《指数函数及其性质》
高中数学《指数函数及其性质》教案

高中数学《指数函数及其性质》精品教案一、教学目标1. 让学生理解指数函数的定义,掌握指数函数的性质。
2. 培养学生运用指数函数解决实际问题的能力。
3. 提高学生对数学知识的探究和运用能力。
二、教学内容1. 指数函数的定义与表达式2. 指数函数的单调性3. 指数函数的奇偶性4. 指数函数的图像与性质5. 实际问题中的指数函数应用三、教学重点与难点1. 重点:指数函数的定义、性质及其应用。
2. 难点:指数函数图像的特点,以及如何运用指数函数解决实际问题。
四、教学方法1. 采用问题驱动的教学方法,引导学生探究指数函数的性质。
2. 利用数形结合的方法,让学生直观地理解指数函数的图像与性质。
3. 通过实际问题的引入,培养学生的应用能力。
五、教学过程1. 导入:回顾初中阶段学习的指数知识,引发学生对指数函数的好奇心。
2. 新课讲解:介绍指数函数的定义、表达式,分析指数函数的单调性和奇偶性。
3. 案例分析:分析实际问题中的指数函数应用,让学生体会数学与生活的联系。
4. 课堂练习:设计相关练习题,巩固学生对指数函数的理解。
教案仅供参考,具体实施时可根据学生实际情况进行调整。
六、教学评价1. 通过课堂提问、练习题和课后作业,评估学生对指数函数定义、性质的理解程度。
2. 观察学生在解决问题时的思维过程,评价其运用指数函数解决实际问题的能力。
3. 鼓励学生参与课堂讨论,评价其合作交流和探究能力。
七、教学资源1. 教材:高中数学教材相关章节。
2. 课件:制作精美的课件,辅助讲解指数函数的性质。
3. 练习题:设计具有梯度的练习题,巩固学生对指数函数的理解。
4. 实际问题:收集与生活相关的指数问题,激发学生的学习兴趣。
八、教学进度安排1. 第1-2课时:讲解指数函数的定义与表达式,分析单调性和奇偶性。
2. 第3课时:探讨指数函数的图像与性质。
3. 第4课时:分析实际问题中的指数函数应用。
九、课后作业1. 复习指数函数的定义、性质及其图像。
指数函数及其性质

研究初等函数性质的基本方法和 步骤:1、画出函数图象
2、研究函数性质
①定义域 ②值域 ③单调性 ④奇偶性 ⑤其它
画函数图象通常采用:列表、描点、连线.有时,也可以利用函数的
有关性质画图.
指数函数的图象和性质:
在同一坐列表如下:
y 1 x 2
x -3 -2 -1
指数函数及其性质
情景 2:某种机器设备每年按 6% 的折旧率折旧,设机器的原来价值为 1,经过 x 年后,机 器的价值为原来的 y 倍,则 y 与 x 的关系为 y 0.94 x .
问题 1:你能从以上的两个例子中得到的关系式里找到什么异同点吗?
➢指数幂形式 ➢自变量在指数位置 ➢底数是常量
• 一、指数函数的定义
• 一般地,函数y=___a_x__(a>0,且a≠1)叫做指数函数,其中
x是_自__变__量_. 指数函数y=ax(a>0,且a≠1)的结构特征: • (1)底数:大于零且不等于1的常数; • (2)指数:仅有自变量x; • (3)系数:ax的系数是1.
问题2:为什么要规定a>0,且a 1呢?
2 x 0.13 0.25 0.5
1
x
8
4
2
2
- 0.5 0 0.71 1
1.4 1
0.5 1 2 3 1.4 2 4 8
0.71 0.5 0.25 0.13
y 2x
y 1 x
88
2
77
66
55
44
gx = 0.5x 33
22
11
--66
--44
--22
fx = 2x
22
44
66
• 2.指数函数的图象和性质 • 指数函数的图象和性质如下表所示:
高中数学《指数函数及其性质》教案

高中数学《指数函数及其性质》精品教案一、教学目标:1. 让学生理解指数函数的定义,掌握指数函数的表达式和基本的运算规则。
2. 让学生理解指数函数的性质,包括单调性、奇偶性、周期性等,并能运用这些性质解决实际问题。
3. 培养学生的逻辑思维能力和数学素养,提高学生解决数学问题的能力。
二、教学内容:1. 指数函数的定义与表达式2. 指数函数的运算规则3. 指数函数的单调性4. 指数函数的奇偶性5. 指数函数的周期性三、教学重点与难点:1. 教学重点:指数函数的定义、表达式、运算规则、单调性、奇偶性和周期性。
2. 教学难点:指数函数的单调性和周期性的证明及应用。
四、教学方法:1. 采用问题驱动的教学方法,引导学生主动探究指数函数的性质。
2. 利用多媒体课件,直观展示指数函数的图像,帮助学生理解指数函数的性质。
3. 运用例题讲解,让学生在实践中掌握指数函数的性质及应用。
4. 组织小组讨论,培养学生团队合作精神和沟通能力。
五、教学过程:1. 导入:通过回顾幂函数的知识,引导学生思考指数函数的定义和表达式。
2. 新课讲解:讲解指数函数的定义、表达式和运算规则,通过示例让学生掌握基本的运算方法。
3. 性质探究:引导学生自主探究指数函数的单调性、奇偶性和周期性,并提供相应的证明。
4. 应用练习:布置一些具有代表性的练习题,让学生运用指数函数的性质解决问题。
5. 课堂小结:对本节课的主要内容进行总结,强调指数函数的性质及其应用。
6. 课后作业:布置一些巩固知识的作业,让学生进一步掌握指数函数的性质。
六、教学目标:1. 让学生理解指数函数的图像特征,包括增长速度和渐近行为。
2. 培养学生运用指数函数模型解决实际问题的能力。
3. 提高学生对数学知识的应用能力和创新思维。
七、教学内容:1. 指数函数的图像特征2. 指数函数的增长速度3. 指数函数的渐近行为4. 实际问题中的指数函数模型八、教学重点与难点:1. 教学重点:指数函数的图像特征、增长速度和渐近行为。
指数函数及其性质

y
图
ya (a 1)
x
y
y ax (0 a 1)
象
y 1
(0,1)
o
x
o
(0,1)
当 x < 0 时,y > 1; 当 x > 0 时, 0< y < 1。
x
相 同
(1)定 : , 义域
(2)值域 :
0,
没有最值 没有奇偶性
性 质
点
(3)过 ( 0, , x 0时, y 1 点 1) 当
即: a 3 a 3
1 3
f x ( ) f 0 1
0 0 3
1 3 x
x 3
f 1
1
1 3
f 3
3 3
1
截止到1999年底,我国人口约13亿。如果今 后能将人口年平均增长率控制在1%,那么经 过20年后,我国人口数最多为多少(精确到 16亿 亿)?
∴ 0.8 0.1 <
0.8 0.2
(1) 1.72.5 , 1.73 (2)0.8-0.1, 0.8-0.2 解(1)底数都是1.7 , 故考查指数函数 f x 1.7 x 1.7 2.5 与1.73 可以看作函数f x 1.7 x的两个不同函数值
(1)两个同底的指数幂比较大小,可运用以该底数为底的指 数函数的单调性,转化为比较指数的大小
③ ④
3
0.9
.
0.8
0.9
( )
1 0.5 6
.
( )
1 0.5 2
指数相同, 底数不同时, 利用函数图象求解。
y
y 0.8
高中数学必修一《指数函数及其性质》PPT课件

②若函数f(x)=(2a-1)x是指数函数,则实数a 的取值范围是什么?
1
由题可得2a-1>0且2a-1≠1, 解得a> 2 且a≠1满足题意。
③已知指数函数f(x)的图象经过点(2,9), 则f(0)、 f(1)、 f(-2)的值分别为多少?
设这f种(x)求=a解x(析a式>0方且法a≠叫1)做,由待f(定2)=系9得数a法2=。9,解得a=3
例2.在同一直角坐标系中,观察函数 y 2 x , y 3x ,
y
(1)x 2
,
y
(1)x 3
y
的图象。
y
1
x
yy
3
3x
y
1 2
x
4
3
y 2x
2
1
-3 -2 -1
01
23
x
-1
指数函数图象的性质
y=ax 图象
a >1
y
0<a<1
y
定义域 值域 定点
o
x
ox
(--∞,+∞) (左右无限延伸)
-1 2 2、若函数 y (k 2)a x 2 b(a 0,且a 1) 是指数函数,则 k
,b
。
3、若指数函数的图象经过点 (4, 1 ), 则 f (3)
8
16
(3,4) 4、函数 y a x3 3(a 0,且a 1) 的图象恒经过定点
。
课堂小结
1.说说指数函数的概念。 2.记住指数函数图象和性质。
特别提醒:
(1) 有些函数貌似指数函数,实际上却不是, 如 y 3x 1
指数函数及其性质教案

“指数函数及其性质教案”教学目标:1. 理解指数函数的定义和表达形式;2. 掌握指数函数的性质,包括单调性、奇偶性和周期性;3. 能够应用指数函数的性质解决实际问题。
教学内容:一、指数函数的定义与表达形式1. 引入指数函数的概念;2. 介绍指数函数的一般形式;3. 解释指数函数的参数含义。
二、指数函数的单调性1. 探讨指数函数的单调性;2. 证明指数函数的单调性;3. 应用指数函数的单调性解决实际问题。
三、指数函数的奇偶性1. 探讨指数函数的奇偶性;2. 证明指数函数的奇偶性;3. 应用指数函数的奇偶性解决实际问题。
四、指数函数的周期性1. 探讨指数函数的周期性;2. 证明指数函数的周期性;3. 应用指数函数的周期性解决实际问题。
五、实际问题中的应用1. 引入实际问题;2. 应用指数函数的性质解决实际问题;3. 总结指数函数在实际问题中的应用。
教学方法:1. 采用讲授法,讲解指数函数的定义、表达形式以及性质;2. 利用多媒体演示,直观展示指数函数的图像和性质;3. 通过例题和练习题,巩固学生对指数函数性质的理解和应用。
教学评估:1. 课堂问答,检查学生对指数函数定义和表达形式的理解;2. 布置课后练习题,评估学生对指数函数性质的掌握程度;3. 组织小组讨论,评估学生在解决实际问题中的应用能力。
教学资源:1. 教材或教辅资料;2. 多媒体教学设备;3. 练习题和实际问题。
教学时间:1. 第一课时:指数函数的定义与表达形式;2. 第二课时:指数函数的单调性;3. 第三课时:指数函数的奇偶性;4. 第四课时:指数函数的周期性;5. 第五课时:实际问题中的应用。
六、指数函数的图像与性质1. 分析指数函数的图像特点;2. 探讨指数函数的性质,包括单调性、奇偶性和周期性;3. 应用指数函数的性质解决实际问题。
七、指数函数的应用1. 引入实际问题;2. 应用指数函数的性质解决实际问题;3. 总结指数函数在实际问题中的应用。
指数函数及其性质

指数函数及其性质
指数函数是数学中的一种常见函数形式,可以表示为f(x) = a^x,其中a是一个正实数且不为1,x是任意实数。
指数函数的性质如下:
1. 定义域:指数函数的定义域是全部实数集。
2. 值域:当a>1时,指数函数的值域是(0, +∞),即正数集;当0<a<1时,指数函数的值域是(0, 1),即(0,1)开区间。
3. 增减性:当a>1时,指数函数是递增的;当0<a<1时,指数函数是递减的。
4. 对称轴:指数函数没有对称轴。
5. 对称性:指数函数不具有对称性。
6. 极限性质:当x趋于正无穷大时,指数函数的极限是正无穷大;当x趋于负无穷大时,指数函数的极限是0。
7. 交叉性:当a>1时,指数函数与x轴交于点(0,1);当0<a<1时,指数函数与y轴交于点(0,1)。
8. 垂直渐近线:指数函数没有垂直渐近线。
9. 水平渐近线:指数函数没有水平渐近线。
10. 切线性质:指数函数在任意一点的切线都与该点对应的指数函数图像相切。
总结起来,指数函数具有增减性、无对称性、极限性质和交叉性等基本性质。
指数函数在实际问题中经常用于描述增长或衰减的规律,具有重要的应用价值。
指数函数及其性质(含知识点、例题、练习、测试)

指数函数及其性质 知识点一 指数函数及图像性质1.指数函数概念:定义:一般地,函数(0,1)x y a a a =>≠且叫做指数函数(exponential function ),其中x 是自变量,函数的定义域为R ,a 是底数.2. 指数函数的图象和性质:作图:在同一坐标系中画出下列函数图象: 1()2x y =, 2x y =图像性质总结 底数 a >1 0<a <1图象性质 函数的定义域为R ,值域为(0,+∞)函数图象过定点(0,1),即x =0时,y =1 当x >0时,恒有y >1;当x <0时,恒有0<y <1当x >0时,恒有0<y <1; 当x <0时,恒有y >1 函数在定义域R 上为增函数 函数在定义域R 上为减函数题型一 指数函数求值【例1】已知指数函数()xf x a =(a >0且a ≠1)的图象过点(3,π),求(0),(1),(3)f f f -的值.题型二 比较大小【例2】比较下列各题中的个值的大小(1)1.72.5 与 1.73( 2 )0.10.8-与0.20.8-( 3 ) 1.70.3 与 0.93.1题型三 指数函数性质【例3】求下列函数的定义域与值域:(1)442x y -= (2)||2()3x y =【过关练习】1、 函数2(33)x y a a a =-+是指数函数,则a 的值为 .2、 比较大小:0.70.90.80.8,0.8, 1.2a b c ===; 01, 2.50.4,-0.22-, 1.62.5.思考探究:在[m ,n ]上,()(01)x f x a a a =>≠且值域问题?知识点二 指数函数应用1. 指数函数的应用模型(应用题)2. 指数形式的函数定义域、值域题型 函数综合【例1】 2017年某镇工业总产值为100亿,计划今后每年平均增长率为8%, 经过x 年后的总产值为原来的多少倍? → 变式:多少年后产值能达到120亿?【例2】指数函数与函数性质综合1、已知函数[]2,1,2329∈+•-=x y xx ,求这个函数的值域;2、求函数2121x x y -=+的定义域和值域,并讨论函数的单调性、奇偶性.【过关练习】1、 一片树林中现有木材30000m 3,如果每年增长5%,经过x 年树林中有木材y m 3,写出x ,y 间的函数关系式,并利用图象求约经过多少年,木材可以增加到40000m 32. ① 求函数y =的定义域和值域.② 求下列函数的定义域、值域:21x y =+; y =110.4x y -=.【补救练习】 1、已知函数y =kx +a 的图象如图所示,则函数y =a x +k 的图象可能是( )2、比较下列各组数的大小: 13222()0.45--与() ; 0.760.75333-()与().【巩固练习】1、函数f (x )=2|x -1|的图象是( )2、下列函数中值域为正实数的是( )A .y =-5xB .y =⎝⎛⎭⎫131-x C .y =⎝⎛⎭⎫12x -1 D .y =1-2x 【拔高练习】1、当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x <0恒成立,则实数m 的取值范围是( )A .(-2,1)B .(-4,3)C .(-1,2)D .(-3,4)2、某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃ 的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是________小时.【补救练习】 B ><【巩固练习】B B 【拔高练习】 C 24。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C 1<a <b< c < d D a<b <1 <d < c
y2
x
• 引例2:一种放射性物质不断变化成其他物 质,每经过一年的残留量是原来的84%, 那么以时间x年为自变量,残留量y的函数 关系式是 y 0.84x • 在 y 2 x , y 0.84x 中指数x是自变量,底数是 一个大于0且不等于1的常量.
• 我们把这种自变量在指数位置上而底数是 一个大于0且不等于1的常量的函数叫做指 数函数.
。
。
练习 1、 求下列函数的定义域:
(1)
y3
1 x4
(2 )
1 y 1 ( )x 2
2 、比较下列题中两个值的大小: (1)
32.5 , 33
(2)
0.750.1 , 0.750.2
3、填空 (1)、函数y=a x 1 +2(a>0且a 1)恒过定点____; (2)、已知函数f(x)=a x(a>0且a 1)过(2,2)点,则a=______
x
二、作函数图象
16 14
y 2 y 3
x
x x
y=
1 3
x
12
y=3x y=2x
y=
1 2
10
x
8
6
1 y 2
5 10
4
2
10
5
2
1 y 3
15
x
4
6
a>1
图
0<a<1
象
(1)定义域为R,值域为(0,+ ∞ ) 性 (2)图像都过点(0,1),当x=0时,y=1 (3)在R上增函数 (3)在R上减函数 ⑷当x>0时,y>1 ⑷当x>0时, 0<y< 质 当x<0时,0<y<1 1 当x<0时, y>1
一、指数函数
x 一般地,函数y=a (a>0,且a≠1)
叫做指数函数 (1)形如:y=ax (2)a>0,且a≠1
探究1:为什么要规定a>0,且a≠1呢?
①若a 0,则当x 0时,a x 0;当x 0时,a x无意义.
②若a 0,则对于x的某些数值,可使a x无意义.如(-2)x, 1 1 这时对于x ,x , 等等,在实数范围内函数值不存在. 4 2
0.1
0.2
0.3
3.1
例2 截止到1999年底,我国人口约13亿。如果今后 能将人口年平均增长率控制在1%,那么经过20年后, 我国人口数量最多为多少(精确到亿)
• 解:设今后人口年平均增长率为1%,经过x年后, 我国人口数为y亿: • 经过1年(即2000年),人口数为: 13+13×1%=13×(1+1%)(亿); • 经过2年(即2001年),人口数为: • 13×(1+1%)+13×(1+1%)×1% 2 13 ( 1 1 %) • = (亿); • 经过3年(即2002年),人口数为: 2 2 13 ( 1 1 %) 13 ( 1 1 %) 1% • 13 (1 1%)3
4、在同一平面直角坐标系中画出下列函数的图像:
y2
x
y4
x
1 y 2
x
1 y 4
x
• 教学小结 • 问题:这节课同学们在知识和方法上有哪 些收获呢?
• 布置作业 • 1、阅读教材P54—P57 • 2、书面作业:P59,5、7、8
思考题、此图是①y=ax,②y=bx, ③y=cx,④y=dx的图象,则a,b, c,d与1的大小关系是( ) ③ ④ A a<b <1 < c < d ① ②
……
• 所以,经过x年,人口数为: x x y 13 (1 1%) 131.01 (亿)
20 y 13 1 . 01 16(亿) • 当x=20时,
,
所以,经过20年后,我国人口数最多为16亿。
在实际问题中,经常回遇到类似例2的指数 增长模型:设原有量为N,每次增长率为p, 经过x次增长,该量增长到y,则 y N (1 p) x ( x N ) 形如 y ka x (k R, 且k 0; a 0, 且a 1) 的函数是一种指数型函数,这是非常有用的 函数模型
16
y=
1 3
x
14
y=3x
12
y=
a = 1.31厘米 g( x ) = ax
动画点
1 2
x
10
y=2x
8
6
4
2
y = g(x)
2
4
6
讲授新课
例1 比较下列各题中两个值的大小:
① 1.7 ,1.7 ; ② 0.8
-0.1 0.3
2.5
3
,0.8
-0.2
;
③ 1.7 ,0.9 .
3.1
• 解:利用函数单调性 • ①1.7 2.5与1.7 3的底数是1.7,它们可以看成函数 y= , x 1 . 7 当x=2.5和3时的函数值;因为1.7>1,所以函数y= 在R是增函数,而2.5<3,所以 < ;1.7 2.5 1.7 3 • ② 0.80.1与0.80.2的底数是0.8,它们可以看成函数 y=0.8 x,当x=-0.1和-0.2时的函数值;因为 0<0.8<1,所以函数y= 0.8 x 在R是减函数,而 0.8 < 0.8 ; • -0.1>-0.2,所以, • ③在下面个数之间的横线上填上适当的不等号或 0.3 1 . 7 0 . 9 1 . 7 等号: >1; <1; > 0.9 3.1
1 探究3:y a 与y 图象间关系 a
xxΒιβλιοθήκη 1 y a 与y 图象关于y轴对称 a
x
x
探究4:底数a的变化对函数图像的影响
图像
性质归纳 1、函数图象在X轴上方; 2、图像都过(0,1)点; 3、图像在Y轴右侧, 底数a>1,图像单调递增,且底越大图像越陡; 底数0<a<1,图像单调递减,且底数月接近0, 图像越靠近X轴。 4、第一象限,顺时针比较函数的底数,越来越小。
指数函数的解析式y a x中,a x的系数是1.有些函数貌似 指数函数,实际上却不是,如y a x k (a 0且a 1,k Z);
有些函数看起来不像指数函数,实际上却是,如y a x (a 0, 且a 1), 1 1 因为它可以化为y ,其中 0,且a 1 a a
③若a 1,则对于任何x R,a x 1,是一个常量,没有研究 的必要性.
为了避免上述各种情况,所以规定a 0且a 1。在规定以后, 对于任何x R,a x 都有意义,且a x 0.因此指数函数的定义域是R, 值域是(0, ).
探究2:函数y=2 3x是指数函数吗?
磁县第一中学 李俊强
引例1(P57):
• 某种细胞分裂时,由1个分裂成2个,2个分 裂成4个,……. 1个这样的细胞分裂 x 次后, 得到的细胞个数 y 与 x 的函数关系是什么? • 分裂次数:1,2,3,4,…,x • 细胞个数:2,4,8,16,…,y • 由上面的对应关系可知,函数关系是.