新北师大版八年级数学下册《三章 图形的平移与旋转 回顾与思考》课件_13

合集下载

八年级数学下册(北师大版)3.2.2图形的平移与旋转(旋转作图)课件

八年级数学下册(北师大版)3.2.2图形的平移与旋转(旋转作图)课件

后作这两部分关于GH的轴
对称图形,这样就可以得
到整个图形。
G
F
旋转图案设计欣赏
课后任务:
1、旋转作图的步骤 : (1)明确题目要求:弄清旋转中心、方向和角度; (2)分析所作图形:找出构成图形的关键点; (3)旋转关键点:沿一定的方向和角度分别作出
各关键点的对应点; (4)作出新图形: 顺次连接作出的各点;
(5)写出结论: 说明所作出的图形.
2、“旋转”作图的条件 : (1)图形原来的位置; (2)旋转中心; (3)旋转方向; (4)旋转角度.
1.将△AOB绕点O旋转180°得到△DOC,则下列作图正确的是( )
2.如图,在正方形网格中有△ABC,△ABC绕点O按逆时针方向旋转90°后的 图案应该是( )
各关键点的对应点;
(4)作出新图形: 顺次连接作出的各点;
(5)写出结论: 说明所作出的图形.
目标检测1:
目标检测1:
3、如图,在方格纸上,△DEF是由△ABC绕定 点P顺时针旋转得到的,如果用(2,1)表示方格 纸上A点的位置,(1,2)表示B点的位置,那么 点P的位置为( A ) A.(5,2) B.(2,5) C.(2,1) D.(1,2)
第三章 图形的平移与旋转
3.2 图形的旋转(第二课时)
3.2.2 旋转作图
课前学习——知识回顾
1、“旋转”的定义: 在平面内,将一个图形绕着_一__个_定_点__沿_某_个_方__向_转动
_一_个__角_度__,这样的图形运动称为__旋_转__(变_换__) ___. 2、“旋转”的基本性质: (1)经过旋转,图形的___形_状__和_大_小_____不变; (2)经过旋转,图形上的每一点都绕_旋__转_中_心_沿相同 的方向转动了相同的__角__度__; (3)任意一对_对__应_点__与_旋_转__中_心__的连线所成的角都是 ___旋_转_角___,对应点到__旋_转__中_心___的距离相等.

北师大版八年级数学下册 (简单的图案设计)图形的平移与旋转新课件

北师大版八年级数学下册 (简单的图案设计)图形的平移与旋转新课件

3. 如图,在CD上求一点P,使它到边OA,OB的距离相等, 则点P是( C ) A.线段CD的中点 B.CD与过点O作CD的垂线的交点 C.CD与∠AOB的平分线的交点 D.以上均不对
4.如图,在△ABC中,∠C=90°,AC=BC,AD平分 ∠CAB交BC于D,DE⊥AB于E,若AB=6 cm,则△DBE 的周长是_6_c_m__
求证:EB=FC.
A
证明: ∵AD是∠BAC的平分线,
DE⊥AB, DF⊥AC,
∴ DE=DF, ∠DEB=∠DFC=90 °.
在Rt△BDE 和 Rt△CDF中,
E
F
B
D
C
DE=DF,
BD=CD, ∴ Rt△BDE ≌ Rt△CDF(HL). ∴ EB=FC.
获取新知 知识点二:角平分线的判定 想一想:你能写出这个定理的逆命题吗?它是真命题吗?
获取新知 知识点一:角平分线的性质
还记得角平分线上的点有什么性质吗?你是怎样 得到的?请你尝试证明这性质,并与同伴交流.
角的平分线上的点到角的两边的距离相等
已知:如图,OC是∠AOB的平分线,点P在
OC上,PD丄OA, PE丄OB,垂足分别为D,E.
1
求证:PD=PE.
2
证明:∵PD丄OA,PE丄OB,垂足分别为D,E,
A.①
B.②
C.③
D.④
2. 下列图案中,可以由一个“基本图案”连续旋转45°得到的是( C )
3. 如图,它可以看作是由“ ”通过连续平移 3 次得到的, 还可以看作是由“ ”绕中心旋转 3 次,每次旋转 90 °
得到的.
4. 学校在艺术周上,要求学生制作一个精美的轴对称图形, 请你用所给出的几何图形:○○△△--(两个圆,两个等边三 角形,两条线段)为构件,构思一个独特、有意义的轴对称图 形,并写上一句简要的解说词.

新北师大版八年级数学下册第3章教案

新北师大版八年级数学下册第3章教案

第三章图形的平移与旋转单元教学目标1、知识与技能:通过具体实例认识平移与旋转,探索它们的基本性质,会进行简单的平移、旋转、画图;在直角坐标系中,探索并了解将一个多边形沿两个坐标轴平移后所得到的图形与原图形平移关系,体会图形顶点的变化;了解中心对称、图形的概念,探索其基本性质。

2、过程与方法:经历有关平移与旋转的观察、操作,欣赏和设计的过程,进一步积累数学活动经验,增强动手实践能力,发展空间观念;经历借助图形思考问题的过程,初步建立几何直观。

3、情感态度与价值观:敢于发表自己的想法,提出质疑,养成独立思考、合作交流等习惯。

单元教学重点:通过具体实例认识平移与旋转,探索平移、旋转的基本性质。

单元教学难点:按照要求作出简单的平面图形经过平移或旋转后的图形。

单元课时安排:1、图形的平移 3 课时2、图形的旋转 2 课时3、中心对称 1 课时4、简单的图案设计 1 课时回顾与思考 1 课时§ 3.1.1图形的平移第一课时知识与技能目标认识平移、理解平移的基本内涵;理解平移前后两个图形对应点连线平行且相等,对应线段平行且相等,对应角相等的性质。

过程与方法目标通过探究式的学习,养成归纳总结与猜想的数学能力,逆向思维能力。

情感态度与价值观目标通过收集身边的“平移”实例,感受生活处处有数学,激发学生的学习兴趣。

教学重点掌握平移的概念。

教学难点理解平移的性质。

教法与学法自主探究与合作交流相结合。

教学过程一、学习准备1、全等三角形的对应边______,对应____相等。

2、阅读教材:P65—P67第1节《图形的平移》二、教材精读3、平移的定义:在平面内,将一个图形沿着移动的距离,这样的图形运动叫平移。

平移不改变图形的和,改变的是位置。

实践练习:下列现象中,属于平移的是:(1)火车在笔直的铁轨上行驶(2)冷水受热过程中小气泡上升变成大气泡(3)人随电梯上升(4)钟摆的摆动(5)飞机起飞前在直线跑道上滑动4、如图所示,△ABE沿射线XY方向平移一定距离后成为△CDF。

北师大版八年级数学下册 (简单的图案设计)图形的平移与旋转课件

北师大版八年级数学下册 (简单的图案设计)图形的平移与旋转课件

剪下补在2的位 置上;
新的图案.
置上;
讲授新课
做一做 比一比
试用两个圆、两个三角形、两 条平行线设计出一些简单图案,并
标明你的设计意图.
作品展示
讲授新课
错位倒置
等价交换
Байду номын сангаас
作品展示
讲授新课
两盏灯
笑脸
作品展示
讲授新课
一辆车
企鹅
作品展示
讲授新课
穿越云霞的山 鱼翔浅水
讲授新课
讲授新课
课堂小结
生活中很多美丽的图案和几何图形 都有密切联系,复杂美丽的图案都是由 简单图形按一定规律排列组合而成; 即 使最简单的几何图案经过你的精心设计 也会给人以赏心悦目的感觉。
上面图形的形成过程: 基本图案
图案的形成过程
上面图形的形成过程: 基本图案
图案的形成过程
解:基本图案: 三种形状、大小完全相同,但颜色不同的“爬虫”组成.
设计思路: 同色的“爬虫”之间是平移关系,相邻的不同色的“爬虫”之间通过旋转
120°而得,旋转中心为“爬虫”头上、腿上或脚趾上一点.
图案形成过程的分析方法
找出构成该图形的基本图案,这些基本图案一般都会重 复多次出现,然后结合几种图形变换的概念和性质看这些基本图 案通过怎样的变换才能最终得到所给图形.
例2、以给出的图形“△△=○ ○”(两个相同的圆、两个相同的等边三 角形、两条线段)为构件,各设计一个构思独特且有意义的轴对称图形或 中心对称图形.
解:轴对称图形:
简单的图案设计
学习目标
1.利用旋转、轴对称或平移进行简单的图案分析; 2.认识和欣赏平移、旋转在现实生活中的应用; 2.灵活运用平移、旋转与轴对称组合的方式进行一些图案 设计.

八年级数学第三章《图形的平移与旋转》回顾与思考

八年级数学第三章《图形的平移与旋转》回顾与思考

课堂小结
平移 图 形 变 换 定义
旋转
性质
图案设计
轴对称
作法
典型例题
图案设计的有关问题
例3、利用平移、旋转、轴对称设计一个图案, 说明你所表达的含义。
针对训练
6、利用一个圆、一个正三角形、通过2次旋转或 平移设计一个图案,说明你的设计意图。
针对训练
7、如图,A、B两点被大山阻隔,为了改善山区 的交通,现拟开凿一个贯穿A、B的隧道,修建 一条高速公路。请你设计出一个方案,利用平移 的有关知识测量出A、B之间的距离和隧道开凿 的方向。
பைடு நூலகம்
针对训练
4、如图,△ABC,△ADE均是顶角为42°的等 腰三角形,BC,DE分别是底边,图中的哪两个 三角形可以通过怎样的旋转而相互得到?
巩固练习 5、如图,D是等边三角形ABC的边BC上一点, 将△ABD绕点A旋转,使得旋转后点B的对应点 为点C。 (1) 在图中作出旋转后的图形;
巩固练习 5、如图,D是等边三角形ABC的边BC上一点, 将△ABD绕点A旋转,使得旋转后点B的对应点 为点C。 (2) 小明是这样做的:过点C作BA的平行线l,在 l上取CE=BC,连接AE,则△ACE即为旋转后的 图形。你能说说小明这样做的道理吗?
北师大版八年级(上)
回顾与思考
北师大版八年级(下)
回顾与思考
知识网络
平移 图 形 变 换 定义
旋转
性质
图案设计
轴对称
作法
典型例题
平移的有关问题
例1、如图所示的的图形向箭头方向平移了4cm, 请画出平移后的图形。
针对训练
1、火车在一段笔直的铁轨上行驶,这个过程可 以看成是车厢沿着铁轨的方向平移的过程。如果 火车驶入弯道,这时还可以看成是平移吗?说 说你的理由。

八级数下册第三章图形的平移与旋转图形的平移第课时平移的概念与性质课件新版北师大版

八级数下册第三章图形的平移与旋转图形的平移第课时平移的概念与性质课件新版北师大版
平行且相等
F
B
G
C E H
A
D
一个图形和它经过平移所得的图形中, 对应点所连的线段平行(或在一条直线上) 且相等;对应线段平行(或在一条直线上) 且相等,对应角相等.
例 1 如图,经过平移,△ABC 的顶点 A 移到了点 D.
(1)指出平移的方向和平移的距离; (2)画出平移后的三角形.
A D
B C
第三章 图形的平移与旋转 1 图形的平移
第1课时 平移的概念与性质
新课导入
在生活中,我们经常见到一些美丽的图案:
生活中物体运动的一些场景
进行新课
E
H
你能否描述一下
什么叫平移?
A
DF
G
B
C
在平面内,把一个图形沿着某个方向移 动一定的距离,这样的图形运动称为平移.
平移不改变图形的性状和大小.
△ABC 经过平移得到△DEF,点 A,B,C 分别平移到了点 D,E,F. 点 A 与点 D 是一组 对应点,线段 AB 与线段 DE 是一组对应线段, ∠BAC 与∠EDF 是一组对应角.
不是,因为四个轮子移动的距离不相等, 与平移的定义不符.
4. 将图中的小船向右平移4格.
课堂小结
在平面内,把一个图形沿着某个方向移 动一定的距离,这样的图形运动称为平移.
平移不改变图形的性状和大小.
一个图形和它经过平移所得的图形 中,对应点所连的线段平行(或在一条 直线上)且相等;对应线段平行(或在 一条直线上)且相等,对应角相等.
A D
B C
解:(1)如图,连接AD,平移的方向是点 A 到点 D 的方向,平移的距离是线段 AD 的长度.
A D
B E
C F

北师大版八年级数学下册3.2-图形的旋转(共2课时)

北师大版八年级数学下册3.2-图形的旋转(共2课时)

探究新知 素养考点 3 与旋转有关的证明
例3 如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC 上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90° 后得CF,连接EF. (1)补充完成图形. (2)若EF∥CD,求证:∠BDC=90°.
探究新知
解:(1)补全图形,如图所示
探究新知
知识点 1
旋转的概念
问题:观察下列图形的运动,它有什么特点?
O 45°
B
A
探究新知 思考:怎样来定义这种图形变换?
把时针当成一个图形,那么它可以绕着中心固定点转动 一定角度.
钟表的指针在不停地转动,从12时到4时,时针转动 了1_2_0_°___度.
探究新知
把叶片当成一个平面图形,那么它可以绕着平面内中心固 定点转动一定角度. 风车风轮的每个叶片在风的吹动下转动到新的位置.
旋转角都为 60°的旋转图形.
A' D'
D B'
A
C' C
B
O
探究新知
做一做: 如图,E是正方形ABCD中CD边上任意一点,以点A为中心,
把△ADE顺时针旋转90°,画出旋转后的图形.
A
D
想一想:本题中作图
的关键是什么?
E
B
C
作图关键-确定点E的对应点E′
探究新知
解:∵点A是旋转中心,∴它的对应
确定图形的旋转时, 旋转中心
必须明确 旋转角
旋转方向
温馨提示:①旋转的范围是“平面内”,其中“旋转中心, 旋转方向,旋转角度”称之为旋转的三要素;②旋转变换 同样属于全等变换.
探究新知
素 养 考 点 1 旋转的定义

北师大版八年级数学下册《图形的平移》图形的平移与旋转PPT课件(第1课时)

北师大版八年级数学下册《图形的平移》图形的平移与旋转PPT课件(第1课时)

实践探究,交流新知
( 1 ) 变换前后对应点的连线平行且相等:平移变换 是图形的每一个点的变换,一个图形沿某个方向移 动一定的距离,那么每一个点也沿着这个方向移动 相同的距离,所以对应点的连线平行且相等. ( 2 ) 变换前后的图形全等:平移变换是由一个图形 沿着某个方向移动一定的距离,所以平移前后的图 形是全等的. (3)变换前后对应角相等. (4)变换前后对应线段平行且相等.
D.图形的平移由平移的方向和距离决定
2.如图,大长方形的长是10 cm,宽是8 cm,阴影部分的宽均为2 cm,则空白部
分的面积是( D )
A.36cm2 B.40cm2
C.32cm2
D.48cm2
课堂检测,巩固新知
3.如果△ABC沿着北偏东30°的方向移动了2 cm,那么△ABC的边AB上的一点P
课堂检测,巩固新知
5.如图,将△ABC沿射线AB的方向移动2cm到△DEF的位置. (1)写出图中所有平行的直线; (2)写出图中与AD相等的线段,并直接写出其长度; (3)若∠ABC=65°,求∠EFC的度数.
解:(1)AE∥CF,AC∥DF,BC∥EF (2)AD=CF=BE=2 cm (3)∵AE∥CF,∠ABC=65° ∴∠BCF=∠ABC=65° ∵BC∥EF ∴∠EFC+∠BCF=180° ∴∠EFC=115°
学习重点
探索图形平移的主要特征和基本性质,会画简单图形的平移图.
学习难点
探索和理解平移的基本性质.
创设情境,导入新课
请同学们观察如图所示的两幅图片.
问题1:你能发现传送带上的箱子和手扶电梯上的人在移动前后什么没有改变, 什么发生了改变吗? 问题2:在传送带上,如果箱子的把手向前移动了80 cm,那么箱子的其他部位 向什么方向移动?移动的距离是多少? 问题3:如果把移动前后的同一个箱子看成长方体,那么移动前后的长方体各 个面的形状、大小是否相同?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C
B
D
F
A
E O
三、轴对称
1.轴对称的概念:如果两个平面图形沿一 条直线对折后能够完全重合,那么称这两 个图形成轴对称。
2.轴对称的图形实例
A
C B
M A1
C1 B1
N
轴对称、平移、旋转的区别及联系:
变换 名称
描述变 换的要 素
位方大 置向小
形状 相关性质及作 图方法
轴对 对称轴

称(反射)

旋转角? 旋转方向?
整个图形可以看作是左
边的两个小“十字”绕着
O
图案的中心旋转3次,分别
旋转90°、180°、270°
前后图形组成的。
下图由四部分组成,每部分都包括两个小”十”
字,红色部分能经过适当的旋转得到其他三部分
吗?能经过平移吗?能经过轴对称吗?还有其他方
式吗? 平移、 旋转相结合:
后旋转
先平 移
平移 平移方向, 改 不 不 不
距离
变变 变 变
旋转 旋转中心,

方向,角度

五、图形的平移与坐标变化之间的关系
1、设(x,y)是原图形上的一点,经过平移 后,这个点与其对应点的坐标之间有如下关 系:
2、设(x,y)是原图形上的一点,当它沿x 轴方向平移a个单位长度(a>0)、沿y轴 方向平移b个单位长度(b>0)后,这个点 与其对应点的坐标之间有如下关系:
第三章 图形的平移与旋转
回顾与思考
一、平移
1、平移的概念:在平面内,将一个图形沿着 某个方向移动一定的距离,这样的图形运动 叫做图形的平移。
2、平移的性质: (1)平移不改变图形的形状和大小; (2)图形经过平移,连接各组对应点 所得的线段互相平行且相等。
3、平移图形的实例:
H
K
B
C
A
D
G N
练一练——平移、旋转、中心对称的运用
方法小结
轴对称、平移、旋转是几何中的重要概念, 应用轴对称、平移、旋转解题也是一种极为重 要的数学思想方法,适当地应用轴对称、平移、 旋转等方法,将那些分散、远离的条件从图形 的某一部分转移到适当的新的位置上,集中、 汇集已知条件和求证结论,发现、拓展解题思 路,构造基础三角形、平行四边形,进行计算 与证明。
L M
F
E
二、旋转
1.旋转的概念:把一个图形绕一个定点转动 一定的角度,这样的图形运动叫做旋转,这个 定点叫做旋转中心,旋转的角度叫做旋转角。
2.旋转的性质:(1)旋转前、后的图形全等; (2)对应点到旋转中心的距离相等;(3)每一 对对应点与旋转中心的连线所成的角彼此相等。
3、旋转图形的实例:
的中心O,且互相垂直,先
把左边的两个“十字”作
关于EF的轴对称图形,然
O
后作这两部分关于GH的轴
对称图形,这样习3
如图,怎样将右边的图案变成 左边的图案?
答:以右边图案的中心为旋转中心,将图案按逆 时针方向旋转90°,然后平移,即可得到左边的 图案。
练一练——平移、旋转的运用
得图案平移到B点位 置,即可得到乙图案
A
下图由四部分组成,每部分都包括两个小”十” 字,红色部分能经过适当的旋转得到其他三部分 吗?能经过平移吗?能经过轴对称吗?还有其他方 式吗?平移: 平移的方向? 平移的距离?
仅靠平移 无法得到
下图由四部分组成,每部分都包括两个小”十” 字,红色部分能经过适当的旋转得到其他三部分 吗?能经过平移吗?能经过轴对称吗?还有其他方 旋式转吗: ?旋转中心?
画一画(1)
画一画(2)
例. P是正方形内一点,将△ ABP绕点B顺时针方向旋转至
与△CBP′重合,若PB=3,求PP′的长。
解:由旋转的性质可知 BP=BP′, ∠ PBP=∠ABC=90°
A
D
P
∴ △ PBP ′是等腰直角三 角形。
B
C
∴ PP ′=
BP2 BP'2 32 32 3 2
如图,在△ABC中,∠BAC=1200,以BC为边向外 作等边三角形△BCD,把△ABD绕着点D按顺时 针方向旋转600后得到△ECD,若AB=3,AC=2, 求∠BAD的度数与AD的长.
E
C A
B
D
整个图形可以看作是左
边的两个小“十字”先通
过一次平移成图形右侧的
O
部分,然后左、右部分一
起绕图形的中心旋转90° 前后图形组成的。
下图由四部分组成,每部分都包括两个小”十”
字,红色部分能经过适当的旋转得到其他三部分
吗?能经过平移吗?能经过轴对称吗?还有其他方
轴式对吗称?: 对称轴?
E
H
直线EF与GH相交于图形
P′
一题一练
B′
△ ABC是等边三角形,把△ ABC绕
A
点C顺时针任意旋转一个角度得到 △ A′B′C,则AA ′与BB ′之间有什么关
A′
系,你能说明理由吗?
B
C
说一说 练习2

B 乙
B
怎样将甲图案变成乙图案?

可以先将还甲可图以案用绕图 上的A什点么旋转方,法使把得 A 甲图后案,被再甲乙沿“图图扶 AB案案直方变?”向,成将然所
相关文档
最新文档