材料科学与工程基础第二版考试必备宝典
材料科学基础宝典

2-27硅酸盐晶体的分类依据是什么?可分为那几类,每类的结构特点是什么?答:硅酸盐晶体主要是根据[SiO4]在结构中的排列结合方式来分类,具体可以分为五类:岛状、组群状、链状、层状和架状。
结构和组成上的特征见下表:结构类型[SiO4]共用O2-数形状络阴离子团Si:OI岛状0 四面体[SiO4]4-1:4组群状 1222 双四面体三节环四节环六节环[Si2O7]6-[Si3O9]6-[Si4O12]8-[Si6O18]12-2:71:31:31:3链状 22、3 单链双链[Si2O6]4-[Si4O11]6-1:34:11层状 3 平面层[Si4O10]4-4:10架状 4 骨架[SiO4]4-[(Al x Si4-x)O8]x-1:4 1:42-31石墨、滑石和高岭石具有层状结构,说明它们结构的区别及由此引起的性质上的差异。
解:石墨与滑石和高岭石比较,石墨中同层C原子进行SP2杂化,形成大Π键,每一层都是六边形网状结构。
由于间隙较大,电子可在同层中运动,可以导电,层间分子间力作用,所以石墨比较软。
滑石和高岭石区别主要是滑石是Mg2+取代Al3+的2:1型结构八面体层为三八面体型结构而高岭石为1:1型二八面体结构2-32(1)在硅酸盐晶体中,Al3+为什么能部分置换硅氧骨架中的Si4+;(2)Al3+置换Si4+后,对硅酸盐组成有何影响?(3)用电价规则说明Al3+置换骨架中的Si4+时,通常不超过一半,否则将使结构不稳定。
解:(1)Al3+可与O2-形成[AlO4]5-;Al3+与Si4+处于第二周期,性质类似,易于进入硅酸盐晶体结构中与Si4+发生同晶取代,由于遵循鲍林规则,所以只能部分取代;(2)Al3+置换Si4+是部分取代,Al3+取代Si4+时,结构单元[AlSiO4][ASiO5],失去了电中性,有过剩的负电荷,为了保持电中性,将有一些半径较大而电荷较低的阳离子如K+、Ca2+、Ba2+进入结构中;(3)设Al3+置换了一半的Si4+,则O2-与一个Si4+一个Al3+相连,阳离子静电键强度=3/4×1+4/4×1=7/4,O2-电荷数为-2,二者相差为1/4,若取代超过一半,二者相差必然>1/4,造成结构不稳定。
材料工程基础复习资料

材料工程基础复习资料1.直接还原铁:将铁矿石在固态还原成海绵铁,即为直接还原,所得产品称为直接还原铁。
2.沉淀脱氧:是将脱氧剂直接加入到钢液中,直接与钢液的氧化亚铁反应进行脱氧。
3.炉外精炼(二次冶金):指对氧气转炉、电弧炉生产的钢也进行处理,使钢水稳定温度、进行成分微调(CAS)、降低其中的H、O、N和夹杂,或使夹杂物变性,提高刚质量的一种高新技术。
4.钢锭的液芯轧制:轧制过程在钢锭凝固尚未完全结束,芯部仍处于液态的条件下进行。
5.火法冶金:经造锍熔炼—转炉吹炼—火法精炼—电解精炼将铜提取出来。
6.变质处理:向熔融液中加入变质剂,细化组织。
7.熔模铸造:指用易熔性材料制作模样,在模样上包覆多层耐火材料,经酸化、干燥制成壳,然后熔失模样再将空心壳高温焙烧后,浇注合金液于其中而获得铸件的一种铸造方法。
8.半固态合金:熔体冷却到液相以下,对合金进行搅拌,在搅拌力的作用下,凝固的树枝晶被破坏,并在熔体的摩擦熔融下,晶粒和破碎的枝晶小块形成卵球状颗粒分布在整个液态金属中,具有一定的流动性,又在剪切力较小或为零时,它具有固体性质,可以搬运、贮藏。
冷却到双相区——搅拌——参有固态的悬液。
9.流变成形:利用半固态金属连续制备器批量制备、或连续制备糊状浆料,并直接加工成形(铸造、挤压、轧制、模锻)的方法。
10.快速凝固:冷却速度大于100K|S的凝固过程称为快速凝固。
11.轧制孔型(孔型轧制?):在二辊或三辊轧机上靠乳辊的轧槽组成的孔型对各类型材的纵轧方法,也叫普通轧制法或常规轧制法。
12.拉拔配模:根据坯料尺寸,成品形状,尺寸与质量要求,确定拉拔道次数及各道次所需模孔形状与尺寸。
13.孔型设计:14.冰铜:冰铜是铜与硫的化合物,有白冰铜(Cu2S含铜80%左右)、高冰铜(含铜60%左右)、低冰铜(含铜40%以下)之分。
15.水热合成:水热合成是指温度为100~1000 ℃、压力为1MPa~1GPa 条件下利用水溶液中物质化学反应所进行的合成。
材料科学与工程基础复习知识点

材料复习知识点第二章物质结构基础原子中电子的空间位置和能量1、电子的统计形态法描述四个量子数n, 第一量子数:决定体系的能量n = 1, 2, 3…(整数),n=1时为最低能级K, L, M…l, 第二量子数:决定体系角动量和电子几率分布的空间对称性l = 0, 1, 2, 3, 4 (n-1) n = 1,l = 0s p d f g 状态 n = 2,l = 0,1 (s, p) m l, 第三量子数:决定体系角动量在磁场方向的分量m l = 0,±1,±2,±3 有(2l+1)个m s, 第四量子数:决定电子自旋的方向 +l/2,-l/22、电子分布遵从的基本原理:(1)泡利不相容原理:在一个原子中不可能有运动状态完全相同的两个电子,即同一原子中,最多只能有两个电子处于同样能量状态的轨道上,且自旋方向必定相反。
n=1时最多容纳2个电子n=2时最多容纳8个电子主量子数为n的壳层中最多容纳2n2个电子。
(2)能量最低原理:原子核外的电子是按能级高低而分层分布,在同一电子层中电子的能级依s、p、d、f的次序增大。
(3)洪特规则:简并轨道(相同能量的轨道)上分布的电子尽可能分占不同的轨道,且自旋方向相同。
请写出Fe和Cu原子的外层电子排布Fe:(26)1s2 2s2 2p6 3s2 3p6 3d6 4s2Cu:(29)1s2 2s2 2p6 3s2 3p6 3d10 4s1结合方式基本结合:离子键、金属键、共价键------化学键合派生结合:分子间作用力、氢键-------物理键合基本结合:1. 离子键合离子键:原子核释放最外层电子变成的正离子与接收其放出电子而变成的负离子相互之间的吸引作用(库仑引力)所形成的一种结合。
典型的离子化合物有NaCl、MgCl2等。
特点:①电子束缚在离子中;②正负离子吸引,达到静电平衡,电场引力无方向性和饱和性----产生密堆积,取决于正负离子的电荷数和正负离子的相对大小。
材料工程基础复习资料

材料工程基础复习资料一、 题型介绍1.填空题(15/15)2.名词解释(4/16)3.简答题(3/21)4.计算题(4/48)二、复习内容1.名词解释(Chapters 2-4)热传导:两个相互接触的物体或同一物体的各部分之间,由于温差而引起的热量传递现象,称为热传导。
(依靠物体微观粒子的热运动而传递热量)热对流:指流体不同部分之间发生相对位移,把热量从一处传递到另一处的现象。
(依靠流体质点的宏观位移而传热)热辐射:物体通过电磁波向外传递能量并能明显引起热效应的辐射现象称为热辐射。
(不借助于媒介物,热量以热射线的形式从高温物体传向低温物体) 温度场:某瞬时物体内部各点温度的集合,称为该物体的温度场。
稳态温度场:温度不随时间变化的温度场。
等温面:温度场中同一瞬间同温度各点连成的面。
导热系数:在一定温度梯度下,单位时间内通过单位垂直面积的热量。
热射线:能被物体吸收并转变成热能的部分电磁波。
光谱辐射强度(E λ):单位时间内物体单位辐射面积表面向半球空间辐射从d λλλ+到波长间隔内的能量。
辐射力(E ):单位时间内物体单位辐射面积向半球空间辐射的全波段的辐射能,称为辐射力。
立体角:以球面中心为顶点的圆锥体所张的球面角。
角系数:任意两表面所组成的体系,其中一个表面(如F 1)所辐射到另一表面上的能量占其总辐射能量的百分数,称为第一表面对第二表面的角度系数,简称角系数,记为12ϕ。
有效辐射:本身辐射和反射辐射之和称为物体的有效辐射。
照度:到达表面单位面积的热辐射通量。
黑度:实际物体的辐射力和同温度下黑体的辐射力之比。
空间热阻:由于物体的尺寸形状和相对位置的不同,以致一物体发射的辐射能不可能全部到达另一物体的表面上,相对于全部接受辐射能来说,有热阻的存在,称为空间热阻。
表面热阻:由于物体表面不是黑体,所以它不可能全部吸收投射到它表面上的辐射能,相对于黑体来说,可以看成是热阻,称为表面热阻。
光带:把具有辐射能力的波长范围称为光带。
材料科学基础复习资料

材料科学基础复习资料材料科学基础是各个工程领域的基本学科,是各个领域的基础。
材料科学基础涵盖了材料的结构、物理与化学性质、制备工艺等方面内容,是材料科学领域学习过程中必须掌握的知识。
因此,为帮助有需要的人顺利复习材料科学基础知识,本文整理了一些相关的复习资料。
一、材料基础知识1. 基本的物理性质:包括化学成分、密度、电导率、热导率等基本参数,通常在每种材料的材料数据表中都可查到。
2. 结构相关:晶体结构:晶体结构指材料中原子、离子、分子排布的类型和规律,常用的晶体结构有:立方晶系、四方晶系、六方晶系、等轴晶系、正交晶系、单斜晶系、三斜晶系等。
非晶态:非晶态作为一种新兴的材料类型,其分子呈无序排列,在某些情况下可能拥有更好的性能。
3. 材料特性:热膨胀系数:在温度变化时,材料线膨胀的速度大小,通常用公式ΔL/L0 = αΔT 表示,其中α为热膨胀系数。
韧性:材料在受到剪切力或拉伸力时的弹性变形程度,是一种考量材料性能的指标,通常可以通过材料变形曲线进行查看。
4. 金属与合金相关:金属材料通常具有良好的导电、导热等特性,同时在高温、高压等环境下具有较强的稳定性。
合金则通常是由多个金属或者非金属元素组成的混合物,其性质与材料组分、配比等有关。
二、材料治理、工艺及应用1. 材料的处理:常用材料的处理包括固化、焊接、框架处理、表面处理以及高压工艺等,其中固化的过程包括了煅烧、烧结等过程。
2. 材料配方:通常材料的配方根据材料的成分、目的等进行确定,其中分子键长、键能以及分子排列等指标都可能用来确定最终配方。
3. 材料的加工工序:通常材料加工工序包括切削、钣金、打压成形等过程,每个工序都会影响材料的性质和特性。
三、材料的主要分类1. 材料的物理分类:主要涉及到材料的形态、密度以及各种物理性质,通常有固体、液体、气体以及等离子体等分类方式。
2. 材料的化学分类:不同的元素应用于不同的方案分类,这种分类通常依据材料的化学成分。
材料工程基础全复习资料

材料工程基础复习资料一、绪论1、概念:科学:对于现象的观察、描述、确认、实验研究及理论解释。
技术:泛指根据生产实践经验和自然科学原理而发展成的各种工艺操作方法与技能。
工艺:使各种原材料、半成品加工成为产品的方法和过程。
工程:将科学原理应用到实际目标,如设计、组装、运转经济而有效的结构、设备或系统。
材料工程:是工程的一个领域,其目的在于经济地,而又为社会所能接受地控制材料的结构、性能和形状。
2、材料科学与工程的任务?材料科学与工程是关于材料成分、结构、工艺和它们的性能与用途之间有关的知识和应用的科学。
3、传统材料加工包括哪几个方面?①传统的金属铸造②塑性加工③粉末材料压制、烧结或胶凝固结为制品④材料的焊接与粘接材料的切除,材料的成型,材料的改性,材料的连接二、材料的熔炼1、钢铁冶金1)、高炉炼铁生产过程:①还原:矿石中的铁被还原;②造渣:高温下石灰石分解形成的氧化钙与酸性脉石形成炉渣;③传热和渣底反应:被还原的矿石降落使温度升高加速反应将全部氧化铁还原成氧化亚铁,风口区残余的氧化亚铁还原成铁,与炉渣一起进入炉缸。
2)、炼钢过程中的理化过程:①脱碳:碳被氧气直接氧化:→2CO在温度高于1100℃条件下 2C+O2间接氧化:在温度低于1100℃条件下 2Fe+O→2FeO2C+FeO→Fe+CO②硅、锰的氧化:a.直接氧化反应:Si+O2 → Si022Mn+O2 → 2MnOb.间接氧化,但主要是间接反应:+2FeSi+2FeO → Si02Mn+FeO → MnO+Fe③脱磷:磷是以磷化铁(Fe2P)形态存在,炼钢利用炉渣中FeO及CaO与其化合生成磷酸钙渣去除 Fe2P+5FeO+4CaO→(CaO)4·P2O5+9Fe④脱硫:硫是以FeS形式存在,利用渣中足够的CaO,把其中FeS去除。
反应式为 FeS + CaO-->FeO + CaS⑤脱氧(再还原):通常采用的脱氧剂有:锰铁、硅铁和铝等。
材料科学与工程基础考试资料

材料与科学工程基础复习资料第二章重点1物体的三种状态:固态、液态和气态(至于怎么形成的在课本P12页)2根据电子围绕原子的分布方式,可以将结合键分为5类,即离子键、共价键、金属键、分子间作用力和氢键。
结合方式有两大类型:即基本结合(也叫化学结合,包括离子结合,共价结合和金属结合)和派生结合(也叫物理结合包括分散效用,分子极化和氢键)离子键概念:离子键是有原子核释放出最外壳层的电子变成正电荷的原子(正离子),与接收其放出电子变成带负电荷的原子(负离子)相互之间的吸引作用(库仑力)所形成的一种结合,分子间作用力包括取向力,诱导力和色散力,(具体形成原因在课本25页至32页)3在课本P53页。
晶体是由原子(或离子、分子)在空间周期排列构成的固体物质。
在晶体中,原子(或离子、分子)按照一定的方式空间做周期排列,隔一定的距离重复出现,具有三维空间的周期性。
非晶态物质(玻璃体):在他们的内部原子像液体那样杂乱无章地分布,没有周期性排列的规律,可以看作过冷液体。
玻璃、塑料和松香晶体的特点:1)熔点一定;•2)能自发地形成规则的多面体外形;•3)稳定性,即晶体中的化学成分处于热力学上的能量最状态•4)各向异性,即在晶体中不同的方向上具有不同的物理性质;•5)均匀性,即一块晶体各部分的宏观性质相同。
晶体是一种均匀而各向异性的结构稳定性固体晶体的类型:离子晶体,共价晶体,金属晶体,分子晶体4在P77至81页外来组分(离子,原子或分子)分布在基质晶体晶格内,类似溶质溶解在溶剂中一样,并不破坏晶体的结构,仍然保持一个晶相,称为固溶体(1)按溶质原子在点阵中所占位置分为:置换固溶体:溶质原子置换了溶剂点阵中部分溶剂原子。
间隙固溶体:溶质原子分布于溶剂晶格间隙中。
(2)按固溶体溶解度大小:有限固溶体:在一定条件下,溶质原子在溶剂中的溶解量有一个上限,起过这个限度就形成新相。
无限固溶体:溶质原子可以任意比例溶入溶剂晶格中形成的。
材料科学与工程总复习

4.3 玻璃的形成
01
掌握玻璃形成的条件; 掌握玻璃的通性。
4.4 玻璃的结构
02
掌握微晶学说和无规则网络学说两种模型的实质(要点); 了解两种模型的优缺点。
第5章要点
5.1 固体的表面及其结构 掌握固体表面的概念、类型及特征; 掌握晶体的表面结构特点; 理解粉体、玻璃的表面结构特点。
§10.3 再结晶和晶粒长大 ① 掌握再结晶的概念、推动力、机理、条件; ② 了解再结晶温度的概念; ③ 掌握晶粒长大的概念、推动力、晶粒的稳定 形状; ④ 了解第二相杂质对晶粒长大的影响; ⑤ 掌握二次再结晶的概念; ⑥ 了解二次再结晶的机理,对性能的影响。 §10.4 影响烧结的因素 掌握影响烧结的主要因素,及其基本规律。
01
第7章重点
02
7.1 扩散动力学方程
03
掌握扩散第一定律和扩散第二定律的表达式、适用条件;
04
7.2 菲克定律的应用
05
掌握扩散第二定律的求解方法(记忆基本公式)。
掌握间隙扩散机制和空位扩散机制(思想、适用场合、激活能的区别); 掌握阿累尼乌斯公式;(本征扩散与非本征扩散) 了解扩散系数公式的推导方法。
掌握固溶体的类型; 掌握影响溶解度的因素; 掌握固溶体的结构特点及性能特点; 了解固溶体的研究方法。
3.5 固溶体
掌握非化学计量化合物、色心等概念; 理解几类非化学计量化合物的特点、结构。
3.6 非化学计量化合物
第4章要点 4.1 熔体的结构 掌握液态金属的结构特点、相起伏的概念; 掌握硅酸盐熔体的结构特点、聚合物的概念及形成。(影响因素) 4.2 熔体的性质 掌握粘度、表面张力、特征温度、硼反常现象、混合碱效应等概念。 (粘度-温度关系)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章绪论1.材料科学与工程的四个基本要素解:制备与加工、组成与结构、性能与应用、材料的设计与应用2.金属﹑无机非金属材料﹑高分子材料的基本特性解:①金属材料的基本特性:a.金属键;b.常温下固体,熔点较高;c.金属不透明,具有光泽;d.纯金属范性大、展性、延性大;e.强度较高;f.导热性、导电性好;g.多数金属在空气中易氧化。
②无机非金属材料的基本性能:a.离子键、共价键及其混合键;b.硬而脆;c.熔点高、耐高温,抗氧化;d.导热性和导电性差;e.耐化学腐蚀性好;f.耐磨损;g.成型方式:粉末制坯、烧结成型。
③高分子材料的基本特性:a.共价键,部分范德华键;b.分子量大,无明显熔点,有玻璃化转变温度(Tg)和粘流温度(Tf);c.力学状态有三态:玻璃态、高弹态和粘流态;d.质量轻,比重小;e.绝缘性好;f.优越的化学稳定性;g.成型方法较多。
第2章物质结构基础1.在多电子的原子中,核外电子的排布应遵循哪些原则?解:泡利不相容原理、能量最低原理、洪特规则2.电离能及其影响电离能的因素解:电离能:从孤立原子中,去除束缚最弱的电子所需外加的能量。
影响因素:①同一周期,核电荷增大,原子半径减小,电离能增大;②同一族,原子半径增大,电离能减小;③电子构型的影响,惰性气体;非金属;过渡金属;碱金属; 3.混合键合实例解:石墨:同一层碳原子之间以共价键结合,层与层之间以范德华力结合;高分子:同一条链原子之间以共价键结合,链与链之间以范德华力结合。
4.将离子键,共价键,金属键按有无方向性进行分类,简单说明理由有方向性:共价键无方向性:离子键,金属键③金属键:正离子排列成有序晶格,每个原子尽可能同更多的原子相结合,形成低能量的密堆结构,正离子之间相对位置的改变不破坏电子与正离子间的结合力,无饱和性又无方向性。
②共价键:共用电子云最大重叠,有方向性③离子键:正负离子相间排列,构成三维晶体结构,无方向性和饱和性5.简述离子键,共价键,金属键的区别6.为什么共价键材料密度通常要小于离子键或金属键材料金属密度高的两个原因:第一,金属有较高的相对原子质量。
第二,金属键没有方向性,原子趋于密集排列。
7.影响原子(离子)间距的因素:(1)温度升高, 原子间距越大, 热膨胀性;(2)离子价负离子的半径 > 其原子半径 > 正离子的半径(3)键能增强,原子距离缩短,键长减少( C-C 单, 双, 叁键);(4)相邻原子的数目 (配位数)配位数增加,相邻原子的电子斥力越大, 原子间距增大。
相邻原子的数目越多,原子间距(结合原子或离子有效半径)越大。
8.原子的电子排布式按照能级写出N、O、Si、Fe、Cu、Br原子的电子排布。
解:N:1s22s22p3 O:1s22s22p4 Si:1s22s22p63s23p 2Fe:1s22s22p63s23p63d64s2 Cu:1s22s22p63s23p63d104s1Br:1s22s22p63s23p63d104s24p59.比较金属材料、陶瓷材料、高分子材料、复合材料在结合键上的差别。
解:①金属材料:简单金属(指元素周期表上主族元素)的结合键完全为金属键,过渡族金属的结合键为金属键和共价键的混合,但以金属键为主。
②陶瓷材料:陶瓷材料是一种或多种金属同一种非金属(通常为氧)相结合的化合物,其主要结合方式为离子键,也有一定成分的共价键。
③高分子材料:高分子材料中,大分子内的原子之间结合方式为共价键,而大分子与大分子之间的结合方式为分子键和氢键。
④复合材料:复合材料是由二种或者二种以上的材料组合而成的物质,因而其结合键非常复杂,不能一概而论。
10.比较键能大小,简述各种结合键的主要特点,简述结合键类型及键能大小对材料的熔点﹑密度﹑导电性﹑导热性﹑弹性模量和塑性有何影响。
解:键能大小:化学键能 > 物理键能共价键≥离子键 >金属键 >氢键 >范德华力共价键中:叁键键能 >双键键能 >单键键能结合键的主要特点:①金属键,由金属正离子和自由电子,靠库仑引力结合,电子的共有化,无饱和性,无方向性;②离子键以离子为结合单元,无饱和性,无方向性;③共价键共用电子对,有饱和性和方向性;④范德华力,原子或分子间偶极作用,无方向性,无饱和性;⑤氢键,分子间作用力,氢桥,有方向性和饱和性。
结合键类型及键能大小对材料的熔点﹑密度﹑弹性模量和塑性的影响:①结合键的键能大小决定材料的熔点高低,其中纯共价键的金刚石有最高的熔点,金属的熔点相对较低,这是陶瓷材料比金属具有更高热稳定性的根本原因。
金属中过渡金属具有较高的熔点,这可能是由于这些金属的内壳层电子没有充满,是结合键中有一定比例的共价键。
具有二次键结合的材料如聚合物等,熔点偏低。
②密度与结合键类型有关,金属密度最高,陶瓷材料次之,高分子材料密度最低。
金属的高密度有两个原因:一个是由于金属原子有较高的相对原子质量,另一个原因是因为金属键的结合方式没有方向性,所以金属原子中趋向于密集排列,金属经常得到简单的原子密排结构。
离子键和共价键结合时的情况,原子排列不可能非常致密,所以陶瓷材料的密度比较低。
高分子中由于是通过二次键结合,分子之间堆垛不紧密,加上组成的原子质量比较小,所以其密度最低。
③弹性模量是表征材料在发生弹性变形时所需要施加力的大小。
结合键的键能是影响弹性模量的主要因素,键能越大,则弹性模量越大。
陶瓷250~600GPa,金属70~350GPa,高分子0.7~3.5GPa。
④塑性是一种在某种给定载荷下,材料产生永久变形的材料特性。
材料的塑性也与结合键类型有关,金属键结合的材料具有良好的塑性,而离子键、共价键的材料的塑性变形困难,所以陶瓷材料的塑性很差,高分子材料具有一定的塑性。
11.晶体的共同性质1)确定的熔点温度升高到某一值,排列方式解体,原子成无规则堆积,呈现液体;2)自发形成规则多面体外形的能力;3) 稳定性(能量最低状态);4) 各向异性(不同方向, 物理性能不同);5) 均匀性 (一块晶体各部分的宏观性质相同)12.名词解释:致密度:晶胞中原子体积的总和与晶胞体积之比。
13.同素异构转变,并举例说明。
解:同素异构转变:改变温度或压力等条件下,固体从一种晶体结构转变成另一种晶体结构。
例:铁在不同温度下晶体结构不同, < 906℃体心立方结构,α- Fe 906~1401℃面心立方结构,γ- Fe 1401℃~熔点(1540 ℃)体心立方结构,δ- Fe 高压下(150kPa) 密排六方结构,ε-Fe14.按键合类型,晶体分哪几类?各自的键合类型和主要特点如何?解:按键合类型,晶体分为:金属晶体、离子晶体、共价晶体和分子晶体。
①金属晶体:金属键结合;失去外层电子的金属离子与自由电子的吸引;无方向性和饱和性;低能量密堆结构。
(大多数金属晶体具有面心立方,体心立方和密排六方结构,金属晶体的原子排列比较紧密,其中面心立方和密排六方结构的配位数和致密度最高。
)②离子晶体:离子键结合,无方向性和饱和性;正离子周围配位多个负离子,离子的堆积受邻近质点异号电荷及化学量比限制;堆积形式决定于正负离子的电荷数和正负相对大小。
(硬度高、强度大、熔点和沸点高、热膨胀系数小、脆性大、绝缘高等特点。
)③共价晶体:共价键结合,具有方向性和饱和性;配位数和方向受限制,晶体的配位数为(8-N)。
N表示原子最外层的电子数。
(强度高、硬度高、脆性大、熔点高、沸点高、挥发性低、导电能力较差和结构稳定等特点。
配位数比金属晶体和离子晶体低)④分子晶体:范德华键合氢键结合;组元为分子,仅有范德华键时,无方向性和饱和性,趋于密堆,分子对称性较低以及极性分子永久偶极相互作用,限制了堆砌方式;有氢键时,有方向性和饱和性。
15.2-1516书中各例题(100) ,(111),(112)的晶面间距。
属于立方晶系d=a/√h2+k2+l2,面心立方j、k、l不全为奇数或不全为偶数时d=a/2√h2+k2+l2∴(100)面, d=a/2√h2+k2+l22=0.1825nm(111)面,d=a/√h2+k2+l2=0.2107nm(112)面,d=a/2√h2+k2+l2=0.4470nm19. 2-39在温度为912℃,铁从bcc转到fcc。
此温度时铁的两种结构的原子半径分别为0.126nm和0.129nm,(1)求其变化时的体积变化V/O。
从室温加热到铁1000℃,铁的体积变化?解:(1) bcc N1=2 fcc N2=4ρ1=(N1/Na)M Fe/a31,ρ2=(N2/Na)M Fe/a32∴ρ1/ρ2= N1a32/ N2a31=0.986VO = (V1−V2)/V1=1−V2/ V1∴Vo =1−0.986=0.014 ∴其变化时的体积变化为0.014。
(2)912℃时,由bcc转变为fcc,体积减小;912℃-1000℃,受热膨胀,体积增大20. 计算面心立方、体心立方和密排六方晶胞的致密度21. 计算(a)面心立方金属的原子致密度;(b)面心立方化合物NaCl的离子致密度(离子半径r(Na+)=0.097,r(Cl-)=0.181);(c)由计算结果,可以引出什么结论?(c)结论:原子大小相同时,致密度与原子的大小无关;当有不同种类的原子出现时,其原子的相对大小必然影响致密度。
22.有序合金的原子排列有何特点? 这种排列和结合键有什么关系?解:特点:各组元质点分别按照各自的布拉菲点阵排列,称为分点阵,整个固溶体由各组元的分点阵组成的复杂点阵,称为超点阵或超结构。
23 2-5724.如何根据固溶体密度判断固溶体类型ρc<ρe间隙式固溶体ρc=ρe置换式固溶体ρc<ρe缺位式固溶体25.举例说明非化学计量化合物判断其正负离子空缺情况组分偏移化学式的化合物即为非化学计量化合物如FeO中Fe2+氧化成Fe3+则形成阳离子空位26.书上各例题27.铝为面心立方晶体,摩尔质量为26.97原子半径为0.143nm,求铝的密度?ρc=N*M/Na*V28.晶体缺陷的分类。
肖脱基缺陷(Schottky Defect) 弗仑克尔缺陷(Frenkel Defect):点缺陷对晶体性质的影响解:肖脱基缺陷:有空位,无间隙原子,原子逃逸到晶体外表面或内界面(晶界)。
弗仑克尔缺陷:同时形成等量的空位和间隙原子,空位和间隙原子对其数量远少于肖脱基(空位)缺陷。
点缺陷对晶体性质的影响:点缺陷存在和空位运动,造成小区域的晶格畸变。
1)使材料电阻增加定向流动的电子在点缺陷处受到非平衡力,使电子在传导中的散射增加; 2)加快原子的扩散迁移空位的迁移伴随原子的反向运动; 3)使材料体积增加,密度下降 4)比热容增大附加空位生成焓 5)改变材料力学性能间隙原子和异类原子的存在,增加位错运动阻力,使强度提高,塑性下降。