s第3章太阳能电池的特性
第3章太阳能光伏控制器和逆变器2

• 图中E为输入的直流电压, R为逆变器的纯电阻性负载。 当开关S1、S3接通时,电 流流过S1、R、S3,负载R 上的电压极性是左正右负; • 当开关S1、S3断开,S2、 S4接通时,电流流过S2、R 和S4,负载上的电压极性 相反。若两组开关S1、S3 和S2、S4以某一频率交替 切换工作时,负载R上便可 得到这一频率的交变电压。
• 电力系统高压架空线路一般采用三相三线 制,三条线路分别代表a,b,c三相,我 们在野外看到的输电线路,三根线可能水 平排列,也可能是三角形排列的 • 火线与零线之间称为单相电,火线与火线 之间称为三相电。
逆变器的分类
• 按照逆变器输出功率大小的不同,可分为小功率 逆变器(<5kW)、中功率逆变器(5~50kW)、大功 率逆变器(>50kW); • 按照逆变器隔离(转换)方式的不同,可分为带 工频隔离变压器方式、带高频隔离变压器方式、 不带隔离变压器方式。 • 按照逆变器输出能量的去向不同,可分为有源逆 变器和无源逆变器。 对太阳能光伏发电系统来说,在并网型光伏 发电系统中需要有源逆变器,而在离网独立型光 伏发电系统中需要无源逆变器。(连接电网的是 有源逆变,连接负载的是无源逆变) • 在太阳能光伏发电系统中还可将逆变器分为离网 型逆变器(应用在独立型光伏系统中的逆变器) 和并网型逆变器。
(1)推挽式逆变电路
• 该电路由两只共负极连接的功率开关管和一个初 级带有中心抽头的升压变压器组成。 • 升压变压器的中心抽头接直流电源正极,两只功 率开关管在控制电路的作用下交替工作,输出方 波或三角波的交流电力。
• 由于功率开关管的共负极连接,使得该电 路的驱动和控制电路可以比较简单,另外 由于变压器具有一定的漏感,可限制短路 电流,因而提高了电路的可靠性。 • 该电路的缺点是变压器效率低,带感性负 载的能力较差,不适合直流电压过高的场 合。
第3章太阳能电池的特性

第3章太阳能电池的特性太阳能电池的特性光伏电池的特性⼀般包括光伏电池的输⼊输出特性(伏安特性)、照度特性以及温度特性。
1. 伏安特性当太阳光照射到电池上时,电池的电压与电流的关系(伏安特性)可以简单的⽤图2.9所⽰的特性曲线来表⽰。
图中:V oc 为开路电压;Isc 为短路电流;Vpmax 为最佳⼯作电压;Ipmax 为最佳⼯作电流。
最佳⼯作点对应电池的最⼤出⼒Pmax ,其最⼤值由最佳⼯作电压与最佳⼯作电流的乘积得到。
实际使⽤时,电池的⼯作受负载条件、⽇照条件的影响,⼯作点会偏离最佳⼯作点。
1.1 开路电压Voc光伏电池电路将负荷断开测出两端电压,称为开路电压。
1.2 短路电流Isc光伏电池的两端是短路状态时测定的电流,称为短路电流。
1.3 填充因⼦FF实际情况中,PN 结在制造时由于⼯艺原因⽽产⽣缺陷,使光伏电池的漏电流增加。
为考虑这种影响,常将伏安特性加以修正,将特性的弯曲部分曲率加⼤,定义曲线因⼦FF 为Uoc Isc P Uoc Isc Up Ip FF ?=??=max max max曲线因⼦是⼀个⽆单位的量,是衡量电池性能的⼀个重要指标。
曲线因⼦为1被视为理想的电池特性。
⼀般地,曲线因⼦在0.5~O .8之间。
1.4 转换效率转换效率⽤来表⽰照射在电池上的光能量转换成电能的⼤⼩,它是衡量电池性能的另⼀个重要指标。
但是对于同⼀块电池来说,由于电池的负载的变化会影响其出⼒,导致光伏电池的转换效率发⽣变化。
为了统⼀标准,⼀般公称效率来表⽰电池的转换效率。
即对在地⾯上使⽤的电池,在太阳能辐射通量1000w /m2、⼤⽓质量Aml.5、环境温度25℃,与负载条件变化时的最⼤电⽓输出的⽐的百分数来表⽰。
⼚家的说明书中电池转换效率就是根据上述测量条件得出的。
2.照度特性光伏电池的出⼒随照度(光的强度)⽽变化。
如图2.10所⽰,短路电流与照度成正⽐;图2.1l所⽰,开路电压随照度按指数函数规律增加,其特点是低照度值时,仍保持⼀定的开路电压。
新能源汽车概论_第3章电动汽车用动力电池

第3章电动汽车用动力电池课题:3.1 概述教学目的:了解电池的类型熟悉电池的性能指标了解电动汽车对动力蓄电池的要求教学重点:电池的类型、电池的性能指标教学难点:电池的类型、电池的性能指标类型:新授课教学方法:讲练结合课时:2引入:动力电池系统是纯电动汽车能量的唯一来源,混合动力汽车、燃料电池汽车的主要能量来源。
因此,在电动汽车能源装置布置形式上可以分为两类。
引入案例P84一、电池的类型电池分为化学电池、物理电池和生物电池三大类。
1.化学电池(1)化学电池是利用物质的化学反应发电,按工作性质分为原电池、蓄电池、燃料电池和储备电池。
(2)原电池是指电池放电后不能用简单的充电方法使活性物质复原而继续使用的电池。
(3)蓄电池是指电池在放电后可以通过充电的方法使活性物质复原而继续使用的电池,这种充放电可以达数十次到上千次循环。
(4)燃料电池又称连续电池,是指参加反应的活性物质从电池外部连续不断地输入电池,电池就连续不断地工作而提供电能。
(5)储备电池是指电池±极与电解质在储存期间不直接接触,使用前注入电解液或者使用其它方法使电解液与±极接触,此后电池进入待放电状态。
(6)分类①化学电池按电解质分为酸性电池、碱性电池、中性电池、有机电解质电池、非水无机电解质电池、固体电解质电池等。
②化学电池按电池的特性分为高容量电池、密封电池、高功率电池、免维护电池、防爆电池等。
③化学电池按±极材料分为锌锰电池系列、镍镉镍氢系列、铅酸系列、锂电池系列等。
2.物理电池物理电池是利用光、热、物理吸附等物理能量发电的电池,如太阳能电池、超级电容器、飞轮电池等。
3.生物电池生物电池是利用生物化学反应发电的电池,如微生物电池、酶电池、生物太阳电池等。
迄今已经实用化的车用动力蓄电池有传统的铅酸蓄电池、镍镉电池、镍氢电池和锂离子电池。
在物理电池领域中,超级电容器也应用于电动汽车中。
生物燃料电池在车用动力中应用前景也十分广阔,以氢为燃料的燃料电池和氧化物燃料电池的研发已进入重要发展阶段。
太阳能电池原理范文

太阳能电池原理范文太阳能电池是一种将太阳光能转化为电能的装置。
它是一种半导体器件,根据光伏效应原理工作。
在晴朗的阳光下,太阳光照射到太阳能电池表面,产生电子与空穴对。
通过合适的导线和电路布置,可以将产生的直流电能转化为有用的电能。
太阳能电池的基本结构通常是由两个半导体层构成,其中一个层被掺杂为p型,另一个层被掺杂为n型。
半导体的掺杂可以通过在原始材料中添加杂质元素来实现。
掺杂后的半导体中将产生多数载流子和少数载流子。
以p型层为例,它有许多绝缘层的正空穴,以及从n层移动过来的负电子。
当太阳能照射到太阳能电池的表面时,光子与半导体原子发生相互作用。
如果光子的能量大于半导体材料对能量吸收的门槛,光子将被吸收,将其能量传给被吸收的电子。
被激发的电子获得足够的能量以克服能带间隙并跃迁到导带。
这个过程使得原来的电子能带上留下空穴,从而产生一个电子-空穴对。
由于p型层具有许多正空穴,而n型层具有许多自由电子,新产生的电子和空穴将被电场力推到不同的区域,形成势差。
这个势差会引起电流的流动。
若将正极与p型层连接,负极与n型层连接,并将电路与电池连接,电流就会开始流动。
在太阳能电池中,不同的材料用于构成p型和n型层。
常用的材料包括硅、硒化铟、硫化镉等。
其中,硅是最广泛使用的材料,因为它具有稳定性好、物理性质可控且成本低廉等优点。
为了提高太阳能电池的效率,科学家和工程师们致力于改进太阳能电池的设计和制造工艺。
一种改善效率的方法是通过将多个太阳能电池组装在一起,形成太阳能电池组或太阳能电池阵列。
这种阵列可以在更广泛的光敏面积上接收太阳能,并提供更多的电能。
太阳能电池作为一种可再生能源的转换器,具有广泛的应用前景。
它可以用于为家庭和工业提供电力,也可以用于卫星和空间探测器等航天器的能源供应。
随着科学技术的不断发展,我们有望看到更高效、更持久、更美观的太阳能电池问世,进一步推动可再生能源的发展和利用。
太阳能电池输出特性的研究

太阳能电池可以吸收太阳光中的部分能量 ,并将吸收的太阳能转化为电能 。太阳能电池的输出特性是指 它吸收了太阳能量后 ,能够转化为多少电能与其它因素之间的关系 。太阳能电池的输出特性是一个很复杂的 性质 ,它和电池本身 、光照强度 、外接电路性质等等因素有关 。太阳能电池的输出特性有电压输出 、电流输出 、 功率输出 ,我们研究的是功率输出和电压 、电流 、外接电阻之间的关系以及最大输出功率和光照强度之间的关 系[3 ] 。实验装置于图 1 :
图 1 太阳能电流实验装置图
当光照强度一定时 ,也就是当 d 一定时 ,改变变阻箱的阻值 ,用数字万用表测量其两端的电压 ,这样就可以 得到输出功率与电阻 、输出电流 、输出电压之间的关系[1] 。改变光照强度 ,也就是调节太阳能电池与光源的距 离 d 值 ,测量几组不同的电压值 ,可以得到在不同的光照下的最大输出功率 ,以及最大输出功率和光照强度的 关系 。
太阳能电池的输出特性有电压输出电流输出功率输出我们研究的是功率输出和电压电流外接电阻之间的关系以及最大输出功率和光照强度之间的关太阳能电流实验装置图当光照强度一定时也就是当d一定时改变变阻箱的阻值用数字万用表测量其两端的电压这样就可以得到输出功率与电阻输出电流输出电压之间的关系
第1期
太阳能电池输出特性的研究
利用表 1 的数据计算得到输出功率和电阻关系如图 2 所示 ,从图 2 中可以看到 ,开始阶段输出功率随电阻
增大而增大 ,增大到一定值时 ,输出功率随电阻增大反而减少 ,当 R = 4100Ω 时 ,输出功率最大 , P = 0. 295mW 。
图 2 输出功率与电阻的关系曲线
根据表 1 数据计算得到输出功率 P 与输出电流 I 的关系如图 3 所示 :
第三章 太阳能电池原理

开路电压VOC: VOC kT ln( IL 1)
q
IS
填充因子 F Pmp IscVoc
光电转换效率
Pmp FVocIsc
Pi
Pi
Pmp是最大输出功率, Pi是输入功率
当入射太阳光谱AM0或AM1.5确定以后,其值就取决 于开路电压Voc、短路电流Isc和填充因子F的最大值。
3、入射光光谱:一般是标准化的AM1.5光源 4、太阳能电池的光学性能:电池的吸收和反射 5、载流子收集的可能性:主要取决于电池表面的钝化及电
池中的少子寿命
qV
I IL - IF IL - Is(e kT 1)
V kT ln( IL - I 1)
q
IS
当pn结开路(open circuit )时即R趋于无穷大,得到
光谱响应度(SR) 太阳能电池的光谱响应度:单位光功率所产生的电流强度
SR Isc I L qne q EQE q(1 R) IQE
Pin ()
Pin ()
hc
n ph
hc
hc
EQE:外部量子效率(没有特殊说明时就是量子效率) IQE:内部量子效率
理想情况下,光谱响应度(λ≤ λg)与波长成正比。 实际情况并不成线性关系:波长较长时,电池对光的吸收弱,导致
带有电阻负载的pn结太阳能电池示意图
零偏下光电池工作 电流
光生电流IL 光生电压下的正向电流IF
qV
流经负载的电流 I IL - IF IL - Is(e kT 1)
太阳能电池的重要参数: 短路电流ISC;开路电压VOC;填充因子F;光电转换效率η
qV
I IL - IF IL - Is(e kT 1)
太阳能电池片的特性及主要性能参数_太阳能光伏组件生产制造工程技术_[共3页]
![太阳能电池片的特性及主要性能参数_太阳能光伏组件生产制造工程技术_[共3页]](https://img.taocdn.com/s3/m/65f510dcf78a6529647d53e0.png)
第2章 太阳能光伏组件的原材料及部件25 单晶硅与多晶硅电池片到底有哪些区别呢?由于单晶硅电池片和多晶硅电池片前期生产工艺的不同,使它们从外观到电性能都有一些区别。
从外观上看:单晶硅电池片四个角呈圆弧缺角状,表面没有花纹;多晶硅电池片四个角为方角,表面有类似冰花一样的花纹(业内称为多晶多彩),也有一种绒面多晶硅电池片表面没有明显的冰花状花纹(业内称为多晶绒面);单晶硅电池片减反射膜绒面表面颜色一般呈现为黑蓝色,多晶硅电池片减反射膜绒面表面颜色一般呈现为蓝色。
对于使用者来说,相同转换效率的单晶硅电池和多晶硅电池是没有太大区别的。
单晶硅电池和多晶硅电池的寿命和稳定性都很好。
虽然单晶硅电池的平均转换效率比多晶硅电池的平均转换效率高1%左右,但是由于单晶硅太阳能电池只能做成准正方形(4个角为圆弧状),当组成太阳能电池组件时就有一部分面积填不满,而多晶硅太阳能电池是正方形的,不存在这个问题,因此对于太阳能电池组件的转换效率来讲几乎是一样的。
另外,由于两种太阳能电池材料的制造工艺不一样,多晶硅太阳能电池制造过程中消耗的能量要比单晶硅太阳能电池少30%左右,所以多晶硅太阳能电池占全球太阳能电池总产量的份额越来越大,制造成本也将大大小于单晶硅电池,所以使用多晶硅太阳能电池将更节能、更环保。
2.1.3 太阳能电池片的等效电路分析太阳能电池的内部等效电路如图2-5所示。
为便于理解,我们可以形象地把太阳能电池的内部看成是一个光电池和一个硅二极管的复合体,即在光电池的两端并联了一个处于正偏置下的二极管,同时电池内部还有串联电阻和并联电阻的存在。
由于二极管的存在,在外电压的作用下,会产生通过二极管P-N 结的漏电流I d ,这个电流与光生电流的方向相反,因此会抵消小部分光生电流。
串联电阻主要是由半导体材料本身的体电阻、扩散层横向电阻、金属电极与电池片体的接触电阻及金属电极本身的电阻几部分组成的,其中扩散层横向电阻是串联电阻的主要形式。
第3章 太阳能电池的特性-2

其他效应 光强效应
聚光对太阳能电池的伏安特性的影响
&3.4.2
其他效应 光强效应
聚光太阳能电池
聚光太阳能电池是一种在光强大于一个太阳的光照下工作的太阳能电池。入射太阳
光被聚焦或透过光学器件形成高强度的光束射到小面积的太阳能电池中。
聚光太阳能电池有几个潜在的优势,包括比平板太阳能电池更高的转换效率和更低
&3.2.5
太阳能电池的参数 效率
发电效率是人们在比较两块电池好坏时最常使用参数。 效率的定义为电池输出的电能与射入电池的光能的比例。
除了反映太阳能电池的性能之外,效率还决定于入射光的光谱和
光强以及电池本身的温度。 在比较两块电池的性能时,必须严格控制其所处的环境。测量陆 地太阳能电池的条件是光照AM1.5和温度25°C。而空间太阳能电池 的光照则为AM0。
的成本。电池的短路电流大小与光的强度成线性关系,这种改变并没有带来转换效 率的提升,因为入射功率也随光强呈线性提高。
由于开路电压与短路电流呈对数关系,转换效率得以提升。因此,在聚光条件下,
VOC随着光强上升呈对数形式增加,如下面式子所示:
nkT ISC V' OC ln I q O
低光强
在光强变低时,并联电阻对电池的影响将慢慢变大。因为通过电池的前置 偏压和电流会随着光的强度的减小而减小,而电池的等效电阻也将开始接 近并联电阻的大小,分流到并联电阻的电流将增加,即增加了能量损失。 在多云的天气下,并联电阻高的电池比并联电阻低的电池保留更大部分的 电流。
&3.5.1太阳能电池的测量
太阳能电池中,引起串联电阻的因素有三种: 第一,穿过电池发射区和基区的电流流动; 第二,金属电极与硅之间的接触电阻; 第三便是顶部和背部的金属电阻。串联电阻对电池的主要影响