2016高中物理必修二高频考试题型:动能和动能定理资料

合集下载

人教版高中物理必修二动能和动能定理

人教版高中物理必修二动能和动能定理

高中物理学习资料金戈铁骑整理制作动能和动能定理一、单项选择题1.以下关于运动物体所受合外力做功和动能变化的关系,以下说法中正确的选项是()A.若是物体所受合外力为零,则合外力对物体所的功必然为零;B.若是合外力对物体所做的功为零,则合外力必然为零;C.物体在合外力作用下做变速运动,动能必然发生变化;D.物体的动能不变,所受合力必然为零。

2.以下说法正确的选项是()A.某过程中外力的总功大于各力做功的代数之和;B.外力对物体做的总功等于物体动能的变化;C.在物体动能不变的过程中,动能定理不适用;D.动能定理只适用于物体受恒力作用而做加速运动的过程。

3.在圆滑的地板上,用水平拉力分别使两个物体由静止获得相同的动能,那么可以必然(A.水平拉力相等B.两物块质量相等C .两物块速度变化相等D.水平拉力对两物块做功相等)4.质点在恒力作用下从静止开始做直线运动,则此质点任一时辰的动能()A.与它经过的位移s 成反比B.与它经过的位移s 的平方成正比C .与它运动的时间t 成正比D.与它运动的时间的平方成正比5.一子弹以水平速度v 射入一树干中,射入深度为s,设子弹在树中运动所受的摩擦阻力是恒定的,那么子弹以v/2 的速度射入此树干中,射入深度为()A.s B.s/2C .s /2D. s/46.质量为m 的金属块,当初速度为块的质量增加到2m,初速度增大到A.L BC. 4Lv0时,在水平桌面上滑行的最大距离为L,若是将金属2v0,在同一水平面上该金属块最多能滑行的距离为(.2LD.)7.一个人站在天台上,从天台边缘以相同的速率v0,分别把三个质量相同的球竖直上抛、竖直下抛、水平抛出,不计空气阻力,则比较三球落地时的动能()A.上抛球最大B.下抛球最大C.平抛球最大D.三球相同大8.在离地面高为 h 处竖直上抛一质量为 m 的物块,抛出时的速度为 v 0,当它落到地面时速度为 v ,用 g 表示重力加速度,则此过程中物块战胜空气阻力所做的功等于( ) A . mgh1 mv2 1mv 02B. 1 mv 21mv 0 2mgh2222C . mgh1mv 0 2 1 mv 2D . mgh1 mv2 1mv 0 222229.一质量为 1kg 的物体被人用手由静止向上提升 1m ,这时物体的速度为中不正确的选项是( ) A .手对物体做功 12J B.合外力对物体做功 12J C .合外力对物体做功2JD .物体战胜重力做功10J10.物体 A 和 B 叠放在圆滑水平面上 m A =1kg , m B =2kg , B 上作用一个的水平拉力后, A 和 B 一起前进了 4m ,如图 1 所示。

高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)

高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)
【解析】
【分析】
【详解】
(1)由图线2得知,小球的速度先增大,后减小.根据库仑定律得知,小球所受的库仑力逐渐减小,合外力先减小后增大,加速度先减小后增大,则小球沿斜面向上做加速度逐渐减小的加速运动,再沿斜面向上做加速度逐渐增大的减速运动,直至速度为零.
(2)由线1可得:
EP=mgh=mgssinθ
斜率:
高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)
一、高中物理精讲专题测试动能与动能定理
1.如图所示,固定的粗糙弧形轨道下端B点水平,上端A与B点的高度差为h1=0.3 m,倾斜传送带与水平方向的夹角为θ=37°,传送带的上端C点到B点的高度差为h2=0.1125m(传送带传动轮的大小可忽略不计).一质量为m=1 kg的滑块(可看作质点)从轨道的A点由静止滑下,然后从B点抛出,恰好以平行于传送带的速度从C点落到传送带上,传送带逆时针传动,速度大小为v=0.5 m/s,滑块与传送带间的动摩擦因数为μ=0.8,且传送带足够长,滑块运动过程中空气阻力忽略不计,g=10 m/s2,试求:

由功能关系可得:
(另解:两个过程A球发生的位移分别为 、 , ,由匀变速规律推论 ,根据电场力做功公式有: )
(3)对A球由平衡条件得到: , ,
从A开始运动到发生第一次碰撞:
从第一次碰撞到发生第二次碰撞:
点睛:本题是电场相关知识与动量守恒定律的综合,虽然A球受电场力,但碰撞的内力远大于内力,则碰撞前后动量仍然守恒.由于两球的质量相等则弹性碰撞后交换速度.那么A球第一次碰后从速度为零继续做匀加速直线运动,直到发生第二次碰撞.题设过程只是发生第二次碰撞之前的相关过程,有涉及第二次以后碰撞,当然问题变得简单些.
所以
B到C根据动能定理有

高中物理必修二动能和动能定理

高中物理必修二动能和动能定理

1 2 Ek mv 2 二、动能定理
一、动能
W总 Ek 2 Ek1
思考:
根据动能定理 W总
Ek 2 Ek1得
1 2 Fl kmgl mv 0 2
F 1.8 10 N
4
例:一辆质量为m、速度为V0的汽车,关闭发 动机后在水平地面上滑行了距离L后停下来。 试求汽车受到的阻力。
根据动能定理
1 2 fl 0 mv 0 22
m v0 f 2l
解得:
利用动能定理解题思路:
1、明确研究对象并锁定过程
2、分析研究对象的受力情况和各力做功情况 并求出各外力做功代数和,即 W

3、明确物体在过程始末状态的动能 4、列出动能定理方程 进行求解
Ek1和 Ek 2
W总 Ek 2 Ek1
练习:如图所示,从离地面H高处由静止释放一小球, 小球在运动过程中所受的空气阻力大小是它重力的k倍, 小球与地面相碰后,能以相同的速率反弹,已知重力 加速度为g.求: (1)小球第一次与地面相碰后,能够反弹的最大高度h; (2)小球从释放开始,直至停止弹跳通过的总路程s.
重力势能

弹性势能
动能
一、动能
1.定义:物体由于运动而具有的能量
2.表达式:
例:质量为m物块在光滑的水平面上以V1匀速 运动,某时刻施加一与运动方向相同的恒力F, 运动一段距离后,测得该物块的速度为V2。 求在这一过程中合外力做的总功?
v1
F
v2
L
ห้องสมุดไป่ตู้1
L
v2
F
根据牛顿第二定律: F = m a 根据运动学公式: V22-V12=2aL 把F、L的表达式代入W=FL,即:

高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)含解析

高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)含解析

高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试动能与动能定理1.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求:(1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ; (2)水平轨道CD 段的长度L ;(3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离. 【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处 【解析】 【分析】 【详解】(1)在B 点时有v B =cos60︒v ,得v B =6m/s (2)从B 点到E 点有2102B mgh mgL mgH mv μ--=-,得L =6.5m (3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处有21'202B mgh mgh mg L mv μ--⋅=-,得h ′=1.2m<h =2 m ,故第一次返回时,运动员不能回到B 点,从B 点运动到停止,在CD 段的总路程为s ,由动能定理可得2102B mgh mgs mv μ-=-,得s =19m ,s =2L +6 m ,故运动员最后停在C 点右侧6m 处.2.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。

人教版高中物理必修二动能及动能定理

人教版高中物理必修二动能及动能定理

动能及动能定理题型一1.关于运动物体所受的合力、合力的功、运动物体动能的变化,下列说法正确的是( )A.运动物体所受的合力不为零,合力必做功,则物体的动能一定要变化B.运动物体所受的合力为零,物体的动能一定不变C.运动物体的动能保持不变,则该物体所受合力一定为零D.运动物体所受合力不为零,则该物体一定做变速运动2.质量不同而具有相同动能的两个物体,在动摩擦因数相同的水平面上滑行到停止,则( )A.质量大的滑行的距离大B.质量大的滑行的时间短C.它们滑行的时间一样大D.它们克服阻力做的功一样大题型二3.如图所示,小球以初速度v 0从A 点沿不光滑的轨道运动到高为h 的B 点后自动返回,其返回途中仍经过A 点,则经过A 点的速度大小为 ( ) A.v 02-4gh B.4gh -v 02C.v 02-2ghD.2gh -v 024.质量为m 的汽车在平直公路上以速度v 0开始加速行驶,经过时间t 前进距离s 后,速度达到最大值v m ,设在这个过程中汽车发动机的功率恒定为P 0,阻力为f 0,则在这段时间t ,汽车发动机所做的功是:( )A. P 0tB. f 0v m tC. F 0SD. (1/2)mv 2m +f 0s -(1/2)mv 205.如图所示,质量相同的物体分别自斜面AC 和BC 的顶端由静止开始下滑,物体与斜面间的动摩擦因数都相同,物体滑到斜面底部C 点时的动能分别为E k1和E k2,下滑过程中克服摩擦力所做的功分别为W 1和W 2,则 ( )A .E k1>E k2 W 1<W 2B .E k1>E k2 W 1=W 2C .E k1=E k2 W 1>W 2D .E k1<E k2 W 1>W 2题型三5.物体以100J 的初动能从斜面底端沿斜面向上运动,当它向上通过斜面上某一点M 时,其动能减少了80J ,克服摩擦力做功32J ,则物体返回到斜面底端时的动能为( )A .20J ;B .48J ;C .60J ;D .68J 。

高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)含解析

高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)含解析
(2)等离子体由下方进入区域I后,在洛伦兹力的作用下偏转,当粒子受到的电场力等于洛伦兹力时,形成稳定的匀强电场,设等离子体的电荷量为q´,则q´E=q´v1B1,即:E=B1v1;正离子束经过区域I加速后,离开PQ的速度大小为v3,根据动能定理可知:qU= mv32- mv22,其中电压U=Ed=B1v1d
【解析】
【分析】
【详解】
(1)由图线2得知,小球的速度先增大,后减小.根据库仑定律得知,小球所受的库仑力逐渐减小,合外力先减小后增大,加速度先减小后增大,则小球沿斜面向上做加速度逐渐减小的加速运动,再沿斜面向上做加速度逐渐增大的减速运动,直至速度为零.
(2)由线1可得:
EP=mgh=mgssinθ
斜率:
联立可得:v3= 。
(3)飞船方向调整前后,其速度合成矢量如图所示:
因此tan = ,离子喷出过程中,系统的动量守恒:M v=Nmv3,为了使飞船回到预定的飞行方向,离子推进器喷射出的粒子数N=
9.一质量为m=0.5kg的电动玩具车,从倾角为 =30°的长直轨道底端,由静止开始沿轨道向上运动,4s末功率达到最大值,之后保持该功率不变继续运动,运动的v-t图象如图所示,其中AB段为曲线,其他部分为直线.已知玩具车运动过程中所受摩擦阻力恒为自身重力的0.3倍,空气阻力不计.取重力加速度g=10m/s2.
(1)求在A处的正离子的速度大小v2;
(2)正离子经过区域I加速后,离开PQ的速度大小v3;
(3)在第(2)问中,假设航天器的总质量为M,正在以速度v沿MP方向运动,已知现在的运动方向与预定方向MN成 角,如图所示。为了使飞船回到预定的飞行方向MN,飞船启用推进器进行调整。如果沿垂直于飞船速度v的方向进行推进,且推进器工作时间极短,为了使飞船回到预定的飞行方向,离子推进器喷射出的粒子数N为多少?

高一物理必修二知识点总结动能和动能定理

高一物理必修二知识点总结动能和动能定理

高一物理必修二知识点总结动能和动能定理一、动能如果一个物体能对外做功,我们就说这个物体具有能量。

物体由于运动而具有的能。

Ek=mv2其大小与参照系的选取有关。

动能是描述物体运动状态的物理量。

是相对量。

二、动能定理做功可以改变物体的能量。

所有外力对物体做的总功等于物体动能的增量。

W1+W2+W3+=mvt2—mv021、反映了物体动能的变化与引起变化的原因力对物体所做功之间的因果关系。

可以理解为外力对物体做功等于物体动能增加,物体克服外力做功等于物体动能的减小。

所以正功是加号,负功是减号。

2、增量是末动能减初动能。

EK0表示动能增加,EK0表示动能减小。

3、动能定理适用单个物体,对于物体系统尤其是具有相对运动的物体系统不能盲目的应用动能定理。

由于此时内力的功也可引起物体动能向其他形式能(比如内能)的转化。

在动能定理中。

总功指各外力对物体做功的代数和。

这里我们所说的外力包括重力、弹力、摩擦力、电场力等。

4、各力位移相同时,可求合外力做的功,各力位移不同时,分别求力做功,然后求代数和。

5、力的***作用原理使我们有了牛顿第二定律、动量定理、动量守恒定律的分量表达式。

但动能定理是标量式。

功和动能都是标量,不能利用矢量法则分解。

故动能定理无分量式。

在处理一些问题时,可在其中一方向应用动能定理。

6、动能定理的表达式是在物体受恒力作用且做直线运动的情况下得出的。

但它也适用于变为及物体作曲线运动的情况。

即动能定理对恒力、变力做功都适用;直线运动与曲线运动也均适用。

7、对动能定理中的位移与速度必须相对同一参照物。

1.能量:一个物体能够做功,我们就说它具有能量.物体能够做的功越多,则该物体的能量就越大.2.动能和势能:运动的物体能够做功,它由于运动具有的能量叫动能;物体的运动速度越大,物体的质量越大,物体的动能就越大.物体由于被举高或发生弹性形变所具有的能叫势能,前者称为重力势能,后者称为弹性势能.物体的质量越大,被举得越高,它具有的重力势能就越大.物体发生弹性形变越大,它具有的弹性势能就越大.3.机械能:动能和势能统称为机械能.机械能是种常见的能量形式,一个物体通常具有动能和势能,它们的总和就是该物体的机械能.4.能量的单位:因为物体能量的多少是通过其能够做功的多少表示和定义的,所以能量的单位应当与功的单位相同,也是焦耳(J).动能1、定义:物体由于运动而具有的能,叫做动能。

高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)及解析

高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)及解析

高中物理动能与动能定理常有题型及答题技巧及练习题( 含答案 ) 及分析 (1)一、高中物理精讲专题测试动能与动能定理1.以下图,两物块A、 B 并排静置于高h=0.80m 的圆滑水平桌面上,物块的质量均为M=0.60kg .一颗质量m=0.10kg的子弹 C 以v0=100m/s的水平速度从左面射入A,子弹射穿A 后接着射入 B 并留在 B 中,此时A、 B 都没有走开桌面.已知物块 A 的长度为0.27m, A 走开桌面后,落地址到桌边的水平距离s=2.0m.设子弹在物块A、 B 中穿行时遇到的阻力大小相等,g 取10m/s 2. (平抛过程中物块当作质点)求:(1)物块 A 和物块 B 走开桌面时速度的大小分别是多少;(2)子弹在物块 B 中打入的深度;(3)若使子弹在物块 B 中穿行时物块 B 未走开桌面,则物块 B 到桌边的最小初始距离.【答案】( 1) 5m/s ;10m/s ;( 2)L B 3.5 10 2 m (3)2.5 102m【分析】【剖析】【详解】试题剖析: (1)子弹射穿物块 A 后, A 以速度 v A沿桌面水平向右匀速运动,走开桌面后做平抛运动:h 1gt 2解得:t=0.40s 2A 走开桌边的速度v A s,解得: v A=5.0m/s t设子弹射入物块 B 后,子弹与 B 的共同速度为v B,子弹与两物块作用过程系统动量守恒:mv0 Mv A ( M m)v BB 走开桌边的速度v =10m/sB(2)设子弹走开 A 时的速度为v1,子弹与物块 A 作用过程系统动量守恒:mv0mv12Mv Av1=40m/s子弹在物块 B 中穿行的过程中,由能量守恒fL 1Mv21 mv21(M m)v2①B2A212B 子弹在物块 A 中穿行的过程中,由能量守恒fL A 1mv021mv121( M M )v A2②222由①② 解得 L B 3.5 10 2 m(3)子弹在物块A 中穿行过程中,物块A 在水平桌面上的位移为s 1,由动能定理:fs1(MM )v 2 0 ③1 2A子弹在物块 B 中穿行过程中,物块 B 在水平桌面上的位移为s 2,由动能定理fs 21Mv B21Mv A 2 ④22由②③④解得物块 B 到桌边的最小距离为: s min s 1 s 2 ,解得: s min2.5 10 2 m考点:平抛运动;动量守恒定律;能量守恒定律.2. 以下图,在娱乐节目中,一质量为 m =60 kg 的选手以 v 0= 7 m/s 的水平速度抓住竖直绳下端的抓手开始摇动,当绳摆到与竖直方向夹角 θ= 37°时,选手松开抓手,放手后的上升过程中选手水平速度保持不变,运动到水平传递带左端A 时速度恰巧水平,并在传递带上滑行,传递带以 v =2 m/s 匀速向右运动.已知绳索的悬挂点到抓手的距离为 L = 6 m ,传 送带两头点 A 、B 间的距离 s = 7 m ,选手与传递带间的动摩擦因数为μ= 0.2 ,若把选手看成质点,且不考虑空气阻力和绳的质量.(g = 10 m/s 2, sin 37 = 0°.6, cos 37 =°0.8)求:(1)选手松开抓手时的速度大小; (2)选手在传递带上从A 运动到B 的时间;(3)选手在传递带上战胜摩擦力做的功. 【答案】 (1)5 m/s (2)3 s (3)360 J【分析】试题剖析:( 1)设选手松开抓手时的速度为 v 1,则- mg (L - Lcos θ)= mv 12 - mv 0 2,v 1= 5m/s(2)设选手松开抓手时的水平速度为 v 2, v 2= v 1cos θ①选手在传递带上减速过程中a =- μg ② v = v 2+ at 1③④匀速运动的时间 t 2, s - x 1= vt 2⑤选手在传递带上的运动时间 t = t 1+ t 2⑥联立 ①②③④⑤⑥ 得: t = 3s(3)由动能定理得W f = mv 2- mv 22,解得: W f =- 360J故战胜摩擦力做功为360J .考点:动能定理的应用3.以下图,竖直平面内有一固定的圆滑轨道ABCD AB是足够长的水平轨道,B端,此中与半径为 R 的圆滑半圆轨道 BCD 光滑相切连结,半圆的直径BD 竖直, C 点与圆心 O 等高.现有一质量为 m 的小球 Q 静止在 B 点,另一质量为 2m 的小球 P 沿轨道 AB 向右匀速运动并与Q 发生对心碰撞,碰撞后瞬时小球 Q 对半圆轨道 B 点的压力大小为自己重力的 7 倍,碰撞后小球P 恰巧抵达 C 点.重力加快度为 g.(1)求碰撞前小球P 的速度大小;(2)求小球Q 走开半圆轨道后落回水平面上的地点与 B 点之间的距离;(3)若只调理圆滑半圆轨道 BCD半径大小,求小球 Q 走开半圆轨道 D 点后落回水平面上的地点与 B 点之间的距离最大时,所对应的轨道半径是多少?【答案】(1)(2)(3)【分析】【剖析】【详解】设小球 Q 在 B 处的支持力为;碰后小球 Q 的速度为,小球 P 的速度为;碰前小球 P 的速度为;小球 Q 抵达 D 点的速度为 .(1)由牛顿第三定律得小球Q 在 B 点碰后小球Q 在 B 点由牛顿第二定律得:碰后小球P 恰巧到 C 点,由动能定理得:P、Q 对心碰撞,由动量守恒得:联立解得 :(2)小球 Q 从 B 到 D 的过程中,由动能定理得:解得,所以小球Q 能够抵达 D 点由平抛运动规律有:联立解得(3)联立解得 :当时 x 有最大值所以【点睛】解决此题时要抓住弹簧的形变量相等时弹性势能相等这一隐含的条件,正确剖析能量是怎样转变,分段运用能量守恒定律列式是重点.4.以下图,斜面高为h,水平面上D、C 两点距离为L。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016高中物理必修二高频考试题型:动能和动能定理1.两个物体质量比为1:4,速度大小之比为4:1,则这两个物体的动能之比为()A.1:1 B.1:4C.4:1 D.2:1解析由动能的表达式E k=12m v2可知C选项正确.答案 C2.质量为2kg的物体A以5m/s的速度向北运动,另一个质量为0.5kg的物体B以10m/s的速度向西运动,则下列说法正确的是()A.E k A=E k BB.E k A>E k BC.E k A<E k BD.因运动方向不同,无法比较动能解析动能是标量,没有方向,将各量代入E k=12m v2的表达式,可知A选项正确.答案 A3.如图所示,D、E、F、G为地面上距离相等的四点,三个质量相同的小球A、B、C分别在E、F、G的正上方不同高度处,以相同的水平初速度向左抛出,最后均落到D点.若不计空气阻力,则可判断A、B、C三个小球()A.在空中运动时间之比为1:3:5B.初始离地面的高度之比为1:3:5C.在空中运动过程中重力的平均功率之比为1:2:3D.从抛出到落地过程中,动能的变化量之比为1:2:3解析设小球水平抛出的速度为v,抛出时的高度分别为h A,h B,h C,由题意可知:x C=3l,x B=2l,x A=l,由于小球做平抛运动,水平位移x=v·t,得t A:t B:t C=1:2:3,根据h=12gt2,可得hA:h B:h C=1:4:9,所以选项A、B错误;在小球落到D点的过程中,W A:W B:W C=1:4:9,则P A:P B:P C=1:2:3,选项C正确;由动能定理可知,小球从抛出到落地的动能变化之比等于重力做功之比,故ΔE k A:ΔE k B:ΔE k C=1:4:9,选项D错误.答案 C4.有两个物体a和b,其质量分别为m a和m b,且m a>m b,它们的动能相同,若a 和b 分别受到不变的阻力F a 和F b 的作用,经过相同的时间停下来,它们的位移分别为s a 和s b ,则( )A .F a >F b 且s a <s bB .F a >F b 且s a >s bC .F a <F b 且s a >s bD .F a <F b 且s a <s b解析 由题意知:12m a v 2a =12m b v 2b ,由于m a >m b ,所以v a <v b ,两者在相同时间内停下来,考虑到s a =v a +02t , s b =v b +02t ,故得到s a <s b .由动能定理-Fs =0-E k 知F =E k /s ,所以F a >F b .答案 A5.一人用力踢质量为1kg 的皮球,使球由静止以10m/s 的速度飞出,假定人踢球的平均作用力是200 N ,球在水平方向运动了20m 停止,那么人对球所做的功为( )A .50 JB .500 JC .4 000 JD .无法确定解析 由动能定理得,人对球做的功W =12m v 2-0=50J ,故A 选项正确.答案 A6.一人用力把质量为1kg 的物体由静止向上提高1m ,使物体获得2m/s 的速度,则( )A .人对物体做的功为12JB .合外力对物体做的功为2JC .合外力对物体做的功为12JD .物体克服重力做的功为10J解析 由动能定理得W 人-mgh =12m v 2-0,人对物体做的功为W 人=mgh +12m v 2=1×10×1J +12×1×22 J =12J ,故A 项对;合外力做的功W 合=12m v 2=2J ,故B 项对,C 项错;物体克服重力做功为mgh =10J ,D 项对.答案 ABD7.质量为M 的木块放在光滑的水平面上,质量为m 的子弹以速度v 0沿水平方向射中木块并最终留在木块中与木块一起以速度v 运动.当子弹进入木块的深度为s 时相对木块静止,这时木块前进的距离为L .若木块对子弹的阻力大小F 视为恒定,下列关系正确的是( )A .FL =M v 2/2B .Fs =m v 2/2C .Fs =m v 20/2-(m +M )v 2/2D .F (L +s )=m v 20/2-m v 2/2解析 由动能定理得:-F (L +s )=12m v 2-12m v 20,FL =12M v 2,故Fs =m v 202-(M +m )2v 2,故A 、C 、D 项正确. 答案 ACD8.一质点开始时做匀速直线运动,从某时刻起受到一恒力作用,此后,该质点的动能( )A.一直增大B.先逐渐减小,再逐渐增大C.先逐渐增大至某一最大值,再逐渐减小D.先逐渐减小至某一非零的最小值,再逐渐增大解析如果物体所受恒力与原速度相同或速度方向与恒力方向成锐角,力对物体始终做正功,则物体动能始终增加,故A选项正确;若恒力与速度方向相反或速度方向与力的方向的夹角大于90°,则恒力先做负功再做正功,动能先减小后增大,若速度与恒力的夹角为钝角,则物体的动能不能减小到零,然后动能逐渐增加,故B、D 选项正确;物体的动能先增大再减小这种情况不存在,故C选项错误.答案ABD9.一个物体从斜面底端冲上足够长的斜面后又返回到斜面底端,已知物体的初动能为E,它返回到斜面底端的速度为v,克服摩擦力做功为E/2,若物体以2E的初动能冲上斜面,则有() A.返回斜面底端时的速度大小为2vB.返回斜面底端时的动能为EC.返回斜面底端时的动能为3E 2D.物体两次往返克服摩擦力做功相同解析由题意可知,第二次初动能是第一次的2倍,两次上滑加速度相同,据推导公式可得s2=2s1,则W f2=2W f1=E,回到底端时动能也为E ,从而推知返回底端时的速度大小为2v .答案 AB10.如图所示,质量为m 的物体静止放在水平光滑的平台上,系在物体上的绳子跨过光滑的定滑轮由地面以速度v 向右匀速走动的人拉着.设人从地面上平台的边缘开始向右行至绳和水平方向成30°角处,在此过程中人所做的功为( )A.m v 22B .m v 2 C.2m v 23 D.3m v 28解析 人的速度为v ,人在平台边缘时绳子上的速度为零,则物体速度为零,当人走到绳子与水平方向夹角为30°时,绳子的速度为v ·cos30°.据动能定理,得W =ΔE k =12m (v cos30°)2-0=12m v 2⎝ ⎛⎭⎪⎫322=38m v 2.答案 D11.质量为1 500kg 的汽车在平直的公路上运动,v -t 图象如图所示.由此可求( )A.前25s内汽车的平均速度B.前10s内汽车的加速度C.前10s内汽车所受的阻力D.15~25s内合外力对汽车所做的功解析在v-t图象中图线与坐标轴围成的面积,表示位移.因此只要能求得位移大小,根据v-=xt,即可求出平均速度,故A选项正确;前10 s汽车做匀加速直线运动,由a=ΔvΔt,可求得加速度,故B选项正确;由牛顿第二定律F-F阻=ma,因不知牵引力F,故无法求得阻力F阻,C选项错误;由动能定理,可求得15 s~25 s内合外力所做的功,故D选项正确.答案ABD12.一艘由三个推力相等的发动机驱动的气垫船,在湖面上由静止开始加速前进l距离后关掉一个发动机,气垫船匀速运动,将到码头时,又关掉两个发动机,最后恰好停在码头上,设水给船的阻力大小不变,若船由静止加速前进l距离后三个发动机全部关闭,船通过的距离为多少? 解析 设每个发动机提供的推力为F .由题意可知水的阻力f =2F ;加速前进时有(3F -f )l =12m v 2 三个发动机都关闭时fl ′=12m v 2 解得l ′=l 2. 答案 l /213.质量为m 的物体以速度3v 0竖直向上抛出,物体落回原处时速度大小为3v 0/4,求:(1)物体运动中所受的平均空气阻力;(2)物体以初速2v 0竖直向上抛出时的最大高度.(设空气阻力大小不变)解析 (1)设平均空气阻力为f .上升时mgh +fh =12m (3v 0)2 对全程-2fh =12m ⎝ ⎛⎭⎪⎫34v 02-12m (3v 0)2 由以上两式可解得f =1517mg . (2)fH +mgH =12m (2v 0)2 解得所求最大高度H =17v 2016g. 答案 (1)1517mg(2)17v 2016g 14.如图所示,物块m 从高为h 的斜面上滑下,又在同样材料的水平面上滑行s 后静止.已知斜面倾角为θ,物块由斜面到水平面时圆滑过渡,求物块与接触面间的动摩擦因数.解析 物体在斜面上下滑时摩擦力做负功,重力做正功,动能增加,在水平面上滑行时只有摩擦力做负功,最后减速到零,全过程动能变化量为零,可在全过程中应用动能定理求解.在全过程中应用动能定理,有mgh -⎝ ⎛⎭⎪⎫μmg cos θ·h sin θ+μmgs =0. 解得 μ=h h cot θ+s. 答案 h h cot θ+s15.如图所示,AB 与CD 为两个对称斜面,其上部足够长,下部分别与一个光滑的圆弧面的两端相切,圆弧圆心角为120°,半径R 为2.0m ,一个物体在离弧底E 高度为h =3.0m 处,以初速4.0m/s 沿斜面运动.若物体与两斜面间的动摩擦因数为0.02,则物体在两斜面上(不包括圆弧部分)一共能走多长路程?(取g=10m/s2)解析斜面的倾角为θ=60°,由于物体在斜面上所受到的滑动摩擦力小于重力沿斜面的分力(μmg cos60°<mg sin60°),所以物体不能停留在斜面上,物体在斜面上滑动时,由于摩擦力做功,使物体的机械能逐渐减小,物体滑到斜面上的高度逐渐降低,直到物体再也滑不到斜面上为止,最终物体将在B、C间往复运动.设物体在斜面上运动的总路程为s,则摩擦力所做的总功为-μmgs cos60°,末状态选为B(或C),此时物体速度为零,对全过程由动能定理得mg[h-R(1-cos60°)]-μsmg cos60°=0-12m v2.物体在斜面上通过的总路程为s=2g⎝⎛⎭⎪⎫h-12R+v2μg=2×10×(3.0-1.0)+4.020.02×10m=280m.答案280m16.过山车是游乐场中常见的设施.如图所示是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B、C、D分别是三个圆形轨道的最低点,B、C间距与C、D间距相等,半径R1=2.0m,R2=1.4m.一个质量为m=1.0kg的小球(视为质点),从轨道的左侧A点以v0=12.0m/s的初速度沿轨道向右运动,A、B 间距离L1=6.0m.小球与水平轨道间的动摩擦因数μ=0.2,圆形轨道是光滑的.假设水平轨道足够长,圆形轨道间不相互重叠.重力加速度取g=10m/s2,计算结果保留小数点后一位数字.试求:(1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小;(2)如果小球恰能通过第二个圆形轨道,B、C间距L应是多少;(3)在满足(2)的条件下,如果要使小球不脱离轨道,在第三个圆形轨道的设计中,半径R3应满足的条件;小球最终停留点与起点A 的距离.解析(1)设小球经过第一个圆轨道的最高点时的速度为v1,根据动能定理-μmgL 1-2mgR 1=12m v 21-12m v 20 小球在最高点受到重力mg 和轨道对它的作用力F ,根据牛顿第二定律F +mg =m v 21R 1联立以上两式解得F =10.0 N.(2)设小球在第二个圆轨最高点时的速度为v 2,由题意mg =m v 22R 2, -μmg (L 1+L )-2mgR 2=12m v 22-12m v 20 联立以上两式解得L =12.5m.(3)要保证小球不脱离轨道,可分两种临界情况进行讨论:①轨道半径较小时,小球恰能通过第三个圆轨道,设在最高点时的速度为v 3,应满足mg =m v 23R 3, -μmg (L 1+2L )-2mgR 3=12m v 23-12m v 20 联立以上两式并代入L =12.5m解得R 3=0.4m.②轨道半径较大时,小球上升的最大高度为R 3,根据动能定理-μm g (L 1+2L )-mgR 3=0-12m v 20解得R 3=1.0m.为了保证圆轨道不重叠,如下图所示,R3最大值应满足(R2+R3)2=L2+(R3-R2)2解得R3=27.9m综合①②,要使小球不脱离轨道,则第三个圆轨道的半径必须满足下面的条件0<R3≤0.4m或1.0m≤R3≤27.9m(若写成“1.0m≤R3<27.9m”也可)当0<R3≤0.4m时,小球最终停留点与起点A的距离为L′,则-μmgL′=0-12m v2解得L′=36.0m当1.0m≤R3≤27.9m时,小球最终停留点与起点A的距离为L″,则L″=L′-2(L′-L1-2L)=26.0m.答案(1)10.0 N(2)12.5m(3)见解析。

相关文档
最新文档