCD =∠ACE ,CD =CE ,∴△BCD ≌△ACE ,∴AE =BD =3;(2)在△ADE 中,∵7,3,2AD AE DE ===, ∴DE 2+AE 2=()()222237+==AD 2, ∴∠AED =90°,∵∠DEC =60°,∴∠AEC =150°,∵△BCD ≌△ACE ,∴∠BDC =∠AEC =150°;(3)过C 作CP ⊥DE 于点P ,设AC 与DE 交于G ,如图,∵△CDE 是等边三角形,∴PE =12DE =1,CP =,∴AE =CP ,在△AEG 与△CPG 中,∵∠AEG =∠CPG =90°,∠AGE =∠CGP ,AE =CP ,∴△AEG ≌△CPG ,∴AG =CG ,PG =EG =12,∴AG 2==,∴AC =2AG【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质、勾股定理及其逆定理等知识,熟练掌握上述知识、灵活应用全等三角形的判定与性质是解题的关键.22.(1)BF 长为6;(2)CE 长为3,详细过程见解析.【分析】(1)由矩形的性质及翻折可知,∠B=90°,AF=AD=10,且AB=8,在Rt △ABF 中,可由勾股定理求出BF 的长;(2)设CE=x ,根据翻折可知,EF=DE=8-x ,由(1)可知BF=6,则CF=4,在Rt △CEF 中,可由勾股定理求出CE 的长.【详解】解:(1)∵四边形ABCD 为矩形, ∴∠B=90°,且AD=BC=10,又∵AFE 是由ADE 沿AE 翻折得到的,∴AF=AD=10,又∵AB=8,在Rt △ABF 中,由勾股定理得:,故BF 的长为6.(2)设CE=x ,∵四边形ABCD 为矩形,∴CD=AB=8,∠C=90°,DE=CD-CE=8-x ,又∵△AFE 是由△ADE 沿AE 翻折得到的,∴FE=DE=8-x ,由(1)知:BF=6,故CF=BC-BF=10-6=4,在Rt △CEF 中,由勾股定理得:222CF +CE =EF ,∴2224+x =(8-x),解得:x=3,故CE 的长为3.【点睛】本题考查了折叠的性质:折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,利用勾股定理求解是本题的关键.23.(1)见解析;(2)CD=2AD+BD,理由见解析;(3)CD=3AD+BD【分析】(1)由“SAS”可证△ADB≌△AEC;(2)由“SAS”可证△ADB≌△AEC,可得BD=CE,由直角三角形的性质可得DE=2AD,可得结论;(3)由△DAB≌△EAC,可知BD=CE,由勾股定理可求DH=3AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=3AD+BD,即可解决问题;【详解】证明:(1)∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);(2)CD=2AD+BD,理由如下:∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠BAC=90°,AD=AE,∴DE=2AD,∵CD=DE+CE,∴CD=2AD+BD;(3)作AH⊥CD于H.∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠DAE=120°,AD=AE,∴∠ADH =30°,∴AH =12AD ,∴DH , ∵AD =AE ,AH ⊥DE ,∴DH =HE ,∴CD =DE +EC =2DH +BD +BD ,故答案为:CD +BD .【点睛】本题是结合了全等三角形的性质与判定,勾股定理等知识的综合问题,熟练掌握知识点,有简入难,层层推进是解答关键.24.(1)a =8,b =15,c =17;(2)能,60【分析】(1)根据算术平方根,绝对值,平方的非负性即可求出a 、b 、c 的值;(2)根据勾股定理的逆定理即可求出此三角形是直角三角形,由此得到面积和周长【详解】解:(1)∵a ,b ,c |c ﹣17|+b 2﹣30b +225,21||7(15)c b +-﹣,∴a ﹣8=0,b ﹣15=0,c ﹣17=0,∴a =8,b =15,c =17;(2)能.∵由(1)知a =8,b =15,c =17,∴82+152=172.∴a 2+c 2=b 2,∴此三角形是直角三角形,∴三角形的周长=8+15+17=40; 三角形的面积=12×8×15=60. 【点睛】此题考查算术平方根,绝对值,平方的非负性,勾股定理的逆定理判断三角形的形状.25.(1)证明见解析;(2)21.【分析】(1)只需要证明'30A DB B ∠=∠=︒,再根据等角对等边即可证明''A D A B =,再结合小明的分析即可证明;(2)作△ADC 关于AC 的对称图形AD'C ,过点C 作CE ⊥AB 于点E ,则'D E =BE .设'D E =BE=x .在Rt △CEB 和Rt △CEA 中,根据勾股定理构建方程即可解决问题.【详解】解:(1)证明:如下图,作△ADC关于CD的对称图形△A′DC,∴A′D=AD,C A′=CA,∠CA′D=∠A=60°,∵CD平分∠ACB,∴A′点落在CB上∵∠ACB=90°,∴∠B=90°-∠A=30°,∴∠A′DB=∠CA′D-∠B=30°,即∠A′DB=∠B,∴A′D=A′B,∴CA+AD=CA′+A′D=CA′+A′B=CB.(2)如图,作△ADC关于AC的对称图形△AD′C.∴D′A=DA=9,D′C=DC=10,∵AC平分∠BAD,∴D′点落在AB上,∵BC=10,∴D′C=BC,过点C作CE⊥AB于点E,则D′E=BE,设D′E=BE=x,在Rt△CEB中,CE2=CB2-BE2=102-x2,在Rt△CEA中,CE2=AC2-AE2=172-(9+x)2.∴102-x2=172-(9+x)2,解得:x=6,∴AB=AD′+D′E+EB=9+6+6=21.【点睛】本题考查轴对称的性质,勾股定理,等腰三角形的性质,三角形外角的性质.(1)中证明∠A′DB=∠B不是经常用的等量代换,而是利用角之间的计算求得它们的度数相等,这有点困难,需要多注意;(2)中掌握方程思想是解题关键.26.(1)△AEF是等边三角形,理由见解析;(2)见解析;(3)点F到BC的距离为3﹣.【解析】【分析】(1)连接AC,证明△ABC是等边三角形,得出AC=AB,再证明△BAE≌△DAF,得出AE =AF,即可得出结论;(2)连接AC,同(1)得:△ABC是等边三角形,得出∠BAC=∠ACB=60°,AB=AC,再证明△BAE≌△CAF,即可得出结论;(3)同(1)得:△ABC和△ACD是等边三角形,得出AB=AC,∠BAC=∠ACB=∠ACD=60°,证明△BAE≌△CAF,得出BE=CF,AE=AF,证出△AEF是等边三角形,得出∠AEF =60°,证出∠AEB=45°,得出∠CEF=∠AEF﹣∠AEB=15°,作FH⊥BC于H,在△CEF 内部作∠EFG=∠CEF=15°,则GE=GF,∠FGH=30°,由直角三角形的性质得出FG=2FH,GH=FH,CF=2CH,FH=CH,设CH=x,则BE=CF=2x,FH=x,GE=GF=2FH=2x,GH=FH=3x,得出EH=4+x=2x+3x,解得:x=﹣1,求出FH=x =3﹣即可.【详解】(1)解:△AEF是等边三角形,理由如下:连接AC,如图1所示:∵四边形ABCD是菱形,∴AB=BC=AD,∠B=∠D,∵∠ABC=60°,∴∠BAD=120°,△ABC是等边三角形,∴AC=AB,∵点E是线段CB的中点,∴AE⊥BC,∴∠BAE=30°,∵∠EAF=60°,∴∠DAF=120°﹣30°﹣60°=30°=∠BAE,在△BAE和△DAF中,,∴△BAE≌△DAF(ASA),∴AE=AF,又∵∠EAF=60°,∴△AEF是等边三角形;故答案为:等边三角形;(2)证明:连接AC,如图2所示:同(1)得:△ABC是等边三角形,∴∠BAC=∠ACB=60°,AB=AC,∵∠EAF=60°,∴∠BAE=∠CAF,∵∠BCD=∠BAD=120°,∴∠ACF=60°=∠B,在△BAE和△CAF中,,∴△BAE≌△CAF(ASA),∴BE=CF;(3)解:同(1)得:△ABC和△ACD是等边三角形,∴AB=AC,∠BAC=∠ACB=∠ACD=60°,∴∠ACF=120°,∵∠ABC=60°,∴∠ABE=120°=∠ACF,∵∠EAF=60°,∴∠BAE=∠CAF,在△BAE和△CAF中,,∴△BAE≌△CAF(ASA),∴BE=CF,AE=AF,∵∠EAF=60°,∴△AEF是等边三角形,∴∠AEF=60°,∵∠EAB=15°,∠ABC=∠AEB+∠EAB=60°,∴∠AEB=45°,∴∠CEF=∠AEF﹣∠AEB=15°,作FH⊥BC于H,在△CEF内部作∠EFG=∠CEF=15°,如图3所示:则GE=GF,∠FGH=30°,∴FG =2FH,GH=FH,∵∠FCH=∠ACF﹣∠ACB=60°,∴∠CFH=30°,∴CF =2CH,FH=CH,设CH=x,则BE=CF=2x,FH=x,GE=GF=2FH=2x,GH=FH=3x,∵BC=AB=4,∴CE=BC+BE=4+2x,∴EH =4+x=2x+3x,解得:x=﹣1,∴FH=x=3﹣,即点F到BC的距离为3﹣.【点睛】本题是四边形综合题目,考查了菱形的性质、等边三角形的判定与性质、全等三角形的判定与性质、含30°角的直角三角形的性质等知识;本题综合性强,熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.27.(1)详见解析;(2)ⅰ)四边形AGBE 是平行四边形,证明详见解析;ⅱ)222133k k k k ++++. 【解析】【分析】(1)只要证明△BAE ≌△ACD ;(2)ⅰ)四边形AGBE 是平行四边形,只要证明BG=AE ,BG ∥AE 即可;ⅱ)求出四边形BGAE 的周长,△ABC 的周长即可;【详解】(1)证明:如图1中,∵△ABC 是等边三角形,∴AB =AC ,∠BAE =∠C =60°,∵AE =CD ,∴△BAE ≌△ACD ,∴∠ABE =∠CAD .(2)ⅰ)如图2中,结论:四边形AGBE 是平行四边形.理由:∵△ADG ,△ABC 都是等边三角形,∴AG =AD ,AB =AC ,∴∠GAD =∠BAC =60°,∴△GAB ≌△DAC ,∴BG =CD ,∠ABG =∠C ,∵CD =AE ,∠C =∠BAE ,∴BG =AE ,∠ABG =∠BAE ,∴BG ∥AE ,∴四边形AGBE 是平行四边形,ⅱ)如图2中,作AH ⊥BC 于H .∵BH =CH =1(1)2k +∴1111(1),1)222DH k k AH k =-+=-==+∴AD ==∴四边形BGAE 的周长=2k +,△ABC 的周长=3(k +1),∴四边形AGBE 与△ABC 的周长比=233k k ++ 【点睛】本题考查全等三角形的判定和性质、平行四边形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.28.(1)AB =2)见解析;(3)CD +CF 的最小值为.【分析】(1)根据勾股定理可求AB 的长;(2)过点D 作DF ⊥AO ,根据等腰三角形的性质可得OF =EF ,根据轴对称的性质等腰直角三角形的性质可得AF =DF ,设OF =EF =x ,AE =4﹣2x ,根据勾股定理用参数x 表示DE ,CE 的长,即可证CE DE ;(3)过点B 作BM ⊥OB ,在BM 上截取BM =AO ,过点C 作CN ⊥BM ,交MB 的延长线于点N ,根据锐角三角函数可得∠ABO =30°,根据轴对称的性质可得AC =AO =4,BO =BC=ABO =∠ABC =30°,∠OAB =∠CAB =60°,根据“SAS ”可证△ACF ≌△BMD ,可得CF =DM ,则当点D 在CM 上时,CF +CD 的值最小,根据直角三角形的性质可求CN ,BN 的长,根据勾股定理可求CM 的长,即可得CF +CD 的最小值.【详解】(1)∵点A (0,4),B (m ,0),且m =8,∴AO =4,BO =8,在Rt △ABO 中,AB =(2)如图,过点D 作DF ⊥AO ,∵DE =DO ,DF ⊥AO ,∴EF =FO ,∵m =4,∴AO =BO =4,∴∠ABO =∠OAB =45°,∵点C ,O 关于直线AB 对称,∴∠CAB =∠CBA =45°,AO =AC =OB =BC =4,∴∠CAO =∠CBO =90°,∵DF ⊥AO ,∠BAO =45°,∴∠DAF =∠ADF =45°,∴AF =DF ,设OF =EF =x ,AE =4﹣2x ,∴AF =DF =4﹣x ,在Rt △DEF 中,DE =()2222242816EF DF x x x x +=+-=-+ 在Rt △ACE 中,CE =()()2222164222816AC AE x x x +=+-=-+ ∴CE =2DE ,(3)如图,过点B 作BM ⊥OB ,在BM 上截取BM =AO ,过点C 作CN ⊥BM ,交MB 的延长线于点N ,∵m =3,∴OB =3∴tan ∠ABO =3343AO BO ==, ∴∠ABO =30°∵点C ,O 关于直线AB 对称,∴AC =AO =4,BO =BC =3,∠ABO =∠ABC =30°,∠OAB =∠CAB =60°, ∴∠CAF =120°,∠CBO =60°∵BM⊥OB,∠ABO=30°,∴∠ABM=120°,∴∠CAF=∠ABM,且DB=AF,BM=AO=AC=4,∴△ACF≌△BMD(SAS)∴CF=DM,∵CF+CD=CD+DM,∴当点D在CM上时,CF+CD的值最小,即CF+CD的最小值为CM的长,∵∠CBO=60°,BM⊥OB,∴∠CBN=30°,且BM⊥OB,BC=∴CN=BNCN=6,∴MN=BM+BN=4+6=10,在Rt△CMN中,CM=,∴CD+CF的最小值为.【点睛】本题是三角形综合题,考查了等腰三角形的性质,勾股定理,轴对称的性质,全等三角形的判定和性质,最短路径问题等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.29.(1)证明见解析;(2)AF=5cm;(3)①有可能是矩形,P点运动的时间是8,Q的速度是0.5cm/s;②t=203.【解析】【分析】(1)证△AEO≌△CFO,推出OE=OF,根据平行四边形和菱形的判定推出即可;(2)设AF=CF=a,根据勾股定理得出关于a的方程,求出即可;(3)①只有当P运动到B点,Q运动到D点时,以A、P、C、Q四点为顶点的四边形有可能是矩形,求出时间t,即可求出答案;②分为三种情况,P在AF上,P在BF上,P在AB 上,根据平行四边形的性质求出即可.【详解】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠AEO=∠CFO,∵AC的垂直平分线EF,∴AO=OC,AC⊥EF,在△AEO和△CFO中∵AEO CFOAOE COF AO OC∠∠⎧⎪∠∠⎨⎪⎩===,∴△AEO≌△CFO(AAS),∴OE=OF,∵OA=OC,∴四边形AECF是平行四边形,∵AC⊥EF,∴平行四边形AECF是菱形;(2)解:设AF=acm,∵四边形AECF是菱形,∴AF=CF=acm,∵BC=8cm,∴BF=(8﹣a)cm,在Rt△ABF中,由勾股定理得:42+(8﹣a)2=a2,a=5,即AF=5cm;(3)解:①在运动过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形,只有当P运动到B点,Q运动到D点时,以A、P、C、Q四点为顶点的四边形有可能是矩形,P点运动的时间是:(5+3)÷1=8,Q的速度是:4÷8=0.5,即Q的速度是0.5cm/s;②分为三种情况:第一、P在AF上,∵P的速度是1cm/s,而Q的速度是0.8cm/s,∴Q只能再CD上,此时当A、P、C、Q四点为顶点的四边形不是平行四边形;第二、当P在BF上时,Q在CD或DE上,只有当Q在DE上时,当A、P、C、Q四点为顶点的四边形才有可能是平行四边形,如图,∵AQ=8﹣(0.8t﹣4),CP=5+(t﹣5),∴8﹣(0.8t﹣4)=5+(t﹣5),t=203,第三情况:当P在AB上时,Q在DE或CE上,此时当A、P、C、Q四点为顶点的四边形不是平行四边形;即t=203.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.如图,在23⨯的正方形网格中,AMB ∠的度数是( )A .22.5°B .30°C .45°D .60°2.如图,已知ABC 中,10,86,AB AC BC AB ===,的垂直平分线分别交,AC AB 于,,D E 连接BD ,则CD 的长为( )A .1B .54C .74D .2543.如图,四边形ABCD 中,AC ⊥BD 于O ,AB =3,BC =4,CD =5,则AD 的长为( )A .1B .32C .4D .234.如果正整数a 、b 、c 满足等式222+=a b c ,那么正整数a 、b 、c 叫做勾股数.某同学将自己探究勾股数的过程列成下表,观察表中每列数的规律,可知x y +的值为( )A .47B .62C .79D .985.在ΔABC中,211a b c=+,则∠A( )A.一定是锐角B.一定是直角C.一定是钝角D.非上述答案6.已知,等边三角形ΔABC中,边长为2,则面积为()A.1 B.2 C.2D.37.以线段a、b、c 的长为边长能构成直角三角形的是()A.a=3,b=4,c=6B.a=1,b=2,c=3C.a=5,b=6,c=8D.a=3,b=2,c=58.如图,在数轴上点A所表示的数为a,则a的值为()A.15--B.15-C.5-D.15-+9.下列各组线段能构成直角三角形的一组是()A.30,40,60B.7,12,13C.6,8,10D.3,4,610.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A.245B.5 C.6 D.8二、填空题11.如图所示的网格是正方形网格,则ABC ACB∠+∠=__________°(点A,B,C是网格线交点).12.如图,在四边形ABCD中,AB =AD,BC=DC,点E为AD边上一点,连接BD、CE,CE 与BD交于点F,且CE∥AB,若∠A =60°,AB=4,CE=3,则BC的长为_______.13.如图,有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆柱的下底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的C 点处的食物,需要爬行的最短路程是___________________(π的值取3).14.我国古代数学名著《九章算术》中有云:“今有木长二丈,围之三尺.葛生其下,缠木七周,上与木齐.问葛长几何?”大意为:有一根木头长2丈,上、下底面的周长为3尺,葛生长在木下的一方,绕木7周,葛梢与木头上端刚好齐平,则葛长是______尺.(注:l 丈等于10尺,葛缠木以最短的路径向上生长,误差忽略不计)15.在ABC ∆中,10AB cm =,17AC cm =,BC 边上的高为8cm ,则ABC ∆的面积为______2cm .16.如图在三角形纸片ABC 中,已知∠ABC =90º,AC =5,BC=4,过点A 作直线l 平行于BC ,折叠三角形纸片ABC ,使直角顶点B 落在直线l 上的点P 处,折痕为MN ,当点P 在直线l 上移动时,折痕的端点M 、N 也随之移动,若限定端点M 、N 分别在AB 、BC 边上(包括端点)移动,则线段AP 长度的最大值与最小值的差为________________.17.如图,在△ABC 中,∠C =90°,∠ABC =45°,D 是BC 边上的一点,BD =2,将△ACD 沿直线AD 翻折,点C 刚好落在AB 边上的点E 处.若P 是直线AD 上的动点,则△PEB 的周长的最小值是________.18.已知a 、b 、c 是△ABC 三边的长,且满足关系式2222()0c a b a b --+-=,则△ABC 的形状为___________19.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,若12315S S S ++=,则2S 的值是__________.20.如图,在Rt ABC ∆中,90ACB ∠=,2AC BC ==,D 为BC 边上一动点,作如图所示的AED ∆使得AE AD =,且45EAD ∠=,连接EC ,则EC 的最小值为__________.三、解答题21.定义:有一组邻边均和一条对角线相等的四边形叫做邻和四边形.(1)如图1,四边形ABCD 中,∠ABC =70°,∠BAC =40°,∠ACD =∠ADC =80°,求证:四边形ABCD 是邻和四边形.(2)如图2,是由50个小正三角形组成的网格,每个小正三角形的顶点称为格点,已知A 、B 、C 三点的位置如图,请在网格图中标出所有的格点.......D .,使得以A 、B 、C 、D 为顶点的四边形为邻和四边形.(3)如图3,△ABC 中,∠ABC =90°,AB =2,BC =23,若存在一点D ,使四边形ABCD 是邻和四边形,求邻和四边形ABCD 的面积.22.定义:如图1,点M 、N 把线段AB 分割成AM 、MN 和BN ,若以AM 、MN 、BN 为边的三角形是一个直角三角形,则称点M 、N 是线段AB 的勾股分割点.(1)已知点M 、N 是线段AB 的勾股分割点,若2AM =,3MN =,求BN 的长; (2)如图2,在Rt ABC △中,AC BC =,点M 、N 在斜边AB 上,45MCN ∠=︒,求证:点M 、N 是线段AB 的勾股分割点(提示:把ACM 绕点C 逆时针旋转90︒);(3)在(2)的问题中,15ACM ∠=︒,1AM =,求BM 的长. 23.已知ABC ∆中,AB AC =.(1)如图1,在ADE ∆中,AD AE =,连接BD 、CE ,若DAE BAC ∠=∠,求证:BD CE =(2)如图2,在ADE ∆中,AD AE =,连接BE 、CE ,若60DAE BAC ∠=∠=,CE AD ⊥于点F ,4AE =,5EC =,求BE 的长;(3)如图3,在BCD ∆中,45CBD CDB ∠=∠=,连接AD ,若45CAB ∠=,求ADAB的值.24.(1)如图1,在Rt ABC ∆中,90ACB ∠=︒,60A ∠=︒,CD 平分ACB ∠. 求证:CA AD BC +=.小明为解决上面的问题作了如下思考:作ADC ∆关于直线CD 的对称图形A DC '∆,∵CD 平分ACB ∠,∴A '点落在CB 上,且CA CA '=,A D AD '=.因此,要证的问题转化为只要证出A D A B ''=即可. 请根据小明的思考,写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD 中,AC 平分BAD ∠,10BC CD ==,17AC =,9AD =,求AB 的长.25.如图,在四边形ABCD 中,=AB AD ,=BC DC ,=60A ∠︒,点E 为AD 边上一点,连接CE ,BD . CE 与BD 交于点F ,且CE ∥AB .(1)求证:CED ADB ∠=∠; (2)若=8AB ,=6CE . 求BC 的长 .26.如图1, △ABC 和△CDE 均为等腰三角形,AC=BC, CD=CE, AC>CD, ∠ACB=∠DCE=a ,且点A 、D 、E 在同一直线上,连结BE.(1)求证: AD=BE.(2)如图2,若a=90°,CM ⊥AE 于E.若CM=7, BE=10, 试求AB 的长.(3)如图3,若a=120°, CM ⊥AE 于E, BN ⊥AE 于N, BN=a, CM=b,直接写出AE 的值(用a, b 的代数式表示).27.2ABCD 中,点O 是对角线AC 的中点,E 是线段OA 上一动点(不包括两个端点),连接BE .(1)如图1,过点E 作EF BE ⊥交CD 于点F ,连接BF 交AC 于点G . ①求证:BE EF =;②设AE x =,CG y =,求y 与x 的函数关系式,并写出自变量x 的取值范围. (2)在如图2中,请用无刻度的直尺作出一个以BE 为边的菱形.28.如图1,已知△ABC 是等边三角形,点D ,E 分别在边BC ,AC 上,且CD =AE ,AD 与BE 相交于点F .(1)求证:∠ABE =∠CAD ;(2)如图2,以AD 为边向左作等边△ADG ,连接BG . ⅰ)试判断四边形AGBE 的形状,并说明理由;ⅱ)若设BD =1,DC =k (0<k <1),求四边形AGBE 与△ABC 的周长比(用含k 的代数式表示).29.在平面直角坐标系中,点A (0,4),B (m ,0)在坐标轴上,点C ,O 关于直线AB 对称,点D 在线段AB 上.(1)如图1,若m =8,求AB 的长;(2)如图2,若m =4,连接OD ,在y 轴上取一点E ,使OD =DE ,求证:CE =2DE ; (3)如图3,若m =43,在射线AO 上裁取AF ,使AF =BD ,当CD +CF 的值最小时,请在图中画出点D 的位置,并直接写出这个最小值.30.如图,在△ABC 中,∠ACB =90°,AC =BC ,AB =2,CD 是边AB 的高线,动点E 从点A出发,以每秒1个单位的速度沿射线AC 运动;同时,动点F 从点C 出发,以相同的速度沿射线CB 运动.设E 的运动时间为t (s )(t >0).(1)AE = (用含t 的代数式表示),∠BCD 的大小是 度; (2)点E 在边AC 上运动时,求证:△ADE ≌△CDF ; (3)点E 在边AC 上运动时,求∠EDF 的度数;(4)连结BE ,当CE =AD 时,直接写出t 的值和此时BE 对应的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】连接AB ,求出AB 、BM 、AM 的长,根据勾股定理逆定理即可求证AMB ∆为直角三角形,而AM=BM ,即AMB ∆为等腰直角三角形,据此即可求解. 【详解】 连接AB∵22125AM =+=22125AB =+=221310BM =+=∴22210AM AB BM +==∴AMB ∆为等腰直角三角形 ∴45AMB ∠=︒ 故选C . 【点睛】本题考查了勾股定理的逆定理,重点是求出三条边的长,然后证明AMB ∆为直角三角形.2.C解析:C 【分析】先根据勾股定理的逆定理证明△ABC 是直角三角形,根据垂直平分线的性质证得AD=BD ,由此根据勾股定理求出CD. 【详解】∵AB=10,AC=8,BC=6,∴2222228610AC BC AB +=+==, ∴△ABC 是直角三角形,且∠C=90°, ∵DE 垂直平分AB , ∴AD=BD ,在Rt △BCD 中,222BD BC CD =+ ,∴222(8)6CD CD -=+,解得CD=74, 故选:C.【点睛】此题考查勾股定理及其逆定理,线段垂直平分线的性质,题中证得△ABC 是直角三角形,且∠C=90°是解题的关键,再利用勾股定理求解.3.B解析:B 【分析】设OA =a ,OB =b ,OC =c ,OD =d ,根据勾股定理求出a 2+b 2=AB 2=9,c 2+b 2=BC 2=16,c 2+d 2=CD 2=25,即可证得a 2+d 2=18,由此得到答案. 【详解】设OA =a ,OB =b ,OC =c ,OD =d ,由勾股定理得,a 2+b 2=AB 2=9,c 2+b 2=BC 2=16,c 2+d 2=CD 2=25, 则a 2+b 2+c 2+b 2+c 2+d 2=50, ∴a 2+d 2+2(b 2+c 2)=50, ∴a 2+d 2=50﹣16×2=18,∴AD == 故选:B . 【点睛】此题考查勾股定理的运用,根据题中的已知条件得到直角三角形,再利用勾股定理求出未知的边长,解题中注意直角边与斜边.4.C解析:C 【分析】依据每列数的规律,即可得到2221,,1a n b n c n =-==+,进而得出x y +的值.【详解】解:由题可得:222321,42,521=-==+…… 2221,,1a n b n c n ∴=-==+当21658c n n =+==时,63,16x y ∴==79x y ∴+=故选C【点睛】本题为勾股数与数列规律综合题;观察数列,找出规律是解答本题的关键.5.A解析:A【解析】【分析】根据211a b c=+以及三角形三边关系可得2bc >a 2 ,再根据(b-c ) 2 ≥0,可推导得出b 2 +c 2 >a 2 ,据此进行判断即可得. 【详解】∵211a b c =+, ∴2b c a bc+=, ∴2bc=a (b+c ),∵a 、b 、c 是三角形的三条边,∴b+c >a ,∴2bc >a·a , 即2bc >a 2 ,∵(b-c ) 2 ≥0,∴b 2 +c 2 -2bc≥0,b 2 +c 2 ≥2bc ,∴b 2 +c 2 >a 2 ,∴一定为锐角,故选A .【点睛】本题考查了三角形三边关系、完全平方公式、不等式的传递性、勾股定理等,题目较难,得出b 2 +c 2 >a 2 是解题的关键.6.D解析:D【解析】根据题意可画图为:过点A 作AD ⊥BC ,垂足为D ,∵∠B=60°,∴∠BAD=30°,∵AB=2,∴3,∴S △ABC =12BC·AD=1233 故选D. 7.B解析:B【分析】根据勾股定理的逆定理对四个选项进行逐一分析即可.【详解】A 、222346+≠,C 、222568+≠,D 、222325+≠,故错误; B 、2221233+==,能构成直角三角形,本选项正确. 故选B .【点睛】本题考查了勾股定理的知识点,解题的关键是熟练的掌握勾股定理的定理与运算.8.A解析:A【分析】首先根据勾股定理得出圆弧的半径,然后得出点A 的坐标.【详解】 2212=5+∴由图可知:点A 所表示的数为: 15-故选:A【点睛】本题主要考查的就是数轴上点所表示的数,属于基础题型.解决这个问题的关键就是求出斜边的长度.在数轴上两点之间的距离是指两点所表示的数的差的绝对值.9.C解析:C【分析】根据勾股定理的逆定理解答即可.【详解】A 、∵222304060+≠,∴该选项的三条线段不能构成直角三角形;B 、∵22271213+≠,∴该选项的三条线段不能构成直角三角形;C 、∵2226810+=,∴该选项的三条线段能构成直角三角形;D 、∵222346+≠,∴该选项的三条线段不能构成直角三角形;故选:C .【点睛】此题考查勾股定理的逆定理,掌握勾股定理的逆定理的计算法则及正确计算是解题的关键.10.A解析:A【分析】过C 作CM ⊥AB 于M ,交AD 于P ,过P 作PQ ⊥AC 于Q ,由角平分线的性质得出PQ=PM ,这时PC+PQ 有最小值,为CM 的长,然后利用勾股定理和等面积法求得CM 的长即可解答.【详解】过C 作CM ⊥AB 于M ,交AD 于P ,过P 作PQ ⊥AC 于Q ,∵AD 是∠BAC 的平分线,∴PQ=PM ,则PC+PQ=PC+PM=CM ,即PC+PQ 有最小值,为CM 的长,∵在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,∴由勾股定理得:AB=10, 又1122ABC S AB CM AC BC ==△, ∴6824105CM ⨯==, ∴PC+PQ 的最小值为245, 故选:A .【点睛】本题考查了角平分线的性质、最短路径问题、勾股定理、三角形等面积法求高,解答的关键是掌握线段和最短类问题的解决方法:一般是运用轴对称变换将直线同侧的点转化为异侧的点,从而把两条线段的位置关系转换,再根据两点之间线段最短或垂线段最短,使两条线段之和转化为一条直线来解决.二、填空题11.45【分析】∠+∠=∠,只需证△ADC是如下图,延长BA至网络中的点D处,连接CD. ABC ACB DAC等腰直角三角形即可【详解】如下图,延长BA至网络中的点D处,连接CD设正方形网络每一小格的长度为1则根据网络,555BC=5,∴5其中BD、DC、BC边长满足勾股定理逆定理∴∠CDA=90°∵AD=DC∴△ADC是等腰直角三角形∴∠DAC=45°故答案为:45°【点睛】本题是在网格中考察勾股定理的逆定理,解题关键是延长BA,构造处△ABC的外角∠CAD 127【分析】连接AC交BD于点O,由题意可证AC垂直平分BD,△ABD是等边三角形,可得∠BAO=∠DAO=30°,AB=AD=BD,BO=OD,通过证明△EDF是等边三角形,可得DE=EF=DF,由勾股定理可求OC,BC的长.【详解】连接AC,交BD于点O,∵AB=AD,BC=DC,∠A=60°,∴AC垂直平分BD,△ABD是等边三角形,∴∠BAO=∠DAO=30°,AB=AD=BD=4,BO=OD=2,∵CE∥AB,∴∠BAO=∠ACE=30°,∠CED=∠BAD=60°,∴∠DAO=∠ACE=30°,∴AE=CE=3,∴DE=AD−AE=1,∵∠CED=∠ADB=60°,∴△EDF是等边三角形,∴DE=EF=DF=1,∴CF=CE−EF=2,OF=OD−DF=1,22OC CF OF3∴-=22∴BC=OB+OC=77【点睛】本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.13.15厘米【分析】要想求得最短路程,首先要画出圆柱的侧面展开图,把A和C展开到一个平面内.根据两点之间,线段最短,结合勾股定理即可求出蚂蚁爬行的最短路程.【详解】解:如图,展开圆柱的半个侧面是矩形,π=厘米,矩形的宽BC=12厘米.∴矩形的长是圆柱的底面周长的一半,即AB=39∴蚂蚁需要爬行最短路程2222=++厘米.12915AC BC AB故答案为:15厘米【点睛】求两个不在同一平面内的两点之间的最短距离时,一定要展开到一个平面内,根据两点之间,线段最短.14.【分析】这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.【详解】解:如图,一条直角边(即木棍的高)长20尺,另一条直角边长7×3=21(尺),22+=29(尺).2021答:葛藤长29尺.故答案为:29.【点睛】本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.15.36或84【分析】过点A作AD⊥BC于点D,利用勾股定理列式求出BD、CD,再分点D在边BC上和在CB的延长线上两种情况分别求出BC的长度,然后根据三角形的面积公式列式计算即可得解.【详解】解:过点A作AD⊥BC于点D,∵BC边上的高为8cm,∴AD=8cm,∵AC=17cm,由勾股定理得:2222=-=-=cm,1086BD AB AD222217815CD AC AD=-=-=cm,如图1,点D在边BC上时,BC=BD+CD=6+15=21cm,∴△ABC的面积=12BC AD=12×21×8=84cm2,如图2,点D在CB的延长线上时,BC= CD−BD=15−6=9cm,∴△ABC的面积=12BC AD=12×9×8=36 cm2,综上所述,△ABC的面积为36 cm2或84 cm2,故答案为:36或84.【点睛】本题考查了勾股定理,作辅助线构造出直角三角形是解题的关键,难点是在于要分情况讨论.16.71-【分析】分别找到两个极端,当M与A重合时,AP取最大值,当点N与C重合时,AP取最小,即可求出线段AP长度的最大值与最小值之差【详解】如图所示,当M与A重合时,AP取最大值,此时标记为P1,由折叠的性质易得四边形AP1NB是正方形,在Rt△ABC中,2222AB=AC BC=54=3--,∴AP的最大值为A P1=AB=3如图所示,当点N与C重合时,AP取最小,过C点作CD⊥直线l于点D,可得矩形ABCD,∴CD=AB=3,AD=BC=4,由折叠的性质有PC=BC=4,在Rt △PCD 中,2222PD=PC CD =43=7--,∴AP 的最小值为AD PD=47--线段AP 长度的最大值与最小值之差为()1AP AP=347=71---- 故答案为71-【点睛】本题考查勾股定理的折叠问题,可以动手实际操作进行探索.17.222+【分析】连接CE ,交AD 于M ,根据折叠和等腰三角形性质得出当P 和D 重合时,PE+BP 的值最小,此时△BPE 的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE ,先求出BC 和BE 长,代入求出即可.【详解】如图,连接CE ,交AD 于M ,∵沿AD 折叠C 和E 重合,∴∠ACD=∠AED=90°,AC=AE ,∠CAD=∠EAD ,∴AD 垂直平分CE ,即C 和E 关于AD 对称,BD=2,∴2,∴当P 和D 重合时,PE+BP 的值最小,即此时△BPE 的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE ,∵∠DEA=90°,∴∠DEB=90°,∵∠ABC=45°,∴∠B=45°,∵2,∴2即2,∴△PEB 的周长的最小值是222.故答案为2【点睛】本题考查了折叠性质,等腰三角形性质,轴对称-最短路线问题,勾股定理,含30度角的直角三角形性质的应用,关键是求出P 点的位置.18.等腰直角三角形【解析】根据非负数的意义,由()22220c a b a b --+-=,可知222c a b =+,a=b ,可知此三角形是等腰直角三角形.故答案为:等腰直角三角形.点睛:此题主要考查了三角形形状的确定,根据非负数的性质,可分别得到关系式,然后结合勾股定理的逆定理知是直角三角形,然后由a-b=0得到等腰直角三角形,比较容易,关键是利用非负数的性质得到关系式.19.5【分析】根据图形的特征得出四边形MNKT 的面积设为x ,将其余八个全等的三角形面积一个设为y ,从而用x ,y 表示出1S ,2S ,3S ,得出答案即可.【详解】解:将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y , 正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,12310S S S ++=,∴得出18S y x ,24S y x ,3S x =, 12331215S S S x y ,故31215x y, 154=53x y , 所以245S x y , 故答案为:5.【点睛】 此题主要考查了图形面积关系,根据已知得出用x ,y 表示出1S ,2S ,3S ,再利用12315S S S ++=求出是解决问题的关键.20.2-【分析】根据已知条件,添加辅助线可得△EAC ≌△DAM (SAS ),进而得出当MD ⊥BC 时,CE 的值最小,转化成求DM 的最小值,通过已知值计算即可.【详解】解:如图所示,在AB 上取AM=AC=2,∵90ACB ∠=,2AC BC ==,∴∠CAB=45°,又∵45EAD ∠=,∴∠EAC+∠CAD=∠DAB+∠CAD=45°,∴∠EAC =∠DAB,∴在△EAC与△DAB中AE=AD,∠EAF =∠DAB,AC =AM,∴△EAC≌△DAM(SAS)∴CE=MD,∴当MD⊥BC时,CE的值最小,∵AC=BC=2,由勾股定理可得2222AB AC BC=+=,∴222BM,=-∵∠B=45°,∴△BDM为等腰直角三角形,∴DM=BD,由勾股定理可得222BD DM=BM+∴DM=BD=22-∴CE=DM=22-故答案为:22-【点睛】本题考查了动点问题及全等三角形的构造,解题的关键是作出辅助线,得出全等三角形,找到CE最小时的状态,化动为静.三、解答题21.(1)见解析;(2)见解析;(3)363【分析】(1)先由三角形的内角和为180°求得∠ACB的度数,从而根据等腰三角形的判定证得AB=AC=AD,按照邻和四边形的定义即可得出结论.(2)以点A为圆心,AB长为半径画圆,与网格的交点,以及△ABC外侧与点B和点C组成等边三角形的网格点即为所求.(3)先根据勾股定理求得AC的长,再分类计算即可:①当DA=DC=AC时;②当CD=CB=BD时;③当DA=DC=DB或AB=AD=BD时.【详解】(1)∵∠ACB =180°﹣∠ABC ﹣∠BAC =70°,∴∠ACB =∠ABC ,∴AB =AC .∵∠ACD =∠ADC ,∴AC =AD ,∴AB =AC =AD .∴四边形ABCD 是邻和四边形;(2)如图,格点D 、D'、D''即为所求作的点;(3)∵在△ABC 中,∠ABC =90°,AB =2,BC =23,∴AC =()22222234AB BC +=+=,显然AB ,BC ,AC 互不相等.分两种情况讨论:①当DA =DC =AC=4时,如图所示:∴△ADC 为等边三角形,过D 作DG ⊥AC 于G ,则∠ADG =160302⨯︒=︒, ∴122AG AD ==, 22224223DG AD AG =-=-=∴S △ADC =1423432⨯⨯=S △ABC =12AB×BC =3, ∴S 四边形ABCD =S △ADC +S △ABC =3②当CD =CB =BD =3∴△BDC为等边三角形,过D作DE⊥BC于E,则∠BDE=160302⨯︒=︒,∴132BE BD==()()22222333DE BD BE=-=-=,∴S△BDC=123333 2⨯=过D作DF⊥AB交AB延长线于F,∵∠FBD=∠FBC-∠DBC=90︒-60︒=30︒,∴DF=123S△ADB=12332⨯=,∴S四边形ABCD=S△BDC+S△ADB=3;③当DA=DC=DB或AB=AD=BD时,邻和四边形ABCD不存在.∴邻和四边形ABCD的面积是3或3【点睛】本题属于四边形的新定义综合题,考查了等腰三角形的判定和性质、勾股定理、三角形的面积计算等知识点,数形结合并读懂定义是解题的关键.22.(15132)见解析;(3)23【分析】(1)分两种分割法利用勾股定理即可解决问题;(2)如图,过点A作AD⊥AB,且AD=BN.只要证明△ADC≌△BNC,推出CD=CN,∠ACD=∠BCN,再证明△MDC≌△MNC,可得MD=MN,由此即可解决问题;(3)过点B作BP⊥AB,使得BP=AM=1,根据题意可得△CPB≌△CMA,△CMN≌△CPN,利用全等性质推出∠BNP=30°,从而得到NB和NP的长,即得BM.【详解】解:(1)当MN最长时,225MN AM-,当BN最长时,2213AM MN+(2)证明:如图,过点A作AD⊥AB,且AD=BN,在△ADC 和△BNC 中,AD BN DAC B AC BC =⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△BNC (SAS ),∴CD=CN ,∠ACD=∠BCN ,∵∠MCN=45°,∴∠DCA+∠ACM=∠ACM+∠BCN=45°,∴∠MCD=∠MCN ,在△MDC 和△MNC 中,CD CN MCD MCN CM CM =⎧⎪∠=∠⎨⎪=⎩,∴△MDC ≌△MNC (SAS ),∴MD=MN在Rt △MDA 中,AD 2+AM 2=DM 2,∴BN 2+AM 2=MN 2,∴点M ,N 是线段AB 的勾股分割点;(3)过点B 作BP ⊥AB ,使得BP=AM=1,根据(2)中过程可得:△CPB ≌△CMA ,△CMN ≌△CPN ,∴∠AMC=∠BPC=120°,AM=PB=1,∠CMN=∠CPN=∠A+∠ACM=45°+15°=60°,∴∠BPN=120°-60°=60°,∴∠BNP=30°,∴NP=2BP=2=MN ,∴22213-=,∴BM=MN+BN=23+.【点睛】本题是三角形的综合问题,考查了全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.23.(1)详见解析;(241;(33【分析】(1)证∠EAC=∠DAB.利用SAS 证△ACE ≌△ABD 可得;(2)连接BD ,证1302FEA AED ∠=∠=,证△ACE ≌△ABD 可得30FEA BDA ∠=∠=,CE=BD=5,利用勾股定理求解;(3)作CE 垂直于AC,且CE=AC,连接AE,则90,45ACE CAE ∠=∠=,利用勾股定理得AE 2AB =,3AB ,根据(1)思路得3AB .【详解】(1) 证明:∵∠DAE=∠BAC ,∴∠DAE+∠CAD=∠BAC+∠CAD ,即∠EAC=∠DAB.在△ACE 与△ABD 中,AD AE EAC BAB AC AB =⎧⎪∠=∠⎨⎪=⎩, ∴△ACE ≌△ABD(SAS),∴BD CE =;(2)连接BD因为AD AE =, 60DAE BAC ∠=∠=,所以ADE ∆是等边三角形因为60DAE DEA EDA ∠=∠=∠=,ED=AD=AE=4因为CE AD ⊥ 所以1302FEA AED ∠=∠= 同(1)可知△ACE ≌△ABD(SAS),所以30FEA BDA ∠=∠=,CE=BD=5所以90BDE BDA ADE ∠=∠+∠=所以22225441BD DE +=+(3)作CE 垂直于AC,且CE=AC,连接AE,则90,45ACE CAE ∠=∠=所以AE=222AB AC AC +=因为AB AC =所以AE 2AB =又因为45CAB ∠=所以90ABE ∠=所以()222223BE AE AB AB AB AB =+=+= 因为45CBD CDB ∠=∠=所以BC=CD, 90BCD ∠=因为同(1)可得△ACD ≌△ECB(SAS)所以AD=BE=3AB所以33AD AB AB ==【点睛】考核知识点:等边三角形;勾股定理.构造全等三角形和直角三角形是关键.24.(1)证明见解析;(2)21.【分析】(1)只需要证明'30A DB B ∠=∠=︒,再根据等角对等边即可证明''A D A B =,再结合小明的分析即可证明;(2)作△ADC 关于AC 的对称图形AD'C ,过点C 作CE ⊥AB 于点E ,则'D E =BE .设'D E =BE=x .在Rt △CEB 和Rt △CEA 中,根据勾股定理构建方程即可解决问题.解:(1)证明:如下图,作△ADC关于CD的对称图形△A′DC,∴A′D=AD,C A′=CA,∠CA′D=∠A=60°,∵CD平分∠ACB,∴A′点落在CB上∵∠ACB=90°,∴∠B=90°-∠A=30°,∴∠A′DB=∠CA′D-∠B=30°,即∠A′DB=∠B,∴A′D=A′B,∴CA+AD=CA′+A′D=CA′+A′B=CB.(2)如图,作△ADC关于AC的对称图形△AD′C.∴D′A=DA=9,D′C=DC=10,∵AC平分∠BAD,∴D′点落在AB上,∵BC=10,∴D′C=BC,过点C作CE⊥AB于点E,则D′E=BE,设D′E=BE=x,在Rt△CEB中,CE2=CB2-BE2=102-x2,在Rt△CEA中,CE2=AC2-AE2=172-(9+x)2.∴102-x2=172-(9+x)2,解得:x=6,∴AB=AD′+D′E+EB=9+6+6=21.【点睛】本题考查轴对称的性质,勾股定理,等腰三角形的性质,三角形外角的性质.(1)中证明∠A′DB=∠B不是经常用的等量代换,而是利用角之间的计算求得它们的度数相等,这有点困难,需要多注意;(2)中掌握方程思想是解题关键.BC .25.(1)见解析;(2)27(1)由等边三角形的判定定理可得△ABD 为等边三角形,又由平行进行角度间的转化可得出结论.(2)连接AC 交BD 于点O ,由题意可证AC 垂直平分BD ,△ABD 是等边三角形,可得∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4,通过证明△EDF 是等边三角形,可得DE=EF=DF=2,由勾股定理可求OC ,BC 的长.【详解】(1)证明:∵AB AD =,=60A ∠︒,∴△ABD 是等边三角形.∴60ADB ∠=︒.∵CE ∥AB ,∴60CED A ∠=∠=︒.∴CED ADB ∠=∠.(2)解:连接AC 交BD 于点O ,∵AB AD =,BC DC =,∴AC 垂直平分BD .∴30BAO DAO ∠=∠=︒.∵△ABD 是等边三角形,8AB =∴8AD BD AB ===,∴4BO OD ==.∵CE ∥AB ,∴ACE BAO ∠=∠.∴6AE CE ==, 2DE AD AE =-=.∵60CED ADB ∠=∠=︒.∴60EFD ∠=︒.∴△EDF 是等边三角形.∴2EF DF DE ===,∴4CF CE EF =-=,2OF OD DF =-=.在Rt △COF 中,∴OC ==.在Rt △BOC 中,∴BC === 【点睛】本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.26.(1)见解析;(2)26;(3)3a+ 【分析】(1)由∠ACB=∠DCE 可得出∠ACD=∠BCE ,再利用SAS 判定△ACD ≌△BCE ,即可得到AD=BE ;(2)由等腰直角三角形的性质可得CM=12DE ,同(1)可证△ACD ≌△BCE ,得到AD=BE ,然后可求AE 的长,再判断∠AEB=90°,即可用勾股定理求出AB 的长;(3)由等腰三角形的性质易得∠CAB=∠CBA=∠CDE=∠CED=30°,根据30度所对的直角边是斜边的一半可求出,然后利用三角形外角性质推出∠BEN=60°,在Rt △BEN 中即可求出BE ,由于BE=AD ,所以利用AE=AD+DE 即可得出答案.【详解】证明:(1)∵∠ACB=∠DCE∴∠ACB-∠BCD=∠DCE-∠BCD ,即∠ACD=∠BCE在△ACD 和△BCE 中,AC=BC ACD=BCE CD=CE ⎧⎪∠∠⎨⎪⎩∴△ACD ≌△BCE (SAS )∴AD=BE(2)∵∠DCE=90°,CD=CE ,∴△DCE 为等腰直角三角形,∵CM ⊥DE ,∴CM 平分DE ,即M 为DE 的中点∴CM=12DE , ∴DE=2CM=14,∵∠ACB=∠DCE∴∠ACB-∠BCD=∠DCE-∠BCD ,即∠ACD=∠BCE在△ACD 和△BCE 中,AC=BC ACD=BCE CD=CE ⎧⎪∠∠⎨⎪⎩∴△ACD ≌△BCE (SAS )∴AD=BE=10,∠CAD=∠CBE∴AE=AD+DE=24如图,设AE ,BC 交于点H ,在△ACH 和△BEH 中,∠CAH+∠ACH=∠EBH+∠BEH ,而∠CAH=∠EBH ,∴∠BEH=∠ACH=90°,∴△ABE 为直角三角形 由勾股定理得2222AB=AE BE =2410=26++(3)由(1)(2)可得△ACD ≌△BCE ,∴∠DAC=∠EBC ,∵△ACB ,△DCE 都是等腰三角形,∠ACB=∠DCE=120°∴∠CAB=∠CBA=∠CDE=∠CED=30°,∵CM ⊥DE ,∴∠CMD=90°,DM=EM ,∴CD=CE=2CM ,3CM∴33∵∠BEN=∠BAE+∠ABE=∠BAE+∠EBC+∠CBA=∠BAE+∠DAC+∠CBA=30°+30°=60°, ∴∠NBE=30°,∴BE=2EN ,3EN∵BN=a∴23=AD∴AE=AD+DE=23233+a b 【点睛】 本题考查全等三角形的旋转模型,掌握此模型的特点得到全等三角形是关键,其中还需要用到等腰三角形三线合一与30度所对的直角边的性质,熟练掌握这些基本知识点是关键.27.(1)①见解析;②()22012x y x x-=<<-;(2)见解析 【解析】【分析】(1)①连接DE ,如图1,先用SAS 证明△CBE ≌△CDE ,得EB=ED ,∠CBE =∠1,再用四边形的内角和可证明∠EBC =∠2,从而可得∠1=∠2,进一步即可证得结论;②将△BAE 绕点B 顺时针旋转90°,点E 落在点P 处,如图2,用SAS 可证△PBG ≌△EBG ,所以PG=EG =2-x -y ,在直角三角形PCG 中,根据勾股定理整理即得y 与x 的函数关系式,再根据题意写出x 的取值范围即可.(2)由(1)题已得EB=ED ,根据正方形的对称性只需再确定点E 关于点O 的对称点即可,考虑到只有直尺,可延长BE 交AD 于点M ,再连接MO 并延长交BC 于点N ,再连接DN 交AC 于点Q ,问题即得解决.【详解】(1)①证明:如图1,连接DE ,∵四边形ABCD 是正方形,∴CB=CD ,∠BCE =∠DCE =45°,又∵CE=CE ,∴△CBE ≌△CDE (SAS ),∴EB=ED ,∠CBE =∠1,∵∠BEC =90°,∠BCF =90°,∴∠EBC +∠EFC =180°,∵∠EFC +∠2=180°,∴∠EBC =∠2,∴∠1=∠2.∴ED=EF ,∴BE=EF .②解:∵正方形ABCD 2,∴对角线AC =2.将△BAE 绕点B 顺时针旋转90°,点A 与点C 重合,点E 落在点P 处,如图2, 则△BAE ≌△BCP ,∴BE =BP ,AE=CP=x ,∠BAE =∠BCP =45°,∠EBP =90°,由①可得,∠EBF =45°,∴∠PBG =45°=∠EBG ,在△PBG 与△EBG 中,PB EB PBG EBG BG BG =⎧⎪∠=∠⎨⎪=⎩,∴△PBG ≌△EBG (SAS ).∴PG=EG =2-x -y ,∵∠PCG =∠GCB +∠BCP =45°+45°=90°,∴在Rt △PCG 中,由222PC CG PG +=,得()2222x y x y +=--, 化简,得()22012x y x x-=<<-. (2)如图3,作法如下:①延长BE 交AD 于点M , ②连接MO 并延长交BC 于点N ,③连接DN 交AC 于点Q ,④连接DE 、BQ ,则四边形BEDQ 为菱形.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、四边形的内角和、勾股定理和菱形的作图等知识,其中通过三角形的旋转构造全等三角形是解决②小题的关键,利用正方形的对称性确定点Q 的位置是解决(2)题的关键.28.(1)详见解析;(2)ⅰ)四边形AGBE 是平行四边形,证明详见解析;ⅱ)2221k k k +++. 【解析】【分析】(1)只要证明△BAE ≌△ACD ;(2)ⅰ)四边形AGBE 是平行四边形,只要证明BG=AE ,BG ∥AE 即可;ⅱ)求出四边形BGAE 的周长,△ABC 的周长即可;【详解】(1)证明:如图1中,∵△ABC 是等边三角形,∴AB =AC ,∠BAE =∠C =60°,∵AE =CD ,∴△BAE ≌△ACD ,∴∠ABE =∠CAD .(2)ⅰ)如图2中,结论:四边形AGBE 是平行四边形.理由:∵△ADG ,△ABC 都是等边三角形,∴AG =AD ,AB =AC ,∴∠GAD =∠BAC =60°,∴△GAB ≌△DAC ,∴BG =CD ,∠ABG =∠C ,∵CD =AE ,∠C =∠BAE ,∴BG =AE ,∠ABG =∠BAE ,∴BG ∥AE ,∴四边形AGBE 是平行四边形,ⅱ)如图2中,作AH ⊥BC 于H .∵BH=CH=1 (1) 2k+∴1113 1(1),3(1) 2222DH k k AH BH k =-+=-==+∴222AH DH k k1AD=+=++∴四边形BGAE的周长=222k k1k+++,△ABC的周长=3(k+1),∴四边形AGBE与△ABC的周长比=2221 k k k+++【点睛】本题考查全等三角形的判定和性质、平行四边形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.29.(1)AB=45;(2)见解析;(3)CD+CF的最小值为47.【分析】(1)根据勾股定理可求AB的长;(2)过点D作DF⊥AO,根据等腰三角形的性质可得OF=EF,根据轴对称的性质等腰直角三角形的性质可得AF=DF,设OF=EF=x,AE=4﹣2x,根据勾股定理用参数x表示DE,CE的长,即可证CE=2DE;(3)过点B作BM⊥OB,在BM上截取BM=AO,过点C作CN⊥BM,交MB的延长线于点N,根据锐角三角函数可得∠ABO=30°,根据轴对称的性质可得AC=AO=4,BO=BC =43,∠ABO=∠ABC=30°,∠OAB=∠CAB=60°,根据“SAS”可证△ACF≌△BMD,可得CF=DM,则当点D在CM上时,CF+CD的值最小,根据直角三角形的性质可求CN,BN的长,根据勾股定理可求CM的长,即可得CF+CD的最小值.【详解】(1)∵点A(0,4),B(m,0),且m=8,∴AO=4,BO=8,在Rt△ABO中,AB=2245AO BO+=(2)如图,过点D作DF⊥AO,∵DE=DO,DF⊥AO,∴EF=FO,∵m=4,∴AO=BO=4,∴∠ABO=∠OAB=45°,∵点C,O关于直线AB对称,∴∠CAB =∠CBA =45°,AO =AC =OB =BC =4,∴∠CAO =∠CBO =90°,∵DF ⊥AO ,∠BAO =45°,∴∠DAF =∠ADF =45°,∴AF =DF ,设OF =EF =x ,AE =4﹣2x ,∴AF =DF =4﹣x ,在Rt △DEF 中,DE =()2222242816EF DF x x x x +=+-=-+ 在Rt △ACE 中,CE =()()2222164222816AC AE x x x +=+-=-+ ∴CE =2DE ,(3)如图,过点B 作BM ⊥OB ,在BM 上截取BM =AO ,过点C 作CN ⊥BM ,交MB 的延长线于点N ,∵m =3,∴OB =3∴tan ∠ABO =3343AO BO ==, ∴∠ABO =30°∵点C ,O 关于直线AB 对称,∴AC =AO =4,BO =BC =3,∠ABO =∠ABC =30°,∠OAB =∠CAB =60°, ∴∠CAF =120°,∠CBO =60°∵BM ⊥OB ,∠ABO =30°,∴∠ABM =120°,∴∠CAF =∠ABM ,且DB =AF ,BM =AO =AC =4,∴△ACF ≌△BMD (SAS )∴CF =DM ,∵CF +CD =CD +DM ,∴当点D 在CM 上时,CF +CD 的值最小,即CF +CD 的最小值为CM 的长,∵∠CBO =60°,BM ⊥OB ,∴∠CBN =30°,且BM ⊥OB ,BC =3∴CN =23,BN =3CN =6,∴MN =BM +BN =4+6=10,在Rt △CMN 中,CM =2247CN MN +=,∴CD +CF 的最小值为47.【点睛】 本题是三角形综合题,考查了等腰三角形的性质,勾股定理,轴对称的性质,全等三角形的判定和性质,最短路径问题等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.30.(1)t ,45;(2)详见解析;(3)90°;(4)t 的值为2﹣1或2+1,BE =3.【解析】【分析】(1)根据等腰直角三角形的性质即可解决问题;(2)根据SAS 即可证明△ADE ≌△CDF ;(3)由△ADE ≌△CDF ,即可推出∠ADE =∠CDF ,推出∠EDF =∠ADC =90°;(4)分两种情形分别求解即可解决问题.【详解】(1)由题意:AE =t .∵CA =CB ,∠ACB =90°,CD ⊥AB ,∴∠BCD =∠ACD =45°.故答案为t ,45.(2)∵∠ACB =90°,CA =CB ,CD ⊥AB ,∴CD =AD =BD ,∴∠A =∠DCB =45°.∵AE =CF ,∴△ADE ≌△CDF (SAS ).(3)∵点E 在边AC 上运动时,△ADE ≌△CDF ,∴∠ADE =∠CDF ,∴∠EDF =∠ADC =90°.(4)①当点E 在AC 边上时,如图1.在Rt △ACB 中,∵∠ACB =90°,AC =CB ,AB =2,CD ⊥AB ,∴CD =AD =DB =1,AC =BC 2=∵CE =CD =1,∴AE =AC ﹣CE 2=1,∴t 2=1. ∵BC 22112+=BE 22EC BC +12+3②当点E 在AC 的延长线上时,如图2,AE =AC +EC 2=1,∴t 2=1. ∵BC 22112+=BE 22EC BC +12+3。