The Effects of Representational Bias on Collaboration Methods in Cooperative Coevolution
因果推理中的科学模型--反事实、选择性偏差与赫克曼结构计量经济学模型

因果推理中的科学模型反事实、选择性偏差与赫克曼结构计量经济学模型李文钊*摘要:因果推理中的科学模型起源于赫克曼对于经济学中样本选择性偏差的研究,它代表了经济学对于因果关系的理论思考,也是对统计学提出的因果理论的回应。
为了解决选择性偏差问题,赫克曼没有像统计学一样试图通过随机实验而使得样本选择对于干预结果没有影响,而是求助于科学研究,去发现导致选择性偏差的真实原因,对偏差进行估计,并且将这一选择性偏差模型化,形成了有关选择的模型和结果的模型的两个模型。
这种将选择与结果分别建立模型,并且强调它们之间内在逻辑关系构成了因果推理的结构计量经济学路径,也是因果推理中科学模型的核心思想。
赫克曼的科学模型不仅对于社会科学研究有非常重要的意义,而且对于政策评估有突出的价值。
更多的因果模型不应该是非此即彼的选择,而应该是在相互竞争中共同学习、共同成长和共同演化。
关键词:因果推理;科学模型;潜在结果模型;选择性偏差;结构方程一、导论因果推理中的科学模型(the Scientific Model of Causality)是计量经济学家詹姆斯•赫克曼(Heckman,2005)于2005年正式提出的一种不同于潜在结果模型的因果理论,它代表了经济学家对于因果关系的理论思考,也是对统-国家自然科学基金,项目批准号:71874198,项目名称:政治周期、制度摩擦与中国政策的间断性:基于1992—2016年的中国预算变迁数据的实证研究。
-李文钊,中国人民大学公共管理学院公共财政与公共政策研究所副教授。
因果推理中的科学模型计学家提出的因果理论的回应.正如潜在结果模型可以称之为鲁宾因果模型(Rubin Causal Model)一样,因果推理中科学模型也可称之为赫克曼因果模型(Heckman Causal Model).因果推理中的科学模型起源于赫克曼(Heckman,1979;1990;Heckman &Todd,1998)对于经济学中样本选择性偏差(Sample Selection Bias)的研究,它是从解决问题再到上升理论的过程.赫克曼认识到样本选择性偏差经常出现在经济生活中,如我们要计算加入工会对于工人工资的影响,但是我们只有加入工会会员的工资水平,没有这些会员如果不加入工会的工资情况,这样如果我们用工会会员工资平均水平与没有加入工会的工人的平均水平相比较,就可能面临着选择性偏差问题.我们想知道文明城市评选是否会有利于官员晋升,但是选择进行文明城市评选的官员很有可能是官员晋升的内在原因.为了解决选择性偏差问题,赫克曼没有像统计学家一样试图通过随机实验而使得样本选择对于干预结果没有影响,而是试图求助于科学研究,去发现导致选择性偏差的真实原因,对偏差进行估计,并且将这一选择性偏差模型化,形成了有关选择的模型和结果的模型的两个模型.这种将选择与结果分别建立模型,并且强调它们之间内在逻辑关系构成了讨论因果推理的结构方程模型路径,或者说计量经济学路径.与统计学家对于因果推理的一般性理论研究相比,赫克曼在讨论因果推理时总是与具体的问题联系在一起,这反映了经济学有对于问题与现实关注的传统.在对问题的研究中,赫克曼认为我们并不一定要每次从零开始,应该借助于已经发展的理论对选择过程和结果产生过程进行模型化,以实现社会科学累积化,并进一步对复杂的政策评估问题进行回答.正是因为这一原因,赫克曼将他的因果理论称之为“科学模型”,不同于统计理论中“潜在结果模型”。
《2024年融合因果注意力Transformer模型的股价预测研究》范文

《融合因果注意力Transformer模型的股价预测研究》篇一摘要:本文旨在探索并应用一种新型的股价预测模型——融合因果注意力机制的Transformer模型。
通过对历史股价数据的分析,结合注意力机制,模型能够更好地捕捉时间序列数据中的因果关系和长期依赖性,从而更准确地预测未来股价走势。
本文首先对相关研究背景和意义进行介绍,然后详细阐述模型构建、数据预处理、实验结果及分析,最后对未来研究方向进行展望。
一、引言随着金融市场的发展和复杂化,股价预测成为投资者和学者关注的焦点。
传统的股价预测方法多基于统计模型和时间序列分析,但这些方法往往难以捕捉到股价变化中的非线性和长期依赖性。
近年来,深度学习在处理复杂时间序列问题上展现出强大的能力,尤其是Transformer模型在自然语言处理等领域取得了显著成果。
因此,本文提出融合因果注意力机制的Transformer模型,以期在股价预测上取得更好的效果。
二、模型构建1. 注意力机制与Transformer模型Transformer模型通过自注意力机制捕捉序列中不同位置之间的依赖关系,具有处理长序列的优越性能。
因果注意力机制则在自注意力的基础上加入了时间上的先后顺序信息,适用于处理时间序列数据。
2. 融合因果注意力的Transformer模型本文所提模型在Transformer的基础上引入了因果注意力机制。
该模型不仅能够捕捉到全局的序列依赖性,还能在每一个时间步上关注到与当前时间点相关的历史信息,更好地捕捉时间序列中的因果关系。
三、数据预处理与实验设置1. 数据预处理为保证模型的训练效果,需要对原始股价数据进行预处理。
包括数据清洗、归一化、时间窗口划分等步骤,以形成适合模型输入的格式。
2. 实验设置采用历史股价数据作为模型的输入,通过训练集对模型进行训练,并在验证集上调整参数,最后在测试集上评估模型的预测性能。
使用均方误差(MSE)和准确率等指标对模型性能进行评估。
心理学名词——精选推荐

心理学名词1.从众(conformity)2.单纯曝光效果(mere exposure effect)3.模仿(modeling)4.跛足策略(self-handicapping)5.过度辩证效应(over justification effect)6.恋爱基模(love schema)7.习得无助(learned helplessness)关系8.睡眠效果(sleeper effect)9.破窗效(Broken Window Effect)10.联结与强化(linking vs. reinforcement)11.惩罚之前(before punishment)12.旁观者效应(bystander effect)13.消弱突现(extinction burst)14.自我实现预言(self-fulfilling prophecy)决定15.正义世界假说(a just world)16.自我评价维护理论(self-evaluation maintenance theory, SEM)17.自我中心偏误(egocentric bias)18.基本归因谬误(fundamental attribution error)19.印象的初始信息(primacy effect)20.虚假的一致(false consensus)21.服从(obedience)22.认知失调理论(cognitive dissonance theory)23.团体迷思(group thinking)心理学十大著名效应1.蝴蝶效应非线性,俗称“蝴蝶效应”。
什么是蝴蝶效应?先从美国麻省理工学院气象学家洛伦兹(Lorenz)的发现谈起。
为了预报天气,他用计算机求解仿真地球大气的13个方程式。
为了更细致地考察结果,他把一个中间解取出,提高精度再送回。
而当他喝了杯咖啡以后回来再看时竟大吃一惊:本来很小的差异,结果却偏离了十万八千里!计算机没有毛病,于是,洛伦兹(Lorenz)认定,他发现了新的现象:“对初始值的极端不稳定性”,即:“混沌”,又称“蝴蝶效应”,亚洲蝴蝶拍拍翅膀,将使美洲几个月后出现比狂风还厉害的龙卷风!蝴蝶效应是气象学家洛伦兹1963年提出来的。
《2024年融合因果注意力Transformer模型的股价预测研究》范文

《融合因果注意力Transformer模型的股价预测研究》篇一一、引言随着金融市场的日益复杂化,股价预测成为了投资者和金融机构关注的焦点。
传统的股价预测方法多基于统计模型或机器学习方法,然而,这些方法在处理时间序列数据时往往难以捕捉到长期依赖关系和未来信息。
近年来,深度学习技术的发展为股价预测提供了新的思路。
其中,Transformer模型因其强大的自注意力机制在自然语言处理等领域取得了显著成果。
本文旨在研究融合因果注意力的Transformer模型在股价预测中的应用,以期提高预测的准确性和实时性。
二、相关研究背景Transformer模型由Google于2017年提出,其自注意力机制能够有效地捕捉序列中的依赖关系。
然而,在股价预测中,我们不仅需要关注当前时刻的上下文信息,还需要考虑时间序列的因果关系。
因此,融合因果注意力的Transformer模型成为了研究的热点。
该模型在Transformer的基础上引入了因果注意力机制,使模型能够更好地处理具有时间顺序性的数据,如股价等金融时间序列数据。
三、模型与方法(一)融合因果注意力Transformer模型构建本文所提出的融合因果注意力Transformer模型包括两个主要部分:自注意力机制和因果注意力机制。
自注意力机制用于捕捉序列中的依赖关系,而因果注意力机制则用于确保模型在处理时间序列数据时能够遵循因果关系。
(二)数据预处理与特征提取在进行模型训练之前,需要对股价数据进行预处理和特征提取。
首先,对原始股价数据进行清洗和归一化处理,然后提取出时间序列特征、技术指标等。
这些特征将被输入到模型中进行训练。
(三)模型训练与优化采用深度学习框架(如TensorFlow或PyTorch)实现模型的训练和优化。
通过设置合适的损失函数和优化器,使模型能够自动学习到股价数据中的因果关系和依赖关系。
同时,采用早停法等策略防止过拟合,提高模型的泛化能力。
四、实验与结果分析(一)实验设置为了验证模型的性能,我们选择了多个股票进行实验。
2018心理学考研认知心理学笔记:衰减作用模型

/ 2018心理学考研认知心理学笔记:衰减作用模型
心理学考研的考生们,小编为大家整理了心理学考研备考辅导资料,下面是认知心
理学笔记,2018考研的小伙伴们,一定要仔细阅读,好好学习哦!
※衰减作用模型
Treisman假设,过滤器并不是像Broadbent所说的那样,遵循全或无的操作原则,
他指出,过滤器的作用不是阻挡所有不符合注意选择标准的信息,而使衰减或减弱非注
意通道的强度。
该理论被称为衰减作用模型。
如果到来的信息不是全部被阻挡,那么与
当前与其相一致的部分信息,或与个体相关的部分信息,都可能足以提高那些词的激活,
使之超越意识阈限。
社会研究方法名解(艾尔巴比)

社会研究方法名解(艾尔·巴比)1、个案式解释:有时候,我们试图详尽地了解某种情况,便用一种解释方式试图穷尽某个特定情形或是事件的所有原因。
这种类型的因果推理被称为个案式解释。
当我们使用个案式解释时,会觉得完全了解案例之所以发生的所有因素。
但与此同时,我们的视野也据现在个案上。
P222、通则式解释:就是试图解释某一类的情形或事物,而不是某个个案。
更进一步地说,这种解释很“经济”,只使用一个或少数几个解释性因素。
最后,它只能解释部分,而不是全部。
当研究者的目标局限在对某一类事件有一个比较概括的了解,即使了解的过程相对肤浅时,就会使用通则式的研究。
P233、归纳:是从个别出发以达到一般性,从一系列特定的观察中,发现一种模式,在一定程度上代表所有给定事件的秩序。
P244、演绎:演绎推理是从一般到个别,从逻辑或理论上预期的模式到观察检验预期的模式是否确实存在。
P255、理论的三个功能:理论试图提供逻辑解释,在研究中,理论有三个功能:首先,理论可以预防我们的侥幸心理。
其次,理论可以合理解释观察到的模式,并且指出更多的可能性。
理论的最后一个功能是建立研究的形式和方向,指出实证观察可能有所发现的方向。
P336、范式:用以指导观察和理解的模型或框架。
它不仅形塑了我们所看到的事物,同时也影响着我们如何去理解这些事物。
冲突范式指引我们以某种方式看待社会行为,而互动主义范式则指引我们以另一种方式来看待社会行为。
P337、范式:是指某一特定学科的科学家所共有的基本世界观,是由其特有的观察角度、基本假设、概念体系和研究方式构成的,它表示科学家看待和解释世界的基本方式。
(袁方P64)8、双边量分析:为了决定两个变量之间的经验年而同时对两个变量进行分析。
一个简单的百分比表格或者一个简单的相关系数的计算,都是双变量分析的例子。
P5329、封闭式问题:被访者被要求在研究者所提供的答案中选择一个答案。
因为封闭式问题能够保证答案具有更高的一致性,并且比开放式问题更容易操作,因而在调查研究中相当流行。
艾尔·巴比_社会研究方法笔记

社会研究方法第1篇研究概论第1章人类研究与科学一,寻求真实大体而言,一个论点必须有逻辑和实证两方面的支持:必须言之成理,必须符合人们对世界的观察。
1 一般的人类研究几乎所有人,甚至其他一切动物,都想要预知他们未来的环境。
而且我们愿意用因果和概率的推理来进行预测。
首先,我们通常认为未来的环境多少是由目前的状况所造成或限定的。
其次,人类和其他动物都知道,因果关系本来就牵涉到概率问题。
人类研究的目的在于回答“是什么”和“为什么”,我们通过观察和推理来达到这两个目标。
我们对世界的认识只是部分的来源于直接研究或亲身经历,而更多的是从别人那儿得来的赞同性的知识。
这种第二手知识对人类的研究有利也有弊,其主要来源有二:传统和权威。
2 研究中的错误和解决方法不确定的观察——简单或是复杂的测量手段都可以帮助我们避免不确切的观察。
过度概化(过度的概括)——运用足够的样本观察或重复来避免过度概化。
选择性观察非逻辑推理二,社会科学的基础科学的两大支柱就是逻辑和观察。
科学多师姐的理解必须(1)言之成理,并(2)符合我们的观察。
科学理论处理的是科学的逻辑层面;资料收集处理的是观察层面;资料分析则是比较逻辑预期和实际观察,寻找可能的模式。
1 理论而非哲学或信仰社会科学理论处理的是是什么而不是应该如何。
因此,社会科学只能帮助我们了解事件本身和事件的成因。
只有在人们同意比较好坏的标准之后,社会科学才能告诉我们事件应该如何。
2 社会规律很大程度上,社会科学理论的终极目的,在于寻求社会生活的规律性。
首先,大量的正式社会规范造就了高度的规律性。
其次,除了正式规范以外,还有部分社会规范在无形中让社会行为产生规律。
在谈到社会规律性时,有三种论点值得探讨。
第一,有些规律过于微不足道;第二,反例的存在说明,“规律性”不是百分之百的规律;第三,在规律性中的人只要愿意,就可以颠覆整个规律。
罗伯特〃莫顿参照群体理论:一般人评断自己生活的好坏,并不是根据客观的条件,而是和周围的人相比较。
β样效应名词解释

β样效应名词解释β样效应(Barnum Effect)也被称为肯巴姆效应、巴纳姆效应或巴纳姆原理,是心理学中的一种认知偏见,指的是人们倾向于在毫无根据的情况下接受模糊抽象且似乎适用于所有人的性格描述或训练结果。
β样效应是因为人们往往对个人信息进行过度一般化和共鸣而产生的一种主观心理体验。
β样效应最初被心理学家佩尔西普(Forrefll Perlsip)在1956年的一项实验中发现。
他对一群志愿者进行了一次性格测验,然后给每个志愿者展示了明显矛盾的性格描述,志愿者们却普遍认为这些描述与自己一致。
佩尔西普将这种现象称为“肯巴姆效应”,以纪念著名的马戏团经营者和秀人巴纳姆。
β样效应的出现主要有以下几个原因。
首先,人们倾向于追求认同感和被了解的欲望。
当看到自己的性格描述或者训练结果时,我们往往会寻求与之符合的地方,从而给予积极的评价。
其次,β样效应还与信息获取和处理的机制有关。
人们在接受信息时,通常会根据已有的认知架构和经验来加工和解释新的信息。
对于模糊抽象的性格描述,我们可能会找到一些看似匹配的特征,而忽略了其中的矛盾之处。
β样效应在现实生活中经常可以见到。
例如,占星术、心理测验和魔法师等等,都能将模糊而一般性的描述应用于所有人身上,从而让人们产生共鸣和认可。
此外,广告行业也经常利用β样效应来吸引消费者的注意力和建立产品形象。
通过提供模糊且一般性的描述,广告商可以让人们认为他们的产品是“真正适合于所有人”的。
虽然β样效应可以被视为一种认知偏见,但它在心理学和营销学中有很广泛的应用。
对于心理学来说,研究β样效应可以帮助我们更好地理解人们对信息的处理方式和认知机制。
对于营销学来说,利用β样效应可以帮助广告商更有效地传达信息和塑造产品形象。
然而,为了避免被β样效应所影响,我们需要保持批判思维和对信息的客观分析。
认识到自己容易受到模糊且一般性描述的影响,我们可以更加谨慎地评估和使用这些信息。
总体而言,β样效应是一种人们倾向于接受模糊抽象且似乎适用于所有人的性格描述或训练结果的认知偏见。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
The Effects of Representational Bias on Collaboration Methods in Cooperative CoevolutionR.Paul Wiegand,William C.Liles,and Kenneth A.De JongGeorge Mason University,Fairfax,V A22030,USA,paul@,wliles@,kdejong@Abstract.Cooperative coevolutionary algorithms(CCEAs)have been applied tomany optimization problems with varied success.Recent empirical studies haveshown that choices surrounding methods of collaboration may have a strong im-pact on the success of the algorithm.Moreover,certain properties of the prob-lem landscape,such as variable interaction,greatly influence how these choicesshould be made.A more general view of variable interaction is one that considersepistatic linkages which span population boundaries.Such linkages can be causedby the decomposition of the actual problem,as well as by CCEA representationdecisions regarding population structure.We posit that it is the way in which rep-resented problem components interact,and not necessarily the existence of cross-population epistatic linkages that impacts these decisions.In order to explore thisissue,we identify two different kinds of representational bias with respect to thepopulation structure of the algorithm,decompositional bias and linkage bias.Weprovide analysis and constructive examples which help illustrate that even whenthe algorithm’s representation is poorly suited for the problem,the choice of howbest to select collaborators can be unaffected.1IntroductionCoevolutionary Algorithms(CEAs)are interesting extensions to traditional Evolution-ary Algorithms(EAs).Whilefitness in an EA is determined objectively,fitness in a CEA is determined subjectively based on how an individual interacts with other individ-uals.In cooperative coevolution,individuals that participate in successful interactions (collaborations)are rewarded while unsuccessful collaborations are punished.In this paper,we focus on the particular class of cooperative coevolutionary al-gorithms(CCEAs)defined by[1,2].A standard approach to applying CCEAs to an optimization problem starts by trying to identify some reasonable static decomposi-tion of the problem representation into components represented by each population.So, for example,if given a function of m variables to optimize,one might choose to put each variable in a separate CCEA population.Once a decomposition is established,the fitness of components in one population is estimated by choosing one or more collabo-rators from the other populations.There have been several attempts to understand how collaborators are best cho-sen in this paradigm.Early work suggested that these choices were tied to the amount of epistatic interaction among the function variables[1,3].In a CCEA that uses an N-variable decomposition for suchfitness landscapes,this leads to the notion ofcross-population epistasis,and to the simple intuition that increasing amounts of cross-population epistasis will require more complex collaboration mechanisms.Unfortu-nately,the issue is more complicated than this.For example,the simplest collabora-tion method seems to work best when applying a CCEA to a non-linearly separable, quadratic problem despite the existence of cross-population epistasis[4].This paper extends and clarifies these issues by focusing on how optimization prob-lems are represented in a CCEA.We identify two kinds of representational bias,decom-positional bias and linkage bias,and show how these biases affect choices of collabora-tion method.The paper is laid out as follows.In the next section,we will briefly outline some background regarding existing analyses of coevolutionary algorithms,the cooper-ative coevolutionary architecture on which we will be focusing,and some of the choices surrounding collaboration in this algorithm.The third section discusses what we believe to be the important characteristics of problems,namely decomposability and epistasis. The fourth andfifth sections take the two kinds of representational bias in turn,first discussing the implications of decompositional bias with respect to collaboration,then those of linkage bias.Thefinal section will conclude by discussing our improved un-derstanding how problem characteristics affect choices of collaboration methodology. 2Cooperative Coevolution2.1Existing Analysis of Coevolutionary AlgorithmsMuch of the analysis of coevolutionary algorithms has focused on their complicated dynamics.For example,considerable effort has been spent trying to understand how one can measure progress in a system where individualfitnesses are subjective in or-der to help identify some of the pathological behaviors exhibited by these algorithms [5–7].Additionally,some basic theoretical work uses ideas from simple genetic algo-rithm theory provided by[8],and applies them to competitive coevolution[9].That work explores the mechanics of a simple competitive coevolutionary algorithm from an evolutionary game theoretic viewpoint.[10]extended this model to analyze cooperative coevolution for the purposes of investigating their potential as optimizers.One of the issues of considerable practical significance for coevolutionary algo-rithms is how to assess thefitness of an individual in one population(species)when thatfitness depends in part on the individuals in other populations(species).The the-oretical models typically assume“full mixing”in the sense that an individual’sfitness is determined by a complete set of“interactions”with all other species.In the simple case that each of the coevolving p populations contains i individuals,the number of “interactions”perfitness evaluation is i p1.As a consequence,there is strong practical motivation to estimatefitness by se-lecting only a small subset of the possible interactions,particularly when p 2.This process is usually accomplished by selecting a small number“partners”[3]or“collab-orators”[1]from the other species whose interactions are the basis offitness estimates. Immediate questions arise as to:1)how many partners,2)how to select the partners, and,in the case of multiple interactions,3)how to combine the results of multiple inter-actions into a singlefitness estimate.The answers to these questions are far from simpleand depend on a number of factors including1)whether the coevolutionary model is competitive or cooperative,and2)the degree and type of cross-population epistasis present[1,11,2–4,12].2.2Collaboration in CCEAsOur focus is on understanding these issues for cooperative coevolutionary models,in particular for the CCEA architecture developed in[1,2].In this model there is a single globalfitness function for the entire system,but the search space has been decomposed into a number of independent subspaces,each of which is explored in parallel by inde-pendent EA populations.In this case,in order to evaluate thefitness of an individual in one population,one or more collaborators must be selected from the other populations in order to assemble a complete object for a global evaluation.A variety of studies including[1,3,4]suggest that,if the degree of cross-population epistasis is not too strong,then selecting the current best individual from each of the other populations and performing a single globalfitness evaluation is a surprisingly ro-bust collaboration mechanism.When there is a strong degree of epistasis,a more com-plex strategy involving more than one collaborator from each of the other populations and a less greedy selection method for those collaborators can improve performance.Finally,if multiple function evaluations are involved for each subcomponent,how can one combine these results to obtain a singlefitness value?Here the literature is fairly consistent in recommending assigning the maximum value obtained as thefitness.2.3Representation in CCEAsHowever,for the practitioner,there are still a number of questions to be answered in-cluding how to decompose a complex problem in a way that leads to an effective CCEA-based solution.This is a familiar question for standard EAs,e.g.deciding how best to represent problems(such as Traveling Salesperson problems)to achieve good EA-based solutions.For CCEAs,representations must additionally involve decompositions into separately evolving subcomponents.The difficulty for the CCEA practitioner is that there is seldom sufficient a priori information to select an“optimal”representation or even one with sufficient knowledge to make informed choices about the appropriate collaboration mechanism to use.How-ever,it is clear that any choice of representation introduces a bias in the system that can potentially have strong effects on a particular collaboration strategy.Intuitively,CCEA representation biases are a result of the granularity of the decom-position(how many subcomponents)and the resulting epistatic interactions among the subcomponents.The focus of this paper will be on understanding these biases and their effects on collaboration mechanisms.3Research MethodologyIn order to better control for the representational properties that we feel are important to choices of CCEA collaboration mechanisms,this paper focuses on pseudo-booleanfunctions,that is the objective value is assessed by mapping binary strings of length n to real values,F:01nℜ.The two representational properties of interest are decomposability and epistasis.3.1DecomposabilityFor our purposes,a function is considered decomposable if it can be decomposed into a sum of some number of smaller independent functions.These functions do not neces-sarily have to be identical.More formally,a function F is decomposable if there exist a set of independent functions,f1f2f m such that F x m i1f i x i.Some types of problems are rendered more tractable for optimization because of this property since optimization can be done as m independent optimizations[13].For pseudo-boolean functions,each x i refer to partitions of the main string,or build-ing blocks of the problem.Of particular interest are m-decomposable functions,i.e., those for which an m block decomposition exists,but nofiner grained partition exists.An example of a bit-wise decomposable problem(i.e.,m string3.3Experimental FrameworkIn the following sections we will construct several problems that exhibit these properties and we analyze them both formally and empirically.For the empirical studies we used a CCEA with the following properties.A steady state GA was used for evolving each of the populations.Each steady state GA uses a ranked-based selection method,such that a single offspring replaces the worst individual each generation Bit-flip mutation was applied at a rate of1r,where r is the number of bits of individuals in a given population.Parameterized uniform crossover was applied100%of the time to produce a single offspring in such a way that there was a02probability of swapping any given bit.As part of the reported experiments,we varied the number of populations,p,but in all cases the number of individuals in each population was10.During preliminary sensitivity experiments,various algorithm parameter values were used.These included generational versus steady state models,proportional versus ranked-based selection methods,different population sizes,different variational operators(and rates).Though not reported in this paper,the results were consistent with our reported findings.Our choices for thefinal algorithm were based on performance results.4The Effects of Decompositional Bias on Collaboration Obviously,different problems have different degrees of decomposability that may or may not be reflected in the particular CCEA representation chosen.Since decompos-ability information is not generally available for difficult optimization problems,our focus here is on the case where there is some kind of mismatch between the CCEA rep-resentation and a problem’s“natural”decomposition.The question here is not whether such mismatches make the problem harder to solve.This will clearly happen for some problems[1,3,12,4].Instead,the question is whether adopting more complex collabo-ration methods can alleviate such mismatches.4.1Controlling Decompositional Bias ExperimentallyIn order to answer this question,we need to have problems in which we can explicitly control their inherent decomposability.For pseudo-boolean functions this is not difficult to do.One simply defines a function in terms of the sum of m independent subfunctions which are themselves not decomposable.A simple example is obtained by choosing a non-decomposable function of k bits and concatenating m of these k-bit blocks to form a km-bit problem the value of which is just the sum of the individual functional blocks.More formally,let F:01nℜbe some objective function over a binary string of length n mk and f:01k be some non-decomposable function over a binary string of length k.Then,given x01n,m1F xf m ii0where m i represents the i th block of k bits in x.From a practitioner’s point of view,barring any problem specific knowledge,the simplest way to represent pseudo-boolean functions is to break up bit strings of length n into p blocks and assign each block to a different population.Hence,a decompositional mismatch of the representation may be due to over-decomposition(p m)or under-decomposition(p m).If there are more populations than there are decomposition blocks,there is likely to be strong interaction between populations in the system with respect to the problem,i.e.,cross-population epistasis.If p m,the advantage of the parallelism of coevolutionary search is sacrificed.4.2Effects of Collaboration MethodsWe begin to answer the question of whether problems introduced by decompositional bias can be alleviated by more complex collaboration methods by observing that,if there is no cross-population epistasis,a simple selection method for collaboration is sufficient.If the two populations represent independent pieces of the problem,then op-timizing one population independently of the other will result in the complete optimiza-tion of the problem.As long as the collaborators chosen for each population member are the same,it doesn’t matter how we chose the collaborator.However,it does mat-ter how many collaborators we choose,since picking more than one will incur more unnecessary computational cost in the way of objective function evaluations.There-fore,in the absence of cross-population epistasis,selecting the single best individual1 from the other populations for collaboration is sufficient.In fact,one could pick this individual randomly,as long as it was the same individual for each member of the pop-ulation during a given generation.The point isn’t that any partnering scheme will result in a better collaboration than another,but that since each population can essentially be optimized independently,we only need a consistent sample from which to establish a collaboration.So why would a more complicated collaboration selection method be needed?Re-call that how one chooses collaborators is essentially a choice about how one samples the potential interactions with the other population.There has to be a reason to be-lieve that more than one sample is needed,or that sampling with a particular bias(say choosing the best)will result in a poor characterization of the relationship between the populations.Either way,some interaction between the populations is certainly needed to justify this.More than simply having such epistasis is at issue,however.Consider the LeadingOnes problem,f x k i1i j1x j.This problem is cer-tainly not decomposable.Further,if we aggregate m of them,we can study the effects of running a CCEA when the number of populations p is m.In order to study the effects of collaboration on such situations,we constructed the following ing the CCEA described in the Methodology section,we ex-perimented with a concatenated LeadingOnes problem.In this particular case there were128bits in the total bit string of the problem,subdivided evenly into m2blocks.A total of6collaboration selection methods were used.The number of collaborators chosen for a given evaluation was varied(12&3)and two selection biases were used: s-best and s-random(without replacement).We varied the number of populations,p,but in all cases the number of individuals in each population was10.The results for p2through p16in Table1show the average number of evaluations it took the algorithms to reach the optimum(50trials each).Unless otherwise stated,confidence levels for all tests are95%.p2#Collaborators123s-best8801.117602.126198.9s-rand10155.518757.928372.5 p8#Collaborators123 s-best11247.2022350.3233468.88s-rand19233.7830089.9041995.38Table1.Steady state CCEA results on the LeadingOnes problem.Each value represents the mean number of evaluations needed to reach the optimum out of50trials.From the top left conrner,proceding clockwise,the tables represent data for decompositional biases created using two,four,eight and sixteen populations.The Tukey-Means test indicates that in all cases choosing one collaborator is clearly better.This might atfirst be puzzling since there is clearly cross-population epistasis present when p 2.However,note that a mutation which turns some bit to1in an individual in thefirst population will always result either a neutral or positive change in fitness,regardless of the contents of the other population.The reverse is true,as well. In addition,this decomposition is also asymmetric for p4in that the second and fourth populations will remain relatively unimportant to thefirst and third populations for some time during the evolution,since each LeadingOnes subproblem is solved left-to-right.One observation that can be made is that by changing the number of populations, the mutation rate is effectively being increased(recall that the mutation is1r,where r is the number of bits per individual in each population).Such issues may be relevant, consequently we ran all population oriented experiments in the paper(including the preceding one)using a constant164mutation rate.The results(not reported)remain consistent with those reported here.We can make the problem slightly more interesting by making the right-hand side of the bit string play a more important role.We will do this by scaling the LeadingOnes part by k and subtracting OnesMax from the total,i.e.,f x k k i1i j1x j k i1x i. Now not only will the right side matter,but there is some tension between individual bit contributions tofitness and those of their non-linear interactions.Moreover,this tension is”one directional”in a sense.Take the string:”110000”as an example.Flipping the fourth bit to a one will decrease thefitness slightly if the third bit remains0,while flipping both the third and fourth bits will increase thefitness.However,the same is not true on the other side.Flipping the third bit while the fourth bit remains0will also increasefitness.So some of the interactions have this property of sign-dependent epistasis,while others will not.In addition,the linear effects of the bits are very muted compared to the non-linear effects due to the scaling issue.Using the same experimental setup as before,we studied the effects of collaboration on LeadingOnes-OnesMax.The results for p2through p16in Table2show the average number of evaluations it took the algorithms to reach the optimum(50trials each).p2#Collaborators123 s-best15549.430974.645445.7s-random16381.630319.444736.0 p8#Collaborators123 s-best14247.1027911.0441735.98 s-random21653.8633975.2847792.74 Table2.Steady state CCEA results on the LeadingOnes-OnesMax problem.Each value represents the mean number of evaluations needed to reach the optimum out of50trials.From the top left conrner,proceding clockwise,the tables represent data for decompositional biases created using two,four,eight and sixteen populations.In all cases there was no statistical reason to choose another collaboration method other than the single best individual from the other populations.Not only does this increased decompositional bias not alter the collaboration methodology,it appears as though this problem becomes easier for the CCEA to solve,not harder.This turns out to be statistically significant only for the p8and p16cases(not shown)where there is one or two”best”collaborators chosen.So far,these experiments confirm what we see in practice,namely that the simple collaboration method involving just the best individuals from each population is quite robust even when there is cross-population epistasis.However,what is still not clear is when it fails.To understand that better,we focus on the the various forms of cross-population epistasis.5The Effects of Linkage Bias on CollaborationThe decompositional bias of the previous section focused on potential mismatches between a problem’s“natural”decomposition into m components and the number of CCEA populations p used.Even if p m,there is still the question as to whether the CCEA breaks up the string so that each“natural”block is assigned its own population. If not,breaking up tightly linked bits can result in significant cross-population epistasis. In general,the degree to which linked bits in a block are assigned to the same population for the purposes of representation can be thought of as linkage bias.5.1Controlling Linkage Bias ExperimentallyAgain it isn’t hard to construct a way of controlling this bias.We define a mask over the entire bit string which specifies to which population a given bit belongs,M 12p n.Note that in the case of these mask definitions,the superscript suggestsrepetition,and not an exponent.For problems like those in the previous section involv-ing a series of m concatenated non-decomposable r-bit blocks,a mask which corre-sponds to the most biased linkage(i.e.is more closely aligned with the real problem) is M s1r2r p ing up with a mask which is highly pathological is very prob-lem dependent,but a mask which will turn out to be commonly quite bad is M h123p r.Here every bit in a block is distributed to every population,resulting in the likelihood of a high degree of cross-population epistasis.As noted earlier,any increase in the amount of cross-population epistasis is likely to make a problem more difficult to solve using a CCEA.The question at hand is whether adopting a more complex collaboration method can alleviate these difficulties.By ap-plying different types of masks,which distribute different pieces of the blocks of the problem to different degrees,we can explore the affect that varying degrees of linkage bias have on collaboration methods.5.2Effects of Collaboration MethodsWe begin by considering again the LeadingOnes-OnesMax problem,assuming m p ing the M s111222mask presents us the same problem we’ve already discussed,where there is no cross-population epistasis,while the mask M h 121212212121creates a situation with very strong cross-population epistasis. Using the same experimental setup as before,we studied the effects that these two masks had on the choice of collaboration methods.The results are presented in Table3.M s#Collaborators123 s-best15305.428939.145756.5s-random17862.532802.247439.4Table3.Steady state CCEA results on the LeadingOnes-OnesMax problem.Each value represents the mean number of evaluations needed to reach the optimum out of50trials.The left table represents a linkage bias which uses the M s mask,while the right uses the M h mask.Differences between the means for s-best and s-random groups for M h are signifi-cant for one and two collaborators,but not for three.There are no statistically significant differences between these groups(for the same number of collaborators)for the simpler linkage bias.Once again simply distributing the epistatic linkages across the population bound-aries is insufficient to require that a more complicated collaboration method be used. This may seem surprising atfirst,but note that,for this particular problem,introduc-ing such masks does not change the type of cross-population epistasis,only its degree. Moreover,although not germane to our question,it is interesting to note that in this particular case it seems that increasing the mixing seems to improve performance ver-sus the M s mask(this is significant for all but the3-random case).In the case of our generational CCEA experiments,this was true to statistical significance for all groups.What we have failed to construct so far is a case of the most difficult form of cross-population epistasis:namely,when neither the sign nor the magnitude of theinteraction can be reliably predicted.There is a simple change to the current prob-lem that will result in cross-population epistasis of this type,namely by changing the LeadingOnes component to count only paired ones.More formally,we defined ai LeadingPairedOnes-OnesMax problem given by f x2k ki1#Collaborators M h1233328.92086.51590.1s-best3366.72152.01784.1s-randomthe relationship between the linear and non-linear pieces of the problem,the sign does not.The standard collaboration mechanism workedfine for these cases.However,in the case where both the sign and the magnitude of thefitness contribu-tion are uncorrelated,the standard collaboration mechanism breaks down and a more complex mechanism is required.Intuitively,in such situations additional samples are required to obtain reasonable estimates offitness.Clearly,the results presented here are preliminary in nature,and a more thorough examination of these issues is needed.However,we believe these results already provide useful guidance to the CCEA practitioner.An interesting open question for EA design in general is whether this notion of different types of epistasis will also help clarify the effects of gene linkages within a genome.References1.M.Potter and K.De Jong.A cooperative coevolutionary approach to function optimization.In Y.Davidor and H.-P.Schwefel,editors,Proceedings of the Third International Conference on Parallel Problem Solving from Nature(PPSN III),pages249–257.Springer-Verlag,1994.2.M.Potter.The Design and Analysis of a Computational Model of Cooperative CoEvolution.PhD thesis,George Mason University,Fairfax,Virginia,1997.3.L.Bull.Evolutionary computing in multi-agent environments:Partners.In Thomas Baeck,editor,Proceedings of the Seventh International Conference on Genetic Algorithms(ICGA), pages370–377.Morgan Kaufmann,1997.4.R.Paul Wiegand,William Liles,and Kenneth De Jong.An empirical analysis of collabora-tion methods in cooperative coevolutionary algorithms.In Spector[15],pages1235–1242.5.R.Watson and J.Pollack.Coevolutionary dynamics in a minimal substrate.In Spector[15],pages702–709.6.S.Ficici and J.Pollack.Challenges in coevolutionary learning:Arms–race dynamics,open–endedness,and mediocre stable states.In Adami et al,editor,Proceedings of the Sixth Inter-national Conference on Artificial Life,pages238–247,Cambridge,MA,1998.MIT Press.7. D.Cliff and ler.Tracking the red queen:Measurements of adaptive progress in co–evolutionary sumulations.In Proceedings of the Third European Conference on Artificial Life,pages200–218.Springer–Verlag,1995.8.M.V ose.The Simple Genetic Algorithm.MIT Press,1999.9.S.Ficici and J.Pollack.A game-theoretic approach to the simple coevolutionary algorithm.In M.Schoenauer,K.Deb,G.Rudolph,X.Yao,E.Lutton,J.J.Merelo,and H.-P.Schwefel, editors,Proceedings of the Sixth International Conference on Parallel Problem Solving from Nature(PPSN VI),pages467–476.Springer-Verlag,2000.10.R.Paul Wiegand,William Liles,and Kenneth De Jong.Analyzing cooperative coevolutionwith evolutionary game theory.In D.Fogel,editor,Proceedings of CEC2002.IEEE Press, 2002.(To appear).11.J.Paredis.Coevolutionary computation.Artificial Life Journal,2(3),1996.12.L.Bull.On coevolutionary genetic algorithms.Soft Computing,5:201–207,2001.13.R.Salomon.Performance degradation of genetic algorithms under coordinate rotation.InL.Fogel,P.Angeline,and T.B¨a ck,editors,Proceedings of the Fifth Annual Conference on Evolutionary Programming,pages153–161.MIT Press,1996.14.Yuval Davidor.Epistasis variance:A viewpoint on ga-hardness.In G.Rawlins,editor,Foundations of Genetic Algorithms(FOGA),pages23–35.Morgan Kaufmann,1990.15.L.Spector,editor.Proceedings of the Genetic and Evolutionary Computation Conference(GECCO)2001.Morgan Kaufmann,2001.。