山东大学网络远程高起专高等数学1-2-3试题答案
成人高考高起专数学》真题及答案

2017年成人高等学校高起点招生全国统一考试数学本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间150分钟。
第I卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M∩N=()A.{2,4)B.(2,4,6)C.(1,3,5)D.{1,2,3,4.5,6)2.函数y=3sin的最小正周期是( )A.8πB.4πC.2πD.2π3.函数y=的定义城为( )A.{x|x0}B.{x|x1}C.{x|x1}D.{x|01}4.设a,b,c为实数,且a>b,则( )A.a-c>b-cB.|a|>|b|C.>D.ac>bc5.若<<,且sin=,则=( )A B. C. D.6.函数y=6sinxcosc的最大值为( )A.1B.2C.6D.37.右图是二次函数y=+bx+c的部分图像,则( )A.b>0,c>0B.b>0,c<0C.b<0,c>0D.b<0,c<08.已知点A(4,1),B(2,3),则线段AB的垂直平分线方程为A.x-y+1=0B.x+y-5=0C.x-y-1=0D.x-2y+1=09.函数y=是( )A.奇函数,且在(0,+)单调递增B.偶函数,且在(0,+)单调递减C.奇函数,且在(-,0)单调递减D.偶函数,且在(-,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有( )A.60个B.15个C.5个D.10个11.若lg5=m,则lg2=( )A.5mB.1-mC.2mD.m+112.设f(x+1)=x(x+1),则f(2)= ( )A.1B.3C.2D.613.函数y=的图像与直线x+3=0的交点坐标为( )A.(-3,-)B.(-3,)C.(-3,)D.(-3,-)14.双曲线-的焦距为()A.1B.4C.2D.15.已知三角形的两个顶点是椭圆C:+=1的两个焦点,第三个顶点在C上,则该三角形的周长为( )A.10B.20C.16D.2616.在等比数列{}中,若=10,则,+=( )A.100B.40C.10D.2017.若1名女生和3名男生随机地站成一列,则从前面数第2名是女生的概率为( )A. B. C. D.第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分,共16分)18.已知平面向量a=(1,2),b=(-2,3),2a+3b= .19.已知直线1和x-y+1=0关于直线x=-2对称,则1的斜率为= .20.若5条鱼的平均质量为0.8kg,其中3条的质量分别为0.75kg,0.83kg和0.78kg,则其余2条的平均质量为kg.21.若不等式|ax+1|<2的解集为{x|-<x<},则a= .三.解答题(本大题共4小题,共49分.解答应写出推理、演算步骤)22. (本小题满分12分)设{}为等差数列,且=8.(1)求{}的公差d;(2)若=2,求{前8项的和.23.(本小题满分12分)设直线y=x+1是曲线y=+3+4x+a的切线,求切点坐标和a的值。
山东大学高起专入学考试-数学-模拟题及答案

专科数学模拟题 卷Ⅰ一、选择题:本大题共15小题,每小题5分,共75分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)由小于7的质数所组成的集合( B)(A ){}1,2,3,5,7, (B ){}2,3,5,7 (C ){}2,3,5, (D ){}7x x ≤(2)设函数()y f x =的定义域是区间[],a b ,且()()1g x f x =+,则函数()g x 的定义域是区间( C )()[],.A a b ()[]1,1.B a b ++ ()[]1,1.C a b -- ()[]1,1.D a b -+(3( D )(A )x y +, (B )()x y -+, (C )x y +, (D )x y + (4)如果a b <,那么( C )(A )5 5.a b +>+ (B )33.a b >(C )55.a b ->- (D )33a b >. (5)数列1111,,,,12233445--⨯⨯⨯⨯ 的一个通项公式( D ) (A )()1.n n+1 (B )()-1.n n+1(C )()n (-1).n n+1 (D )()n+1(-1).n n+1.(6)过曲线418y x =上一点()2,2P 的切线的斜率是( C ) (A ) 1. (B ) 2. (C ) 4. (D )8.(7)sincostan333πππ++=( C )(A ). (B ) 12+ (C ) . (D )12+(8)已知tan 2α=, 那么2sin cos sin cos αααα+=-( B )(A ) 15. (B )5. (C ) 5-. (D )15-.(9)函数52cos cos 22y x x =+- 的最大值是( 4 )(A ) 5. (B ) -5. (C ) 52. (D )52-.(10)已知ABC ∆中, 如果 16,4,cos 3b c A ===, 那么a 得知满足( B ) (A )a c <. (B )a c =. (C ) c a b <<. (D )a b =.(11)已知(a =, ()1b =- , 则,a b =( D )(A )30 . (B )60 . (C ) 120 . (D )150.(12)直线210ax y --=和直线640x y c -+=平行, 那么( B ) (A )3a =, 2c =-. (B )3a =, 2c ≠-. (C )3a ≠, 2c =-. (D )3a ≠, 2c ≠-.(13)圆2216x y +=与圆22230x y x +--=的位置关系是( A )(A )内含. (B )相交. (C )相离. (D )相切. (14)在一次读书活动中, 一人要从 5本不同的科技书、7本不同的文艺书里任意选取一本书,那么不同的选法有( C )(A )5种. (B )7种. (C )12种. (D )35种.(15)甲、乙两人各进行一次足球射门,甲击中目标的概率是0.5 , 乙击中目标的概率是0.8,那么两人都击中目标的概率是( A )(A )0.4. (B )0.3. (C )0.6. (D )1.二、填空题。
山东大学网络教育期末考试试题及答案-高等数学(1)模拟试卷

《高等数学》模拟题(1)年级_____________ 姓名_______________ 学号________________ 成绩__________第一题 名词解释1.区间:2. 邻域;3. 函数的单调性:4. 导数:5. 最大值与最小值定理:第二题 选择题1.函数21arccos1++-=x x y 的定义域是( )(A)1≤x ; (B)13≤≤-x ;(C))1,3(-; (D){}{}131≤≤-⋂<x x x x .2、函数)(x f 在点0x 的导数)(0x f '定义为( )(A )xx f x x f ∆-∆+)()(00;(B )xx f x x f x x ∆-∆+→)()(lim 000;(C )xx f x f x x ∆-→)()(lim 00;(D )0)()(lim 0x x x f x f x x --→; 3、 一元函数微分学的三个中值定理的结论都有一个共同点,即( ) (A ) 它们都给出了ξ点的求法 .(B ) 它们都肯定了ξ点一定存在,且给出了求ξ的方法。
(C ) 它们都先肯定了ξ点一定存在,而且如果满足定理条件,就都可以用定理给出的公式计算ξ的值 .(D ) 它们只肯定了ξ的存在,却没有说出ξ的值是什么,也没有给出求ξ的方法 . 4、设)(,)(21x F x F是区间I 内连续函数)(x f 的两个不同的原函数,且0)(≠x f ,则在区间I 内必有( )(A) C x F x F =+)()(21; (B ) C x F x F =⋅)()(21;(C) )()(21x CF x F =; (D) C x F x F =-)()(21.5、=⎪⎭⎫ ⎝⎛++++++∞→2222221lim n n n n n n nn Λ ( ) (A )0; (B )21;(C )4π; (D )2π .6、曲线xyln =与直线ex 1=,e x=及0=y 所围成 的区域的面积=S ( ); (A ))11(2e-; (B )e e 1-;(C )e e 1+; (D )11+e.7、 若→a ,→b 为共线的单位向量,则它们的数量积 =⋅→→b a ( ).(A ) 1; (B )-1; (C ) 0; (D )),cos(→→b a . 8、二元函数22221arcsin 4ln y x y x z +++=的定义域是( ).(A )4122≤+≤y x ; (B )4122≤+<y x ;(C )4122<+≤y x ; (D )4122<+<y x .9、⎰⎰-xdy y x f dx 1010),(=(D )(A)⎰⎰-110),(dx y x f dy x ; (B)⎰⎰-xdx y x f dy 101),(;(C)⎰⎰11),(dx y x f dy ; (D)⎰⎰-ydx y x f dy 101),(.10、设L 为230,0≤≤=y x x ,则⎰Lds 4的值为( B).(A)04x , (B),6 (C)06x .第三题.)16(log 2)1(的定义域求函数x y x -=-第四题).0(),100()2)(1()(f x x x x x f '---=求设Λ第五题.)1(51lim 520x x x x +-+→求极限第六题.4932⎰-dx xx xx 求第七题.2sin 120⎰-πdx x 求《高等数学》模拟试卷 (1) 参考答案第四题).0(),100()2)(1()(f x x x x x f '---=求设Λ第五题解)0()(lim)0(0--='→x f x f f x )100()2)(1(lim 0---=→x x x x Λ!100=.)1(51lim 520x x x x +-+→求极限第六题.4932⎰-dx xx xx 求第七题解.2的次数为分子关于x Θ515)51(51x x +=+∴)()5()151(51!21)5(51122x o x x +⋅-⋅++=)(2122x o x x +-+=)1()](21[lim2220x x o x x x x +-+-+=→原式.21-=⎰-=dxxx1)23()23(2原式解⎰-=1)23()23(23ln 12x xd ⎰-123ln 12t dt ⎰+--=dt t t )1111(23ln21Ct t ++--=11ln )2ln 3(ln 21.2323ln )2ln 3(ln 21C xx xx ++--=tx =)23(令解 ]5)1[ln(2'+++x x Θ,112x+=]5)1[ln(5)1ln(22+++⋅+++=⎰x x d x x 原式.]5)1[ln(32232C x x ++++=)1221(1122xx xx ++⋅++=1. .2sin 120⎰-πdx x 求解⎰-=20cos sin πdxx x 原式⎰⎰-+-=2440)cos (sin )sin (cos πππdxx x dx x x .222-=。
山东大学网络学院高等数学考试一二三答案

高等数学模拟卷1一 求下列极限1 1limsin n n n→∞ =0 2 求0lim x x x→ = 1 ,x →+0 -1 ,x →-03 求10lim xx e → =∞0sin 4lim sin5x x x x x →++ =1/3二 a 取什么值,0()0xe xf x a x x ⎧<=⎨+≥⎩连续解:)i 0x <,0x >时,()f x 均连续)ii 0x =时,(0)f a =(00)1f -=(00)f a +=所以1a =时(0)(0)1f f ±==,()f x 在0x =处连续综上所述,a=1时()f x 连续三 计算下列各题1 已知2sin ln y x x =⋅ 求,y解:y ’=2cosx.lnx+2sinx.(1/x)2 (),()x f x y f e e y =⋅已知,求解:y ’ =f ’(e x ).e x .e f(x)+f(e x ).e f(x).f(x)23x xe dx⎰求 解:原式=1/2∫e x2d(x 2)=1/2(e x2+C)四、若202tan()sec x y x x y tdt ---=⎰,求dy dx解:两边对x 求导,其中y 是x 的函数 2'2'2sec ()(1)sec ()(1)x y y x y y --⋅-=-⋅-2'2sec ()(1)2x y y -⋅-='21(1)sec ()y x y -=- 所以'221cos ()sin ()y x y x y =--=-五 求y x =,2y x =和2y x =所围平面图形的面积解:12201223(2)(2)121101231814123376A x x dx x x dx x x x =-+-⎛⎫=+- ⎪⎝⎭=+--+=⎰⎰高等数学模拟卷 2一 求下列极限1 1lim cos n n n→∞=02 求22lim 2x x x →--=2222lim 22lim 22lim 2x x x x x x x x x→→→-⎧⎪-⎪-⎨--⎪⎪-⎩-+=1==-1 3 求10lim 2x x →=110100lim 2lim 2lim 20x x x x x x +-→→→⎧=∞⎪⎪=⎨⎪=⎪⎩ 02sin 4lim 3sin x x x x x →++求2sin 3lim 3sin 4x x x x x →++解= sin 0()00x x f x xx ⎧≠⎪=⎨⎪=⎩二讨论在 x=0 处的连续性 答:因为f(x)在0点的左右极限都为1,不等于其在0点的函数值,所以f(x)在0点不连续三 计算下列各题1 ,ln[ln(ln )]y x y =求 ,1111.[ln(ln )]..[ln(ln )][ln(ln )]ln y x x x x x'== 2 ,,yx x y y =求,ln ln .ln .ln 1.ln ln ..ln ln ln ln y xx y y x x yy y x y y x x yx y y x y y xyy x y x x y =='+=+⎛⎫'-=- ⎪⎝⎭-'∴=-解: 22220100220100490480cos lim sin cos lim 22cos lim 101cos lim 50x x x x x x x t dt xx t dt x x x x x x x →→→→--=-⋅=-=⎰⎰四求解原式34704sin 1lim 4010x x x x →== 五 求225y x =-和4y x =-所围平面图形的面积解:)8002(4)A x dx =+--⎰⎰28331242222126323218x x ⎫=+-+⎪⎭=+-+=六 22(1)24dy x xy x dx++= 解:此方程为一阶非齐次线性微分方程 22()1x P x x =+ 224()1x Q x x =+2222231122414()()113x x dx dx x x x y e e dx c c x x x -++⎰⎰=+=+++⎰ 所以原方程通解为3214()13y c x x =++ 高等数学模拟卷3一 求下列极限1 1lim n tgn n→∞ 解:不存在2 求lim x a x a x a →--=lim 1lim lim 1x a x a x a x a x a x a a x x a x a→→→-⎧⎪-⎪-⎨--⎪=-⎪-⎩+-== 3 求120lim x x e →=121021020lim lim lim 0x x x x x x e e e +-→→→⎧=∞⎪⎪=⎨⎪=⎪⎩ 00sin 4lim lim sin x x mx mx m nx nx n →→==20()0x x f x x x >⎧=⎨≤⎩二已知,讨论f (x )在0x =处的导数 ()()()()0020000lim lim 100lim lim 0()0x x x x f x f x x xf x f x x xf x x ∆→∆→∆→∆→+∆-∆==∆∆+∆-∆==∆∆∴=++--解:在不可导 三 计算下列各题1、3,tan (ln )y x y =已知求 ()2213tan (ln ).sec ln .y x x x'=解: 2、2,()y f x y =已知,求 2().2y f x x ''解: =四 232001()()2a a x f x dx xf x dx =⎰⎰证明,(0)a >,其中()f x 在讨论的区间连续。
山东大学网络教育专升本入学模拟考试高等数学模拟题及1

山东大学网络教育专升本入学考试高等数学(二)模拟题 (1)一、 选择题:本大题5个小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内。
1、函数291)(xx f -=的定义域是( A )A 、(-3,3)B 、[-3,3 ]C 、(3,3-,)D 、(0,3)2、x1sin lim x ∞→=(A ) A. 0 B. 1 C.∞ D. 不存在 3、设4)3)(2)1)-x -(x -(x -x(x f(x)=则)2('f =(D )A 、0B 、1C 、2D 、4 4、设函数x f(x)=,则)1(f '等于 ( C )A.1B.-1C.21D.-21 5、曲线3x y =在点)1,1(M 处的切线方程是 ( C ) A. 023=-+x y B. 03231=-+x y C.023=+-x y D. 043=--x y二、填空题:本大题共15个小题,共15个空,每空3分,共45分。
把答案填在题中横线上。
1、设1)1(2--=+x x x f ,则=)(x f231x x -+2、判断函数的奇偶性:cosx )(3x x f = 是 偶函数 3、=-+∞→531002lim 33x x x x 234、13+=x y 的反函数是 3y=log (1)(1,)x x -∈+∞5、已知32)tan(lim 0=→xkx x ,则k = 6 6、=++∞→xx x x )12(lime 7、设x x x y -=ln ,则y '= Inx8、曲线22xy =在)2,1(处的切线方程是 y=-4x+69、设x x y sin =,则''y = 2cosx-xsinx10、=-=dy x y 则设,)1(43 ()332121x x dx -11、不定积分⎰=+dx x 121()1212In x c ++ 12、不定积分⎰dxx xe = ()1xx e c -+ 13、定积分dx x⎰-+11211= 2∏ 14、定积分=⎰exdx 1ln 115、⎰-+⋅=x dt t t x 0321)(φ设,)('x φ则=三、计算题:本大题共10个小题,每小题6分, 共60分。
山东高等数学2010年专升本试题答案

山东大学成人教育专升本入学考试高等数学(二)模拟题 (1)一、 选择题:本大题5个小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内。
1、函数291)(xx f -=的定义域是( A )A 、(-3,3)B 、[-3,3 ]C 、(3,3-,)D 、(0,3)2、x1sin lim x ∞→=( A ) A. 0 B. 1 C.∞ D. 不存在 3、设4)3)(2)1)-x -(x -(x -x(x f(x)=则)2('f =( D )A 、0B 、1C 、2D 、4 4、设函数x f(x)=,则)1(f '等于 ( C )A.1B.-1C.21 D.-21 5、曲线3x y =在点)1,1(M 处的切线方程是 ( C ) A. 023=-+x y B. 03231=-+x y C.023=+-x y D. 043=--x y二、填空题:本大题共15个小题,共15个空,每空3分,共45分。
把答案填在题中横线上。
1、设1)1(2--=+x x x f ,则=)(x f231x x -+2、判断函数的奇偶性:cosx )(3x x f = 是 奇函数3、=-+∞→531002lim 33x xx x 23 4、13+=x y 的反函数是()3log 1y x =-5、已知32)tan(lim 0=→xkx x ,则k = 6 6、=++∞→xx x x )12(lim 1 7、设x x x y -=ln ,则y '=ln x8、曲线22xy =在)2,1(处的切线方程是46y x =-+9、设x x y sin =,则''y =2cos sin y x x x =-10、=-=dy x y 则设,)1(4323312(1)x x dx - 11、不定积分⎰=+dx x 121()1ln 212x C ++ 12、不定积分⎰dx x xe = x x xxe e e +-13、定积分dx x⎰-+11211=π14、定积分=⎰exdx 1ln 115、⎰-+⋅=x dt t t x 0321)(φ设,)('x φ则= 123(1)x x +三、计算题:本大题共10个小题,每小题6分, 共60分。
山东大学网络教育离散数学卷(1)-参考答案

山东大学网络教育离散数学卷(1)-参考答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN山东大学网络教育离散数学试卷 (参考答案)一、 选择题1、设}}8,7,6{},5,4{},3,2,1{{=A ,下列选项正确的是:(3)(1)A ∈1 (2)A ⊆}3,2,1{ (3)A ⊂}}5,4{{ (4)A ∈∅2、对任意集合C B A ,,,下述论断正确的是:(1)(1)若C B B A ⊆∈,,则C A ∈ (2)若C B B A ⊆∈,,则C A ⊆(3)若C B B A ∈⊆,,则C A ∈ (4)若C B B A ∈⊆,,则C A ⊆3、假设},,{c b a A =上的关系如下,具有传递性的关系是:(4)(1)},,,,,{>><><><><<a b b a a a a c c a(2)},,,{>><><<a a a c c a(3)},,{>><<a c c a(4)},{><c a4、非空集合A 上的空关系R 不具备下列哪个性质:(1)(1)自反性 (2)反自反性 (3) 对称性 (4)传递性5、假设},,{c b a A =,}2,1{=B ,令:B A f →:,则不同的函数个数为:(2)(1)2+3个 (2)32个 (3)32⨯个 (4)23个6、假设},,{c b a A =,}2,1{=B ,下列哪个关系是A 到B 的函数:(3)(1)}2,1,2,1,2,1,{>><><><><><<=c c b b a a f(2)},,,,,,{>><><><><><<=c c a c b b a b b a a a f(3)}1,2,1,{>><><<=c b a f(4)},1,2,1{>><><<=c b a f7、一个无向简单图G 有m 条边,n 个顶点,则图中顶点的总度数为:(3)(1)2m (2)2n (3)m 2 (4)n 28、一个图是欧拉图是指:(1)(1)图中包含一条回路经过图中每条边一次且仅一次;(2)图中包含一条路经过图中每条边一次且仅一次;(3)图中包含一条回路经过图中每个顶点一次且仅一次;(4)图中包含一条路经过图中每个顶点一次且仅一次。
工商企业管理《高等数学》山东大学网络教育考试模拟题及答案

高等数学一 求下列极限 1 1limsin n n n→∞ = 0 2 求0limx xx→ 解:1lim 0-=-→x x x ,1lim 0=+→x x x ,极限不存在 3 求1lim xx e → 解:0lim 10=-→x x e ,∞=+→xx e 10lim ,极限不存在0sin 4lim sin 5x x x x x →++ 解:原式=3155sin 51sin 1lim0=++→xx x xx 二a 取什么值,0()0x e x f x a x x ⎧<=⎨+≥⎩连续 解:()10=-f ,()10==+a f ,a=1时,连续。
三 计算下列各题1 已知2sin ln y x x =⋅ 求,y 解:x x x x y sin 2ln cos 2+='2 已知 ()()x f x e e f y =,求y ' 解;()()()x f e e e f y x f x x ''=' 23x xe dx⎰求 解:C e dx e dx xe x x x +==⎰⎰22221212四、若202tan()sec x yx x y tdt ---=⎰, 求dydx解:两边求导,()()y x y y x y -'-=-'--22cos 1cos 12, ()y x dxdy --=2cos 1 五、求 x y x y 2,==和2x y =所围平面图形的面积。
解:(草图略)交点:(0,0),(1,1),(1,2),()()67312122213210221210=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=-+-=⎰⎰x x x dx x x dx x x S高等数学一 求下列极限1 1lim cos n n n→∞=02 求22lim2x x x→--解:122lim 22lim 22=--=----→→x x xx x x,()122lim 22lim 22-=---=--++→→xx x x x x ,极限不存在 3 求10lim 2xx → 解:02lim 10=-→xx ,∞⇒+→xx 102lim ,极限不存在.02sin 4lim 3sin x x x x x →++求 解:原式=43sin 31sin 21lim0=++→x x x xx sin 0()00x x f x xx ⎧≠⎪=⎨⎪=⎩二讨论在 x=0 处的连续性解:()001sin lim0=≠=→f xxx ,()x f 在x=0处不连续。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学模拟卷 1 一 求下列极限 1 1
lim sin n n n
→∞=0(有界量乘无穷小量)
2 求0lim x x x →=1lim 1lim {00x -=-=-+
→→x
x
x x x
3 求10
lim x
x e →=0
lim lim {
101
0=∞
=-
+
→→x
x x
x e e
0sin 4
lim
sin 5x x x x x
→++
=
3
1616155sin 5sin lim 55sin 5lim 5sin sin lim sin lim 0000=+=+++=+++→→→→x
x x x x x
x x x x x x x x x x x x x x x x (第一个重要极限)
二
a 取什么值,0
()0x e x f x a x x ⎧<=⎨+≥⎩
连续 答:根据函数在一点处连续的定义,)(lim )(lim 0
x f a x f x x -+→→==,而
)(lim 0
x f x -→=x x e -→0
lim =1
所以 a=1
三 计算下列各题 1
已
知
2sin ln y x x
=⋅ 求
,
y 答:
y ’=2(sinx ·lnx)’=2[(sinx)’(lnx)+(sinx)(lnx)’]
=2cosxlnx+2
x
sinx
2 ()
,()x
f x y f e e y =⋅已知,求
答:由链式法则,()()()
()dx
dy e e f e e e f dx x f x x f x x +⋅=dy 所以()()
()
()
x f x x f x x e
e f e e f y -=+1' 2
3
x xe dx
⎰求
答:
c
e dx e x d e x x x +===⎰⎰2
22
2121222原式
四、若20
2tan()sec x y
x x y tdt ---=
⎰
,求
dy
dx
另x-y=m, y=x-m, 对两边求导数,得到dy/dx = 1 - dm/dx 将y = x-m 带回原式,再两边对x 求导。
可得dm/dx
带回上式可得结果
五 求y x =,2y x =和2
y x =所围平面图形的面积
解
:
31144230142222
232
2
4110=⎪
⎪⎪⎪⎭
⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-⎰⎰y y y y dy y y dy y y
高等数学模拟卷 2 一 求下列极限 1 1
lim
cos n n n
→∞=0
2 求22lim 2x x x →--=2222lim 22lim 22lim 2x x x x x x
x x
x
→→→-⎧⎪-⎪-⎨
--⎪⎪-⎩-+=1
==-1 3 求10
lim 2x x →=1
10
100lim 2lim 2lim 20x x x x x x +-
→→→⎧=∞⎪⎪=⎨⎪=⎪⎩ 0
2sin 4lim
3sin x x x
x x →++求 0
2sin 3
lim
3sin 4
x x x x x →++解
=
sin 0()00
x
x f x x
x ⎧≠⎪=⎨⎪=⎩
二讨论
在 x=0 处的连续性
答:因为f(x)在0点的左右极限都为1,不等于其在0点的函数值,所以
f(x)在0点不连续 三 计算下列各题
1 ,ln[ln(ln )]y x y =求
,1111
.[ln(ln )]..[ln(ln )][ln(ln )]ln y x x x x x
'=
=
2 ,
,y
x
x y y =求
,ln ln .ln .ln 1
.ln ln ..ln ln ln ln y x
x y y x x y
y y x y y x x y
x y y x y y x
y y x y x x y
=='+=+⎛
⎫'-=- ⎪⎝
⎭-
'∴=
-
解:
2
2
20
100
cos lim
sin x x x t dt
x
→-⎰四求
由于分子分母极限都为0,所以可以对分子分母分别求导,
得到
Lim( 2x-2xcosx^4)/10sin^9(x)cosx 再对两边求导
五 求2
25y x =-和4y x =-所围平面图形的面积
{
()()2254
23
233
1
131735113
16422623
y x y x y s y dy y y y
=-=---+=+-=-+=⎰解:
得交点
,-,
六 2
2(1)24dy x xy x dx
++=
222
2
22
2()ln 1122
3
23
2
24(1)(1)(1)
1
()4443()43
1
x dx
p x dx
x x dy xy x x dx x x c y ce ce ce x c x x x D c x x dx x D y x -
--++++=++⎰⎰
==
+'=+==
+∴=+⎰解:两边同除以得
==代入原方程得
高等数学模拟卷3
一 求下列极限
1 1lim
n tgn n
→∞ 解:不存在
2 求lim x a x a x a →--=lim 1lim lim 1x a x a x a x a x a x a a x x a
x a →→→-⎧⎪-⎪-⎨
--⎪=-⎪-⎩
+-== 3 求1
20
lim x
x e
→=1
210
21
20lim lim lim 0x x x
x x x e e
e +-
→→→⎧=∞⎪⎪=⎨⎪=⎪⎩ 00sin 4
lim
lim sin x x mx mx m nx nx n →→==
2
0()0
x x f x x
x >⎧=⎨≤⎩二已知
,讨论f (x )在0x =处的导数
()()()()002
0000lim lim 1
00lim lim 0()0x x x x f x f x
x x
f x f x x
x f x x ∆→∆→∆→∆→+∆-∆==∆∆+∆-∆==∆∆∴=Q +
+--解:在不可导
三 计算下列各题
1、3
,
tan (ln )y x y =已知求
()2
2
1
3tan (ln ).sec ln .y x x x
'=解:
2、2,
()y f x y =已知,求
2().2y f x x ''解: =
四 2
3
2
1()()2a
a x f x dx xf x dx =⎰
⎰证明
,(0)a >,其中()f x 在
讨论的区间连续。
223
2
222
0022
3222
20000
1
()()2
00,111()()()()222a
a
a a a a x f x dx x f x d x x u u x a u a x f x dx x f x d x u f u du xf x dx
=====∴===⎰⎰⎰⎰⎰⎰Q 证明
令=当x 时时,
五 计算反常积分2d ;1x x +∞
-∞+⎰
ππ
π=+⎪⎭⎫ ⎝⎛--=∞++∞-=+++=+⎰⎰⎰∞+∞-∞
+∞-2
20arctan 0arctan 1dx 1dx 1dx 02
022x x x x x 解:
六 求2
(1)(arctan )y dx y x dy +=-的通解
()()
()()()()()22
2
2
1
(arctan ).11.1111.11
111
ln 1(arctan )ln arctan 1y x u u y y u y y
y u y u
u u
du u u du dx dx u u u u x c
y x y x x c
''''-==
-=++++'++'+=
-==-+-=+---=+解:令则则原方程为=
变量分离两边同时积分得:所以原方程的通解为:+
THANKS !!!
致力为企业和个人提供合同协议,策划案计划书,
学习课件等等
打造全网一站式需求
欢迎您的下载,资料仅供参考。