【期末试卷】湖北省黄冈市区学校2015-2016学年八年级上期末数学试卷

合集下载

2015-2016学年湖北省武汉市部分学校联考九年级(上)期末数学试卷

2015-2016学年湖北省武汉市部分学校联考九年级(上)期末数学试卷

2015-2016学年湖北省武汉市部分学校联考九年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.将方程x2﹣8x=10化为一元二次方程的一般形式,其中二次项系数为1,一次项系数、常数项分别是()A.﹣8、﹣10B.﹣8、10C.8、﹣10D.8、102.如图汽车标志中不是中心对称图形的是()A.B.C.D.3.袋子中装有10个黑球、1个白球,它们除颜色外无其他差别,随机从袋子中摸出一个球,则()A.这个球一定是黑球B.摸到黑球、白球的可能性的大小一样C.这个球可能是白球D.事先能确定摸到什么颜色的球4.抛物线y=﹣3(x﹣1)2+2的对称轴是()A.x=1B.x=﹣1C.x=2D.x=﹣25.一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是绿灯的概率是()A.B.C.D.6.如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为()A.50°B.80°C.100°D.130°7.圆的直径为10cm,如果点P到圆心O的距离是d,则()A.当d=8cm时,点P在⊙O内B.当d=10cm时,点P在⊙O上C.当d=5cm时,点P在⊙O上D.当d=6cm时,点P在⊙O内8.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是13,则每个支干长出()A.2根小分支B.3根小分支C.4根小分支D.5根小分支9.关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是()A.m≤3B.m<3C.m<3且m≠2D.m≤3且m≠2 10.如图,扇形OAB的圆心角的度数为120°,半径长为4,P为弧AB上的动点,PM⊥OA,PN⊥OB,垂足分别为M、N,D是△PMN的外心.当点P运动的过程中,点M、N分别在半径上作相应运动,从点N离开点O时起,到点M到达点O时止,点D运动的路径长为()A.πB.πC.2D.2二、填空题(本大题共6个小题,每小题3分,共18分)11.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是.12.如图,转盘中8个扇形的面积都相等,任意转动转盘1次.当转盘停止转动时,指针指向大于5的数的概率为.13.某村种的水稻前年平均每公顷产7 200kg,今年平均每公顷产8 450kg.设这两年该村水稻每公顷产量的年平均增长率为x,根据题意,所列方程为.14.在直角坐标系中,将抛物线y=﹣x2﹣2x先向下平移一个单位,再向右平移一个单位,所得新抛物线的解析式为.15.如图,要拧开一个边长为a=12mm的六角形螺帽,扳手张开的开口b至少要mm.16.我们把a、b、c三个数的中位数记作Z|a,b,c|,直线y=kx+(k>0)与函数y=Z|x2﹣1,x+1,﹣x+1|的图象有且只有2个交点,则k的取值为.三、解答题(共8题,共72分)17.(8分)已知3是一元二次方程x2﹣2x+a=0的一个根,求a的值和方程的另一根.18.(8分)有6张看上去无差别的卡片,上面分别写着1、2、3、4、5、6(1)一次性随机抽取2张卡片,用列表或画树状图的方法求出“两张卡片上的数都是偶数”的概率(2)随机摸取1张后,放回并混在一起,再随机抽取1张,直接写出“第二次取出的数字小于第一次取出的数字”的概率.19.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,AD交⊙O于点E(1)求证:AC平分∠DAB(2)连接CE,若CE=6,AC=8,直接写出⊙O直径的长.20.(8分)如图,正方形ABCD和直角△ABE,∠AEB=90°,将△ABE绕点O旋转180°得到△CDF.(1)在图中画出点O和△CDF,并简要说明作图过程;(2)若AE=12,AB=13,求EF的长.21.(8分)图中是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,建立如图所示的平面直角坐标系:(1)求拱桥所在抛物线的解析式;(2)当水面下降1m时,则水面的宽度为多少?22.(10分)用一段长32m的篱笆和长8m的墙,围成一个矩形的菜园.(1)如图1,如果矩形菜园的一边靠墙AB,另三边由篱笆CDEF围成①设DE等于xm,直接写出菜园面积y与x之间的函数关系式,并写出自变量的取值范围;②菜园的面积能不能等于110m2?若能,求出此时x的值;若不能,请说明理由;(2)如图2,如果矩形菜园的一边由墙AB和一节篱笆BF构成,另三边由篱笆ADEF 围成,求菜园面积的最大值.23.(10分)如图,∠BAC=60°,∠CDE=120°,AB=AC,DC=DE,连接BE,P为BE的中点.(1)如图1,若A、C、D三点共线,求∠P AC的度数;(2)如图2,若A、C、D三点不共线,求证:AP⊥DP;(3)如图3,若点C线段BE上,AB=1,CD=2,请直接写出PD的长度.24.(12分)问题探究:在直线y=x+3上取点A(2,4)、B,使∠AOB=90°,求点B的坐标.小明同学是这样思考的,请你和他一起完成如下解答:将线段OA绕点O逆时针旋转90°得到OC,则点C的坐标为:所以,直线OC的解析式为:点B为直线AB与直线OC的交点,所以,点B的坐标为:问题应用:已知抛物线y=﹣的顶点P在一条定直线l上运动.(1)求直线l的解析式;(2)抛物线与直线l的另一个交点为Q,当∠POQ=90°时,求m的值.2015-2016学年湖北省武汉市部分学校联考九年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.将方程x2﹣8x=10化为一元二次方程的一般形式,其中二次项系数为1,一次项系数、常数项分别是()A.﹣8、﹣10B.﹣8、10C.8、﹣10D.8、10【思路探索】先化成一元二次方程的一般形式,再根据方程的特点得出一次项系数和常数项即可.【思路探索】解:x2﹣8x=10,x2﹣8x﹣10=0,所以一次项系数、常数项分别为﹣8、﹣10,故选:A.【解后反思】本题考查了对一元二次方程的一般形式的应用,把方程换成一般形式是解此题的关键,注意:说各个项的系数带着前面的符号.2.如图汽车标志中不是中心对称图形的是()A.B.C.D.【思路探索】根据中心对称图形的概念求解.【思路探索】解:A、是中心对称图形.故错误;B、不是中心对称图形.故正确;C、是中心对称图形.故错误;D、是中心对称图形.故错误.故选:B.【解后反思】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.袋子中装有10个黑球、1个白球,它们除颜色外无其他差别,随机从袋子中摸出一个球,则()A.这个球一定是黑球B.摸到黑球、白球的可能性的大小一样C.这个球可能是白球D.事先能确定摸到什么颜色的球【思路探索】根据概率公式先求出摸出黑球和白球的概率,再进行比较即可得出答案.【思路探索】解:∵布袋中有除颜色外完全相同的11个球,其中10个黑球、1个白球,∴从布袋中随机摸出一个球是黑球的概率为,摸出一个球是白球的概率为,∴A、这个球一定是黑球,错误;B、摸到黑球、白球的可能性的大小一样,错误;C、这个球可能是白球,正确;D、事先能确定摸到什么颜色的球,错误;故选:C.【解后反思】此题考查了可能性大小以及概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4.抛物线y=﹣3(x﹣1)2+2的对称轴是()A.x=1B.x=﹣1C.x=2D.x=﹣2【思路探索】根据二次函数的顶点式直接进行解答即可.【思路探索】解:令x﹣1=0,则x=1.故选:A.【解后反思】本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键.5.一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是绿灯的概率是()A.B.C.D.【思路探索】让绿灯亮的时间除以时间总数60即为所求的概率.【思路探索】解:一共是60秒,绿的是25秒,所以绿灯的概率是.故选:C.【解后反思】本题考查概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.6.如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为()A.50°B.80°C.100°D.130°【思路探索】首先根据圆周角与圆心角的关系,求出∠BAD的度数;然后根据圆内接四边形的对角互补,用180°减去∠BAD的度数,求出∠BCD的度数是多少即可.【思路探索】解:∵∠BOD=100°,∴∠BAD=100°÷2=50°,∴∠BCD=180°﹣∠BAD=180°﹣50°=130°故选:D.【解后反思】(1)此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,要熟练掌握.(2)此题还考查了圆内接四边形的性质,要熟练掌握,解答此题的关键是要明确:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).7.圆的直径为10cm,如果点P到圆心O的距离是d,则()A.当d=8cm时,点P在⊙O内B.当d=10cm时,点P在⊙O上C.当d=5cm时,点P在⊙O上D.当d=6cm时,点P在⊙O内【思路探索】先得到圆的半径为5cm,根据点与圆的位置关系的判定方法得到当d>5cm 时,点P在⊙O外;当d=5cm时,点P在⊙O上;当d<5cm时,点P在⊙O内,然后对各选项进行判断.【思路探索】解:∵圆的直径为10cm,∴圆的半径为5cm,∴当d>5cm时,点P在⊙O外;当d=5cm时,点P在⊙O上;当d<5cm时,点P在⊙O内.故选:C.【解后反思】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.8.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是13,则每个支干长出()A.2根小分支B.3根小分支C.4根小分支D.5根小分支【思路探索】设每个支干长出x个小分支,利用主干、支干和小分支的总数是13列方程得到1+x+x•x=13,整理得x2+x﹣12=0,再利用因式分解法解方程求出x,然后检验即可得到x的值.【思路探索】解:设每个支干长出x个小分支,根据题意得1+x+x•x=13,整理得x2+x﹣12=0,解得x1=3,x2=﹣4(舍去).答:每个支干长出3个小分支.故选:B.【解后反思】本题考查了一元二次方程的应用:列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.9.关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是()A.m≤3B.m<3C.m<3且m≠2D.m≤3且m≠2【思路探索】根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac的意义得到m﹣2≠0且△≥0,即22﹣4×(m﹣2)×1≥0,然后解不等式组即可得到m的取值范围.【思路探索】解:∵关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,∴m﹣2≠0且△≥0,即22﹣4×(m﹣2)×1≥0,解得m≤3,∴m的取值范围是m≤3且m≠2.故选:D.【解后反思】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10.如图,扇形OAB的圆心角的度数为120°,半径长为4,P为弧AB上的动点,PM⊥OA,PN⊥OB,垂足分别为M、N,D是△PMN的外心.当点P运动的过程中,点M、N分别在半径上作相应运动,从点N离开点O时起,到点M到达点O时止,点D运动的路径长为()A.πB.πC.2D.2【思路探索】根据题意画出点N离开点O时,到点M到达点O时的图形,得到点D运动的轨迹,根据弧长公式计算即可.【思路探索】解:当点N与点O重合时,∠P′OA=30°,OD=OP′=2,当点M与点O重合时,∠P′′OB=30°,OD=OP′′=2,∵D是△PMN的外心,∴点D在线段PM的垂直平分线上,又PM⊥OA,∴D为OP的中点,即OD=OP=2,∴点D运动的轨迹是以点O为圆心,2为半径,圆心角为60°的弧,弧长为:=.故选:A.【解后反思】本题考查的是弧长的计算,掌握弧长的计算公式l=、根据题意确定点D的运动轨迹是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是(3,﹣2).【思路探索】根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,即可得出答案.【思路探索】解:根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,∴点(﹣3,2)关于原点对称的点的坐标是(3,﹣2),故答案为(3,﹣2).【解后反思】本题主要考查了平面直角坐标系内两点关于原点对称横纵坐标互为相反数,难度较小.12.如图,转盘中8个扇形的面积都相等,任意转动转盘1次.当转盘停止转动时,指针指向大于5的数的概率为.【思路探索】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【思路探索】解:∵共8个数,大于5的有3个,∴P(大于5)=;故答案为:.【解后反思】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.某村种的水稻前年平均每公顷产7 200kg,今年平均每公顷产8 450kg.设这两年该村水稻每公顷产量的年平均增长率为x,根据题意,所列方程为7200(1+x)2=8450.【思路探索】由题意得:第一年水稻产量7200(1+x),第二年水稻产量:7200(1+x)(1+x),进而可得方程7200(1+x)2=8450.【思路探索】解:设这两年该村水稻每公顷产量的年平均增长率为x,根据题意得:7200(1+x)2=8450,故答案为:7200(1+x)2=8450.【解后反思】此题主要考查了由实际问题抽象出一元二次方程,关键是掌握求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.14.在直角坐标系中,将抛物线y=﹣x2﹣2x先向下平移一个单位,再向右平移一个单位,所得新抛物线的解析式为y=﹣x2.【思路探索】先利用配方法得到抛物线y=﹣x2﹣2x的顶点坐标为(﹣1,1),再根据点利用的规律得到点(﹣1,1)平移后所得对应点的坐标为(0,0),然后根据顶点式写出平移后抛物线的解析式.【思路探索】解:抛物线y=﹣x2﹣2x=﹣(x+1)2+1,它的顶点坐标为(﹣1,1),把点(﹣1,1)先向下平移一个单位,再向右平移一个单位得到对应点的坐标为(0,0),所以新的抛物线解析式是y=﹣x2.故答案为y=﹣x2.【解后反思】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.15.如图,要拧开一个边长为a=12mm的六角形螺帽,扳手张开的开口b至少要12 mm.【思路探索】根据题意,即是求该正六边形的边心距的2倍.构造一个由半径、半边、边心距组成的直角三角形,且其半边所对的角是30度,再根据锐角三角函数的知识求解.【思路探索】解:如图所示:设正多边形的中心是O,其一边是AB,∴∠AOB=∠BOC=60°,∴OA=OB=AB=OC=BC,∴四边形ABCO是菱形,∵AB=12mm,∠AOB=60°,∴cos∠BAC=,∴AM=12×=6,∵OA=OC,且∠AOB=∠BOC,∴AM=MC=AC,∴AC=2AM=12mm.故答案为:12.【解后反思】本题考查了正多边形和圆的知识、三角函数;构造一个由半径、半边、边心距组成的直角三角形,熟练运用锐角三角函数进行计算是解决问题的关键.16.我们把a、b、c三个数的中位数记作Z|a,b,c|,直线y=kx+(k>0)与函数y=Z|x2﹣1,x+1,﹣x+1|的图象有且只有2个交点,则k的取值为<k≤1或k=.【思路探索】画出函数y=Z|x2﹣1,x+1,﹣x+1|的图象,要使直线y=kx+(k>0)与函数y=Z|x2﹣1,x+1,﹣x+1|的图象有且只有2个交点,只需直线经过(2,3)和经过(2,)之间.【思路探索】解:函数y=Z|x2﹣1,x+1,﹣x+1|的图象如图所示∵直线y=kx+(k>0)与函数y=Z|x2﹣1,x+1,﹣x+1|的图象有且只有2个交点,当直线y=kx+(k>0)经过点(2,3)时,则3=2k+,解得k=,当直线y=kx+(k>0)经过点(﹣1,0)时,k=,当k=1时,平行于y=x+1,与函数y=Z|x2﹣1,x+1,﹣x+1|的图象也有且仅有两个交点;∴直线y=kx+(k>0)与函数y=Z|x2﹣1,x+1,﹣x+1|的图象有且只有2个交点,则k的取值为<k≤1或k=.故答案为<k≤1或k=.【解后反思】本题考查了一次函数的性质以及中位数的概念,数形结合思想的应用是解题的关键.三、解答题(共8题,共72分)17.(8分)已知3是一元二次方程x2﹣2x+a=0的一个根,求a的值和方程的另一根.【思路探索】根据一元二次方程的解的定义把x=3代入x2﹣2x+a=0可求出a的值,然后把a的值代入方程得到x2﹣2x﹣3=0,再利用因式分解法解方程即可得到方程的另一根.【思路探索】解:将x=3代入x2﹣2x+a=0中得32﹣6+a=0,解得a=﹣3,将a=﹣3代入x2﹣2x+a=0中得:x2﹣2x﹣3=0,解得x1=3,x2=﹣1,所以a=﹣3,方程的另一根为﹣1.【解后反思】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.18.(8分)有6张看上去无差别的卡片,上面分别写着1、2、3、4、5、6(1)一次性随机抽取2张卡片,用列表或画树状图的方法求出“两张卡片上的数都是偶数”的概率(2)随机摸取1张后,放回并混在一起,再随机抽取1张,直接写出“第二次取出的数字小于第一次取出的数字”的概率.【思路探索】(1)用列表法举出所有情况,看两张卡片上的数都是偶数的情况占总情况的多少即可;(2)画出树形图即可求出第二次取出的数字小于第一次取出的数字的概率.【思路探索】解:(1)依题意列表如下:12345612,13,14,15,16,121,23,24,25,26,231,32,34,35,36,341,42,43,45,46,451,52,53,54,56,561,62,63,64,65,6由上表可知,随机抽取2张卡片可能出现的结果有15个,它们出现的可能性相等,其中“两张卡片上的数都是偶数”的结果有3个,所以P(两张卡片上的数都是偶数)=;(2)画树形图得:随机抽取2张卡片可能出现的结果有36个,第二次取出的数字小于第一次取出的数字有15种,所以其概率==.【解后反思】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.19.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,AD交⊙O于点E(1)求证:AC平分∠DAB(2)连接CE,若CE=6,AC=8,直接写出⊙O直径的长.【思路探索】(1)连接OC,根据切线的性质和已知求出OC∥AD,求出∠OCA=∠CAO =∠DAC,即可得出答案;(2)根据圆周角定理和圆心角、弧、弦之间的关系求出CE=BC=6,根据勾股定理求出AB即可.【思路探索】(1)证明:连接OC,∵CD是⊙O的切线,∴CD⊥OC,又∵CD⊥AD,∴AD∥OC,∴∠CAD=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠CAD=∠CAO,即AC平分∠DAB;(2)解:∵∠CAD=∠CAO,∴=,∴CE=BC=6,∵AB为直径,∴∠ACB=90°,由勾股定理得:AB===10,即⊙O直径的长是10.【解后反思】本题考查了切线的性质,平行线的性质和判定,勾股定理,圆周角定理,圆心角、弧、弦之间的关系的应用,能灵活运用知识点进行推理是解此题的关键.20.(8分)如图,正方形ABCD和直角△ABE,∠AEB=90°,将△ABE绕点O旋转180°得到△CDF.(1)在图中画出点O和△CDF,并简要说明作图过程;(2)若AE=12,AB=13,求EF的长.【思路探索】(1)利用旋转的性质分别得出对应点位置进而得出答案;(2)首先过点O作OG⊥OE与EB的延长线交于点G,利用正方形的性质结合全等三角形的判定方法得出△EAO≌△GBO(ASA),得出△GEO为等腰直角三角形,进而得出答案.【思路探索】解:(1)如图所示:连接AC,BD,交于点O.连接EO并延长到点F,使OF=OE,连接DF,CF,(2)如图所示:过点O作OG⊥OE与EB的延长线交于点G,∵四边形ABCD为正方形∴OA=OB,∠AOB=∠EOG=90°∴∠AOE=∠BOG在四边形AEBO中∠AEB=∠AOB=90°∴∠EAO+∠EBO=180°=∠EBO+∠GBO∴∠GBO=∠EAO,∴在△EAO和△GBO中,∵∴△EAO≌△GBO(ASA),∴AE=BG,OE=OG.∴△GOE为等腰直角三角形,∴OE=EG=(EB+BG)=(EB+AE)∵AE=12,AB=13,∴BE=5,∴EB+AE=17,∴OE=∴EF=.【解后反思】此题主要考查了旋转变换以及全等三角形的判定与性质以及等腰直角三角形的性质等知识,得出△GEO为等腰直角三角形是解题关键.21.(8分)图中是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,建立如图所示的平面直角坐标系:(1)求拱桥所在抛物线的解析式;(2)当水面下降1m时,则水面的宽度为多少?【思路探索】(1)设出抛物线的解析式,由图中点在抛物线上,用待定系数法求出抛物线解析式;(2)把y=﹣1代入y=﹣x2+2,即可得到结论.【思路探索】解:(1)设这条抛物线的解析式为y=ax2+bx+c(a≠0).由已知抛物线经过点A(﹣2,0),B(2,0),C(0,2),将三点坐标代入得:解得:a=﹣1,b=0,c=2,故抛物线的解析式为y=﹣x2+2.(2)当y=﹣1时,即﹣x2+2=﹣1,解得:x=±,故当水面下降1m时,则水面的宽度为2m.【解后反思】本题主要考查了用待定系数法求二次函数的解析式,根据图中信息得出函数经过的点的坐标是解题的关键.22.(10分)用一段长32m的篱笆和长8m的墙,围成一个矩形的菜园.(1)如图1,如果矩形菜园的一边靠墙AB,另三边由篱笆CDEF围成①设DE等于xm,直接写出菜园面积y与x之间的函数关系式,并写出自变量的取值范围;②菜园的面积能不能等于110m2?若能,求出此时x的值;若不能,请说明理由;(2)如图2,如果矩形菜园的一边由墙AB和一节篱笆BF构成,另三边由篱笆ADEF 围成,求菜园面积的最大值.【思路探索】(1)①首先表设出DC=(32﹣x)m,进而利用矩形面积公式得出答案;②利用一元二次方程的解法结合①中自变量取值范围得出答案;(2)首先表示出AD的长,再利用矩形面积公式求出答案.【思路探索】解:(1)①由题意可得:设DE等于xm,则DC=(32﹣x)m,故菜园面积y与x之间的函数关系式为:y=(32﹣x)x=﹣x2+16x,(0<x≤8);②若菜园的面积等于110 m2,则﹣x2+16x=110.解得:x1=10,x2=22.因为0<x≤8,所以不能围成面积为110m2的菜园.(2)设DE等于xm,则菜园面积为:y=x(32+8﹣2x)=﹣x2+20x=﹣(x﹣10)2+100(0<x≤20),当x=10时,函数有最大值100.答:当DE长为10 m时,菜园的面积最大,最大值为100 m2.【解后反思】此题主要考查了二次函数的应用,根据题意正确表示出矩形的边长是解题关键.23.(10分)如图,∠BAC=60°,∠CDE=120°,AB=AC,DC=DE,连接BE,P为BE的中点.(1)如图1,若A、C、D三点共线,求∠P AC的度数;(2)如图2,若A、C、D三点不共线,求证:AP⊥DP;(3)如图3,若点C线段BE上,AB=1,CD=2,请直接写出PD的长度.【思路探索】(1)延长AP,DE,相交于点F,利用平行线的判定定理可得AB∥DE,由全等三角形的判定可得△ABP≌△FEP,利用全等三角形的性质和等腰三角形的性质可得结果;(2)延长AP到点F,使PF=AP,连接DF,EF,AD,首先由全等三角形的判定定理可得△BP A≌△EPF,由全等三角形的性质可得AC=FE,利用多边形的内角和定理可得∠ACD=∠FED,可证得△ACD≌△FED,可得AD=FD,可得结论;(3)连接AP,AD,易知∠ACD=90°,所以AD=,在Rt△APD中,∠P AD=30°,所以,PD=.【思路探索】(1)解:如图1,延长AP,DE,相交于点F,∵∠BAC=60°,∠CDE=120°∴∠BAC+∠CDE=180°,∵A,C,D三点共线,∴AB∥DE,∴∠B=∠PEF,∠BAP=∠EFP,在△ABP与△FEP中,,∴△ABP≌△FEP(AAS),∴AB=FE,∵AB=AC,DC=DE,∴AD=DF∴∠P AC=∠PFE,∵∠CDE=120°,∴∠P AC=30°;(2)证明:如图2,延长AP到点F,使PF=AP,连接DF,EF,AD,在△BP A与△EPF中,,∴△BP A≌△EPF(SAS),∴AB=FE,∠PBA=∠PEF,∵AC=BC,∴AC=FE,在四边形BADE中,∵∠BAD+∠ADE+∠DEB+∠EBA=360°,∵∠BAC=60°,∠CDE=120°,∴∠CAD+∠ADC+∠DEB+∠EBA=180°.∵∠CAD+∠ADC+∠ACD=180°,∴∠ACD=∠DEB+∠EBA,∴∠ACD=∠FED,在△ACD与△FED中,,∴△ACD≌△FED(SAS),∴AD=FD,∵AP=FP,∴AP⊥DP;(3)解:连接AP,AD,∵∠BAC=60°,AB=AC,∴△ABC为等边三角形,∴∠ACB=60°,∵DC=DE,∠CDE=120°,∴∠DCE=30°,∴∠ACD=90°,∵AB=AC=1,CD=2,∴AD=,由(2)知,AP⊥PD,∴A、C、P、D四点共圆,∵∠PCD=30°,∴∠P AD=30°,∵在Rt△APD中,∠P AD=30°,∴PD=.【解后反思】本题主要考查了全等三角形的性质、等腰三角形的性质和勾股定理等,作出恰当的辅助线,证得三角形全等是解答此题的关键.24.(12分)问题探究:在直线y=x+3上取点A(2,4)、B,使∠AOB=90°,求点B的坐标.小明同学是这样思考的,请你和他一起完成如下解答:将线段OA绕点O逆时针旋转90°得到OC,则点C的坐标为:(﹣4,2)所以,直线OC的解析式为:y=﹣x点B为直线AB与直线OC的交点,所以,点B的坐标为:(﹣3,)问题应用:已知抛物线y=﹣的顶点P在一条定直线l上运动.(1)求直线l的解析式;(2)抛物线与直线l的另一个交点为Q,当∠POQ=90°时,求m的值.【思路探索】根据旋转的性质,可得OA与OC的关系,根据全等三角形的判定与性质,可得C点坐标,根据待定系数法,可得OC的解析式,根据联立AB与OC,可得方程组,根据解方程组,可得B点坐标;(1)根据配方法,可得P点坐标,根据P点横坐标与纵坐标的关系,可得直线l的解析式;(2)根据联立抛物线与直线l,可得方程组,根据解方程组,可得P,Q点的坐标,根据旋转的性质,可得K点坐标,根据待定系数法,可得OK的解析式,根据联立OK与直线l,可得方程组,根据解方程组,可得m的值.【思路探索】解:如图1,将线段OA绕点O逆时针旋转90°得到OC,在△OAD和△OCD中,,△OAD≌△OCD(AAS),CE=AD=2,OE=OD=4,点C的坐标为:(﹣4,2 );直线OC的解析式为:y=﹣x;联立OC与AB,得,解得,点B的坐标为:(﹣3,);故答案为:(﹣4,2),(﹣3,).(1)∵抛物线y=﹣x2+mx﹣m2+m+=﹣(x2﹣2mx+m2)+m+=﹣(x﹣m)2+m+.所以,顶点P的坐标为(m,m+),∴点P在直线y=x+上运动.即直线l的解析式为:y=x+①.(2)因为,点P,Q为直线l与抛物线的交点,所以,加减消元,得x+=﹣(x﹣m)2+m+.解之,得,x1=m,x2=m﹣3.所以,P的坐标为(m,m+),Q的坐标为(m﹣3,).将线段OP绕点O逆时针旋转90°得到OK,得点K的坐标为:(﹣m﹣,m);所以,直线OK的解析式为:y=﹣x②;因为当∠POQ=90°时,点Q在直线OK上.联立①②,得(m+2)=﹣(m﹣3).解得m=1.抛物线与直线l的另一个交点为Q,当∠POQ=90°时,m的值是1.【解后反思】本题考查了二次函数综合题,利用线段旋转的性质得出OC=OA是解题关键,又利用全等三角形的性质得出C点坐标,再利用解方程得出B点坐标;利用配方法得出顶点坐标所在直线是解题关键.。

2015-2016年湖北省孝感市孝南区八年级(上)期末数学试卷含参考答案

2015-2016年湖北省孝感市孝南区八年级(上)期末数学试卷含参考答案

2015-2016学年湖北省孝感市孝南区八年级(上)期末数学试卷一、选择题:本题10小题,每小题3分,共30分,每小题只有一个选项是正确的,请将正确的选项填在后面的答题栏内.1.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.(3分)如果分式的值为0,则x的值是()A.1B.0C.﹣1D.±13.(3分)点M(﹣2,1)关于x轴的对称点N的坐标是()A.(2,1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,﹣1)4.(3分)下列各式由左边到右边的变形中,是分解因式的是()A.m(x﹣y)=mx﹣my B.x2+2x+1=x(x+2)+1C.a2+1=a(a+)D.15x2﹣3x=3x(5x﹣1)5.(3分)如图,AD∥BC,AD=CB,要使△ADF≌△CBE,需要添加的下列选项中的一个条件是()A.AE=CF B.DF=BE C.∠A=∠C D.AE=EF6.(3分)下列运算正确的是()A.2a2+a=3a3B.(﹣a)2÷a=a C.(﹣a)3•a2=﹣a6D.(2a2)3=6a67.(3分)长为9,6,3,4的四根木条,选其中三根组成三角形,选法()A.1种B.2种C.3种D.4种8.(3分)解分式方程+2=,可知方程()A.解为x=2B.解为x=4C.解为x=3D.无解9.(3分)如图,在△ABE中,∠A=105°,AE的垂直平分线MN交BE于点C,且AB+BC=BE,则∠B的度数是()A.45°B.50°C.55°D.60°10.(3分)如图,△ABM与△CDM是两个全等的等边三角形,MA⊥MD.有下列四个结论:(1)∠MBC=25°;(2)∠ADC+∠ABC=180°;(3)直线MB垂直平分线段CD;(4)四边形ABCD是轴对称图形.其中正确结论的个数为()A.1个B.2个C.3个D.4二、填空题:每题3分,共计18分。

湖北省黄石市2023-2024学年四上数学第七单元《条形统计图》部编版基础掌握试卷

湖北省黄石市2023-2024学年四上数学第七单元《条形统计图》部编版基础掌握试卷

湖北省黄石市2023-2024学年四上数学第七单元《条形统计图》部编版基础掌握试卷学校:_______ 班级:__________姓名:_______ 考号:__________(满分:100分时间:45分钟)总分栏题号一二三四五六七总分得分评卷人得分一、认真审题,填一填。

(除标注外,每空1分)1.能清楚地表示数量多少,除了统计表外,还有( )统计图。

2.看图回答:(1)喜欢拼图玩具的有________人.(2)________玩具最受男生欢迎.(3)男生较不喜欢的是________和________两种玩具,它们相差________人.3.当数据的种类不多,但数据又比较大时,用( )统计图表示比较方便。

4.观察统计图,先填写统计表,再回答问题。

(1)某餐厅经营收入情况统计表年份2015201620172018经营收入/万元( )( )( )( )(2)1格代表( )万元。

(3)( )年经营收入最多。

(4)2018年的经营收入比2016年多( )万元。

5.根据下边的统计图回答问题。

(1)图中每小格代表( )人。

(2)参加( )小组的人数最多,参加( )小组的人数最少。

(3)参加书法小组的人数比参加体育小组的人数多( )人,比参加阅读小组的人数少( )人。

6.在一幅条形统计图中,用2厘米长的直条表示8人,用( )厘米长的直条表示48人,用5厘米长的直条表示( )人。

7.根据统计图中数据回答下列问题。

(1)上图每格代表( )人。

(2)喜欢( )的人数最多,喜欢( )的人数最少。

(3)喜欢( )的人数是喜欢( )的人数的4倍。

(4)喜欢足球的人数比喜欢游泳的人数多( )人。

8.在一幅条形统计图上,纵轴1厘米表示20千克,表示100千克的直条应画( )厘米长。

9.看统计图回答问题。

(1)最喜欢游泳的有________人。

(2)最喜欢跑步的比最喜欢踢毽的多________人。

评卷人得分二、仔细推敲,选一选。

2015~2016学年度武昌区部分学校八年级期中联合测试物理试题及答案

2015~2016学年度武昌区部分学校八年级期中联合测试物理试题及答案

2015~2016学年度武昌区部分学校八年级上期中联合测试物理试题一、选择题(请你只选择一项符合题意的答案的字母符号,在答题卡对应符号上用2B铅笔涂黑。

每小题3分,共计54分)1.下列长度的单位换算正确的是(D)A.9.6nm=9.6×10-3=9.6×10-3μmB.9.6cm=9.6cm÷100=0.096mC.9.6cm=9.6×10=96mmD.9.6cm=9.6×10mm=96mm2.下列数值最按近实际情况的是(C)A.人体的正常体温是37.8℃B.人步行的速度约为20m/sC.课桌的高度约为80cmD.正常人10次脉搏的时间约为1min3.为了探究声音的响度与振幅的关系,小枫设计了如图所示的几个实验。

你认为能够完成这个探究目的的是( B )4.美丽的树挂、霜都是怎样形成的?小红在物理老师的指导下完成了下面的实验:如图左,将冰块放于易拉罐中并加入适量的某种物质,用筷子搅拌大约半分钟,用温度计测量罐中混合物的温度,这时观察易拉罐的下部和底部,就会发现白霜(如图右)。

下列有关这个实验说法正确的是( D )A.在易拉罐中加入“某种物质”是水,混合后的温度低于0℃B.在易拉罐中加入“某种物质”是盐,温合后的温度等于0℃C.实验过程中发生了凝固和凝华现象D.实验过程中发生了熔化和凝华现象5.下列关于声现象说法正确的是( C )A.“男低音”和“女高音”歌手同台演出,这里的“低”、“高”指声音的响度B.城市道路两旁修建隔音板是为了从声源处减弱噪声C.人们利用“回声定位”原理制成的声呐系统可探知海洋的深度D.医院中用“B超”诊病是利用声音传递能量6.星期天晚上,小红从家里出去散步,图中描述了她散步过程的距离s(m)与散步所用时间t(min)之间的关系,依据图象,下面描述符合小红散步情景的是( C )A.小红从家出发,到了一个公共阅报栏,看了一会儿报,就回家了B.小红前一半路程的平均速度为75m/minC.小红从家出发到回家,整个过程的平均速度为50m/minD.从家发出,散了一会儿步,就找同学去了,18min后开始返回7.小枫在老师的指导下,做了一个有趣的实验:用纸做的锅装上适量的水,放在酒精灯火焰上烧,水烧开了,而纸锅不会燃烧。

湖北省黄冈市2015-2016学年八年级数学上册期末试题

湖北省黄冈市2015-2016学年八年级数学上册期末试题

浠水县2015年秋季期末调研考试八年级数学试题参考答案一、选择题(每小题3分,共21分)1.A 2.B 3.A 4.D 5.B 6.D 7.A二、填空题(每小题3分,共24分)8.20 9.8 10.1 11.44°12.30%)201(120300120=+-+x x 13.α=β+γ 14.4.8cm 15.151 三、解答下列各题(共75分)16.(1)(2a +3b )(y -z ) (2)(2-a )(2+a )(4+2a )(3)2)6(-+b a (4)(a -2)(a +9)17.解:AE ,CD 的关系为:AE =CD ,AE ⊥CD . ……………………………… 2分(1)在△ABE 和△CBD 中,∵AB =BC ,∠ABE =∠CDB =90°,BE =BD ,∴△ABE ≌△CBD (SAS );∴AE =CD . (4)分(2)延长AE 交CD 于F 点,∵△ABE ≌△CBD ,∴∠A =∠C .∵∠C +∠CDB =90°,∴∠A +∠CDB =90°,∴AE ⊥CD . ……………………………… 6分18.(1)由①得4x +6y = 5③ ……………………………… 3分联立②③解得⎪⎪⎩⎪⎪⎨⎧-==6123y x ……………………………… 5分(2)去分母,得3(3x -1)-2=5 ……………………………… 2分解得9x -3-2=5 ……………………………… 3分所以x =910 ……………………………… 4分经检验,x =910是原方程的解 ……………………………… 5分19.证明:∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ;∴DE =DF . ……………………………… 3分∴D 在线段EF 的垂直平分线上. ……………………………… 4分∵DE ⊥AB ,DF ⊥AC ,∴∠AED =∠AFD =90°.在Rt △ADE 和Rt △ADF 中∴Rt △ADE ≌Rt △ADF (HL ).∴AE =AF . …………………… 6分又∵∠EAD =∠F AD ,AK =AK ;∴△AEK ≌△AFK .∴EK =KF ,∠AKE =∠AKF =90°;∴AD 是线段EF 的垂直平分线.∴AD 垂直平分EF . ……………………………… 8分20.作P 点关于OB 的对称点P 1,连接P 1Q ,交OB 于N ,N 即为所求点.21.解:原式=()()()()a b a b a b a b a b b a a b a 1222252322-⎥⎦⎤⎢⎣⎡-+---÷--……………………… 1分 = ()()ab a a b b a a b a 12923222---÷--=()()()()2321233a b a b a a b b a b a a -----+ ……………………………… 3分 =()()313a b a b a a ---+ ……………………………… 4分=()()()a b a a b a b a b a ++-+--3333 =()a b a a +-32 =23a b -+. ……………………………… 5分∵4,2.a b a b +=⎧⎨-=⎩∴3,1.a b =⎧⎨=⎩……………………………… 7分 ∴当3,1.a b =⎧⎨=⎩时,原式=.313132-=+⨯-……………………………… 8分 22.(1)连结AC , ……………………………… 1分∵AB =AD ,BC =CD ,AC =AC ;∴△ABC ≌Rt △AD C (SSS ) ……………………………… 4分 ∴∠B =∠D .又∵CE =CF ,BC =CD ,∴BE =D F .又∵AB =AD ,∠B =∠D ;∴△ABE ≌△ADF (S A S ). ……………………………… 5分(2)由∠B =∠D 同理可证得∠A =∠C ……………………………… 6分∵△ABE ≌△ADF∴∠BAE =∠DAF =25°.∴∠EAF =80° ……………………………… 7分又∵CG ∥EA∴∠AHC =100° ……………………………… 8分23.(1)设乙队单独做需要m 天完成任务.根据题意得401×20+m1×(30+20)=1. ……………………………… 1分解得m =100. (2)经检验m =100是原方程的解. ……………………………… 3分答:乙队单独做需要100天完成任务. ……………………………… 4分(2)根据题意得40x +100y =1. 整理得 y =100-25x . ……………………………… 5分 ∵y <70,∴100-25x <70. 解得 x >12. ……………………………… 6分又∵x <15且为整数,∴x =13或14. ……………………………… 7分当x =13时,y 不是整数;∴x =13不符合题意,舍去.当x =14时,y =100-35=65答:甲队实际做14天,乙队实际做65天. ……………………………… 8分24.证明:(1)∵3-+b a +(a -2b )2=0,∴⎩⎨⎧=-=-+0203b a b a ,解得⎩⎨⎧==12b a , ∴A (1,3),B (2,0),……………………2分作AE ⊥OB 于点E ,∵A (1,3),B (2,0),∴OE =1,BE =2-1=1,在△AEO 与△AEB 中,∵AE =AE ,∠AEO =∠AEB =90°,OE =BE ,∴△AEO ≌△AEB ,∴AO =AB . ……………………………… 4分(2)证明:∵∠CAD =∠OAB ,∴∠CAD +∠BAC =∠OAB +∠BAC ,即∠OAC =∠BAD , …………… 5分在△AOC 与△ABD 中,∵AO =AB ,∠OAC =∠BAD ,AC =AD ,∴△AOC ≌△ABD (SAS ). ……………………………… 7分(3)解:点P 在y 轴上的位置不发生改变. ……………………………… 8分理由:设∠AOB=∠ABO=α,∵由(2)知,△AOC≌△ABD,∴∠ABD=∠AOB=α,∵OB=2,∠OBP=180°-∠ABO-∠ABD=180°-2α为定值,∠POB=90°,∴OP长度不变,∴点P在y轴上的位置不发生改变.………………………………10分。

湖北省黄冈市英才学校2014-2015学年八年级上期中考试数学试题及答案

湖北省黄冈市英才学校2014-2015学年八年级上期中考试数学试题及答案

黄冈市英才学校二○一四年秋季期中考试八年级数学试题满分:120分时间:120分钟亲爱的同学:沉着应试,认真书写,祝你取得满意成绩!一、选择题(每小题3分,共30分)1. 一个三角形三个内角的度数之比为2:3:4,这个三角形是:A. 直角三角形B.等腰三角形C.锐角三角形D.钝角三角形2.图中的图形中是常见的安全标记,其中是轴对称图形的是:3.点M(1,2)关于x轴对称的点的坐标为:A.(—1,2)B.(-1,-2)C.(1,-2)D.(2,-1)4.列条件中,不能判定△ABC≌△A′B′C′的是:A. AB=A′B′,∠A=∠A′,AC=A′C′B. AB=A′B′,∠A=∠A′,∠B=∠B′C. AB=A′B′,∠A=∠A′,∠C=∠C′D. ∠A=∠A′,∠B=∠B′,∠C=∠C′5.下列说法正确的是:A.等腰三角形的高、中线、角平分线互相重合B.顶角相等的两个等腰三角形全等C.等腰三角形一边不可以是另一边的二倍D.等腰三角形的两个底角相等6.若等腰三角形中有一个角等于,则这个等腰三角形的顶角的度数为:A. 50°B. 80°C. 65°或50°D. 50°或80°7 .如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是:A BDCMNA.∠M=∠NB.AM=CNC.AB=CDD.AM ∥CN 8.以下叙述中不正确的是:A.等边三角形的每条高线都是角平分线和中线B.有一内角为60°的等腰三角形是等边三角形C.等腰三角形一定是锐角三角形D.在一个三角形中,如果两条边不相等,那么它们所对的角也不相等;反之,如果两个角不相等,那么它们所对的边也不相等。

9. 若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角为: A. 75°或15° B. 75° C. 15° D. 75°或30°10.如图,把长方形纸片ABCD 纸沿对角线折叠,设重叠部分为△EBD ,那么,有下列说法: ①△EBD 是等腰三角形,EB=ED ②折叠后∠ABE 和∠CBD 一定相等 ③折叠后得到的图形是轴对称图形 ④△EBA 和△EDC 一定是全等三角形其中正确的有: A.1个 B.2个 C.3个 D.4个二.填空题(每小题3分,共30分)11.若等腰三角形的周长为26cm ,一边为11cm ,则腰长为________________。

湖北省黄冈市英才学校2014-2015学年八年级上学期第三次月考数学试题

湖北省黄冈市英才学校2014-2015学年八年级上学期第三次月考数学试题

二○一四年秋季黄冈市英才学校第三次月考八年级数 学 试 题命题人:李 欣 审稿人:郭 勇 满分:120分 时间:120分钟亲爱的同学:沉着应试,认真书写,祝你取得满意成绩!一、选择题(每小题3分,共30分)下列各题给出的四个选项中,只有一个是正确的,请将正确答案的字母代号填在下面的表格中1.计算26a a ⋅的结果是:A 12aB 8aC 4aD 3a2.计算438)(x x ⋅等于: A 20x B 24xC 26xD 30x3.下列运算中,正确的是:A 2510a a a =÷ B 743)(a a = C 222)(y x y x -=- D 63312)3(4a a a -=-⋅ 4.已知===+ba b a 2310953则,,( ): A 50B -5C 15D ba +275.下列多项式中,可以提取公因式的是:A 22y x -B x x +2C y x -2D 222y xy x ++6.已知=-=-=+2234y x y x y x ,则,( ): A 12 B 7 C 1 D -17.一次课堂练习,一位同学做了4道因式分解题,你认为这位同学做得不够完整的题是:A. ()222x 2xy+y x y -=- B.()22x y-xy xy x y =-C.()()22x y x y x y -=+- D. ()32x x=x x 1--、8.下列各式从左到右的变形中,属于因式分解的是:A ay ax y x a +=+)(B 4)4(442+-=+-x x x x C)12(55102-=-x x x x D3)12(322-+=-+x x x x 9.多项式①228y x +,②224y x -,③12+-x ,④22y x --中能用平方差公式分解因式的有A ①②B ②③C ③④D ①④10.分式1322--+x x x 的值为0,则x 的值为:A x=-3B x=3C x=-3或 x=3D x=3或x=-1二.选择题(每小题3分,共30分)11.计算: =⋅3253x x 。

黄冈市浠水县2015年秋八年级上期末调研数学试题含答案

黄冈市浠水县2015年秋八年级上期末调研数学试题含答案

八年级数学试题参考答案第 1 页共12 页八年级数学试题参考答案第 1 页共12 页八年级数学试题参考答案第 1 页共12 页八年级数学试题参考答案第 1 页共12 页八年级数学试题参考答案第 1 页共12 页八年级数学试题参考答案第 1 页共12 页八年级数学试题参考答案第 1 页共12 页八年级数学试题参考答案第 1 页共12 页八年级数学试题参考答案第 1 页 共 12 页浠水县2015年秋季期末调研考试八年级数学试题参考答案一、选择题(每小题3分,共21分)1.A 2.B 3.A 4.D 5.B 6.D 7.A二、填空题(每小题3分,共24分)8.20 9.8 10.1 11.44°12.30%)201(120300120=+-+x x 13.α=β+γ 14.4.8cm 15.151 三、解答下列各题(共75分) 16.(1)(2a +3b )(y -z ) (2)(2-a )(2+a )(4+2a )(3)2)6(-+b a (4)(a -2)(a +9)17.解:AE ,CD 的关系为:AE =CD ,AE ⊥CD . ……………………………… 2分(1)在△ABE 和△CBD 中,∵AB =BC ,∠ABE =∠CDB =90°,BE =BD ,∴△ABE ≌△CBD (SAS );∴AE =CD . ……………………………… 4分(2)延长AE 交CD 于F 点,∵△ABE ≌△CBD ,∴∠A =∠C .∵∠C +∠CDB =90°,∴∠A +∠CDB =90°,∴AE ⊥CD . ……………………………… 6分18.(1)由①得4x +6y =5 ③ ……………………………… 3分 联立②③解得⎪⎪⎩⎪⎪⎨⎧-==6123y x ……………………………… 5分 (2)去分母,得3(3x -1)-2=5 ……………………………… 2分解得9x -3-2=5 ……………………………… 3分所以x =910 ……………………………… 4分 经检验,x =910是原方程的解 ……………………………… 5分19.证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC;∴DE=DF.………………………………3分∴D在线段EF的垂直平分线上.………………………………4分∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°.在Rt△ADE和Rt△ADF中∴Rt△ADE≌Rt△ADF(HL).∴AE=AF.……………………6分又∵∠EAD=∠F AD,AK=AK;∴△AEK≌△AFK.∴EK=KF,∠AKE=∠AKF=90°;∴AD是线段EF的垂直平分线.∴AD垂直平分EF.………………………………8分20.作P点关于OB的对称点P1,连接P1Q,交OB于N,N即为所求点.21.解:原式=()()()()abababababbaaba1222252322-⎥⎦⎤⎢⎣⎡-+---÷--………………………1分=()()abaabbaaba12923222---÷--=()()()()2321233a b a ba ab b a b a a-----+………………………………3分=()()313a ba b a a---+………………………………4分=()()()abaabababa++-+--3333=()abaa+-32=23a b-+.………………………………5分∵4,2.a ba b+=⎧⎨-=⎩∴3,1.ab=⎧⎨=⎩………………………………7分∴当3,1.ab=⎧⎨=⎩时,原式=.313132-=+⨯-………………………………8分八年级数学试题参考答案第 1 页共12 页八年级数学试题参考答案第 1 页 共 12 页22.(1)连结AC , ……………………………… 1分∵AB =AD ,BC =CD ,AC =AC ;∴△ABC ≌Rt △AD C (SSS ) ……………………………… 4分 ∴∠B =∠D .又∵CE =CF ,BC =CD ,∴BE =D F .又∵AB =AD ,∠B =∠D ;∴△ABE ≌△ADF (S A S ). ……………………………… 5分(2)由∠B =∠D 同理可证得∠A =∠C ……………………………… 6分∵△ABE ≌△ADF∴∠BAE =∠DAF =25°.∴∠EAF =80° ……………………………… 7分 又∵CG ∥EA∴∠AHC =100° ……………………………… 8分23.(1)设乙队单独做需要m 天完成任务. 根据题意得401×20+m1×(30+20)=1. ……………………………… 1分 解得m =100. ……………………………… 2分 经检验m =100是原方程的解. ……………………………… 3分 答:乙队单独做需要100天完成任务. ……………………………… 4分(2)根据题意得 40x +100y =1. 整理得 y =100-25x . ……………………………… 5分 ∵y <70,∴100-25x <70. 解得 x >12. ……………………………… 6分又∵x <15且为整数,∴x =13或14. ……………………………… 7分当x =13时,y 不是整数;∴x =13不符合题意,舍去.当x =14时,y =100-35=65答:甲队实际做14天,乙队实际做65天. ……………………………… 8分八年级数学试题参考答案第 1 页 共 12 页 24.证明:(1)∵3-+b a +(a -2b )2=0,∴⎩⎨⎧=-=-+0203b a b a ,解得⎩⎨⎧==12b a , ∴A (1,3),B (2,0),……………………2分作AE ⊥OB 于点E ,∵A (1,3),B (2,0),∴OE =1,BE =2-1=1,在△AEO 与△AEB 中,∵AE =AE ,∠AEO =∠AEB =90°,OE =BE ,∴△AEO ≌△AEB ,∴AO =AB . ……………………………… 4分(2)证明:∵∠CAD =∠OAB ,∴∠CAD +∠BAC =∠OAB +∠BAC ,即∠OAC =∠BAD , …………… 5分 在△AOC 与△ABD 中,∵AO =AB ,∠OAC =∠BAD ,AC =AD ,∴△AOC ≌△ABD (SAS ). ……………………………… 7分(3)解:点P 在y 轴上的位置不发生改变. ……………………………… 8分理由:设∠AOB =∠ABO =α,∵由(2)知,△AOC ≌△ABD ,∴∠ABD =∠AOB =α,∵OB =2,∠OBP =180°-∠ABO -∠ABD =180°-2α为定值,∠POB =90°, ∴OP 长度不变,∴点P 在y 轴上的位置不发生改变. ……………………………… 10分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年湖北省黄冈市区学校八年级(上)期末数学试卷一、选择题(本大题共27分,每小题3分.在下列各题的四个备选答案中,只有一个是正确的.请将正确选项前的字母填在题后的括号里)1.计算2x3•x2的结果是()A.2x B.2x5C.2x6D.x52.下列图案中,是轴对称图形的是()A.B. C. D.3.要使分式有意义,则x的取值范围是()A.x≠1 B.x>1 C.x<1 D.x≠﹣14.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或175.如图,下列条件不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DC,∠A=∠D6.若=,则的值为()A.1 B.C.D.7.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A .30°B .36°C .40°D .45°8.某校为了丰富学生的校园生活,准备购买一批陶笛,已知A 型陶笛比B 型陶笛的单价低20元,用2700元购买A 型陶笛与用4500购买B 型陶笛的数量相同,设A 型陶笛的单价为x 元,依题意,下面所列方程正确的是( )A .= B . =C . =D . = 9.如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从P 1,P 2,P 3,P 4四个点中找出符合条件的点P ,则点P 有( )A .1个B .2个C .3个D .4个二、填空题10.计算﹣(﹣3a 2b 3)2的结果是 .11.当1<x <2,化简+的值是 .12.如图,C 、D 点在BE 上,∠1=∠2,BD=EC 请补充一个条件: ,使△ABC ≌△FED .13.x 2+kx+9是完全平方式,则k= .14.分解因式:9x 3﹣18x 2+9x= .15.如图,∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD 的长为 .16.如图,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式.17.如图,在△ABC中,AB=AC=11,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF ∥AB交AE的延长线于点F,则DF的长为.三、解答题(共69分)18.(1)化简:(x+y)(x﹣y)﹣(2x﹣y)(x+3y);(2)解方程:(3x+1)(3x﹣1)﹣(3x+1)2=﹣8.19.(7分)解方程:.20.如图,点B、F、C、E在同一直线上,BF=CE,AB∥ED,AC∥FD.求证:AB=DE.21.先化简,再求值:÷(x﹣2﹣),其中x=3.22.如图,△ABC中,A点坐标为(2,4),B点坐标为(﹣3,﹣2),C点坐标为(3,1).(1)在图中画出△ABC关于y轴对称的△A′B′C′(不写画法),并写出点A′,B′,C′的坐标.(2)求△ABC的面积.23.如图,△ABC中,∠BAC=90°,AB=AC,O为BC的中点,点E、D分别为边AB、AC上的点,且满足OE⊥OD,求证:OE=OD.24.今年我市某公司分两次采购了一批大蒜,第一次花费40万元,第二次花费60万元.已知第一次采购时每吨大蒜的价格比去年的平均价格上涨了500元,第二次采购时每吨大蒜的价格比去年的平均价格下降了500元,第二次的采购数量是第一次采购数量的两倍.(1)试问去年每吨大蒜的平均价格是多少元?(2)该公司可将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8吨大蒜,每吨大蒜获利1000元;若单独加工成蒜片,每天可加工12吨大蒜,每吨大蒜获利600元.由于出口需要,所有采购的大蒜必需在30天内加工完毕,且加工蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少?2015-2016学年湖北省黄冈市区学校八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共27分,每小题3分.在下列各题的四个备选答案中,只有一个是正确的.请将正确选项前的字母填在题后的括号里)1.计算2x3•x2的结果是()A.2x B.2x5C.2x6D.x5【考点】同底数幂的乘法.【分析】根据同底数幂相乘,底数不变,指数相加解答.【解答】解:2x3•x2=2x5.故选B.【点评】本题主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.2.下列图案中,是轴对称图形的是()A.B. C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;B、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;D、是轴对称图形,符合题意.故选D.【点评】掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.要使分式有意义,则x的取值范围是()A.x≠1 B.x>1 C.x<1 D.x≠﹣1【考点】分式有意义的条件.【专题】常规题型.【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣1≠0,解得x≠1.故选:A.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.4.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17【考点】等腰三角形的性质;三角形三边关系.【专题】分类讨论.【分析】由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选:A.【点评】本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论.5.如图,下列条件不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DC,∠A=∠D【考点】全等三角形的判定.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据以上内容逐个判断即可.【解答】解:A、AB=DC,AC=DB,BC=BC,符合全等三角形的判定定理“SSS”,即能推出△ABC≌△DCB,故本选项错误;B、AB=DC,∠ABC=∠DCB,BC=BC,符合全等三角形的判定定理“SAS”,即能推出△ABC≌△DCB,故本选项错误;C、在△AOB和△DOC中,,∴△AOB≌△DOC(AAS),∴AB=DC,∠ABO=∠DCO,∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠DCB,在△ABC和△DCB中,,∴△ABC≌△DCB(SAS),即能推出△ABC≌△DCB,故本选项错误;D、具备条件AB=DC,BC=BC,∠∠A=∠D不能推出△ABC≌△DCB,故本选项正确.故选D.【点评】本题考查了全等三角形的性质和判定的应用,能灵活运用全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.6.若=,则的值为()A.1 B.C.D.【考点】比例的性质.【专题】计算题.【分析】根据合分比性质求解.【解答】解:∵ =,∴==.故选D.【点评】考查了比例性质:常见比例的性质有内项之积等于外项之积;合比性质;分比性质;合分比性质;等比性质.7.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30° B.36° C.40° D.45°【考点】等腰三角形的性质.【分析】求出∠BAD=2∠CAD=2∠B=2∠C的关系,利用三角形的内角和是180°,求∠B,【解答】解:∵AB=AC,∴∠B=∠C,∵AB=BD,∴∠BAD=∠BDA,∵CD=AD,∴∠C=∠CAD,∵∠BAD+∠CAD+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°故选:B.【点评】本题主要考查等腰三角形的性质,解题的关键是运用等腰三角形的性质得出∠BAD=2∠CAD=2∠B=2∠C关系.8.某校为了丰富学生的校园生活,准备购买一批陶笛,已知A型陶笛比B型陶笛的单价低20元,用2700元购买A型陶笛与用4500购买B型陶笛的数量相同,设A型陶笛的单价为x元,依题意,下面所列方程正确的是()A. =B. =C. =D. =【考点】由实际问题抽象出分式方程.【专题】销售问题.【分析】设A型陶笛的单价为x元,则B型陶笛的单价为(x+20)元,根据用2700元购买A型陶笛与用4500购买B型陶笛的数量相同,列方程即可.【解答】解:设A型陶笛的单价为x元,则B型陶笛的单价为(x+20)元,由题意得, =.故选:D.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.9.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个【考点】全等三角形的判定.【分析】根据全等三角形的判定得出点P的位置即可.【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选C【点评】此题考查全等三角形的判定,关键是利用全等三角形的判定进行判定点P的位置.二、填空题10.计算﹣(﹣3a2b3)2的结果是﹣9a4b6.【考点】幂的乘方与积的乘方.【分析】首先利用积的乘方和幂的乘方进行计算,再加上括号前面的负号即可.【解答】解:原式=﹣9a4b6,故答案为:﹣9a4b6.【点评】此题主要考查了积的乘方和幂的乘方,关键是掌握积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;幂的乘方法则:底数不变,指数相乘.11.当1<x<2,化简+的值是﹣2 .【考点】约分.【分析】根据绝对值的定义,再根据已知条件,化简式子即可得出结果.【解答】解:因为1<x<2,所以+=,故答案为:﹣2【点评】此题主要考查了绝对值的性质,能够根据已知条件正确地化简式子,比较简单.12.如图,C、D点在BE上,∠1=∠2,BD=EC请补充一个条件:AC=DF ,使△ABC≌△FED.【考点】全等三角形的判定.【分析】条件是AC=DF,求出BC=DE,根据SAS推出即可.【解答】解:条件是AC=DF,理由是:∵BD=CE,∴BD﹣CD=CE﹣CD,∴BC=DE,在△ABC和△FED中,,∴△ABC≌△FED(SAS),故答案为:AC=DF.【点评】本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.此题是一道开放型的题目,答案不唯一.13.x2+kx+9是完全平方式,则k= ±6 .【考点】完全平方式.【分析】这里首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3的积的2倍,故k=±6.【解答】解:中间一项为加上或减去x和3的积的2倍,故k=±6.【点评】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.14.分解因式:9x3﹣18x2+9x= 9x(x﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式9x,进而利用完全平方公式分解因式得出即可.【解答】解:9x3﹣18x2+9x=9x(x2﹣2x+1)=9x(x﹣1)2.故答案为:9x(x﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.15.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD的长为 2 .【考点】含30度角的直角三角形.【专题】计算题.【分析】过P作PE垂直与OB,由∠AOP=∠BOP,PD垂直于OA,利用角平分线定理得到PE=PD,由PC与OA平行,根据两直线平行得到一对内错角相等,又OP为角平分线得到一对角相等,等量代换可得∠COP=∠CPO,又∠ECP为三角形COP的外角,利用三角形外角的性质求出∠ECP=30°,在直角三角形ECP中,由30°角所对的直角边等于斜边的一半,由斜边PC的长求出PE的长,即为PD的长.【解答】解:过P作PE⊥OB,交OB与点E,∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,∴PD=PE,∵PC∥OA,∴∠CPO=∠POD,又∠AOP=∠BOP=15°,∴∠CPO=∠BOP=15°,又∠ECP为△OCP的外角,∴∠ECP=∠COP+∠CPO=30°,在直角三角形CEP中,∠ECP=30°,PC=4,∴PE=PC=2,则PD=PE=2.故答案为:2.【点评】此题考查了含30°角直角三角形的性质,角平分线定理,平行线的性质,以及三角形的外角性质,熟练掌握性质及定理是解本题的关键.同时注意辅助线的作法.16.如图,在边长为a 的正方形中剪去一个边长为b 的小正方形(a >b ),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式 a 2﹣b 2=(a+b )(a ﹣b ) .【考点】平方差公式的几何背景.【专题】计算题;压轴题.【分析】左图中阴影部分的面积是a 2﹣b 2,右图中梯形的面积是(2a+2b )(a ﹣b )=(a+b )(a ﹣b ),根据面积相等即可解答.【解答】解:a 2﹣b 2=(a+b )(a ﹣b ).【点评】此题主要考查的是平方差公式的几何表示,运用不同方法表示阴影部分面积是解题的关键.17.如图,在△ABC 中,AB=AC=11,∠BAC=120°,AD 是△ABC 的中线,AE 是∠BAD 的角平分线,DF ∥AB 交AE 的延长线于点F ,则DF 的长为 5.5 .【考点】等腰三角形的判定与性质;含30度角的直角三角形.【分析】根据等腰三角形三线合一的性质可得AD ⊥BC ,∠BAD=∠CAD ,再求出∠DAE=∠EAB=30°,然后根据平行线的性质求出∠F=∠BAE=30°,从而得到∠DAE=∠F ,再根据等角对等边求出AD=DF ,然后求出∠B=30°,根据直角三角形30°角所对的直角边等于斜边的一半解答.【解答】解:∵AB=AC ,AD 是△ABC 的中线,∴AD ⊥BC ,∠BAD=∠CAD=∠BAC=×120°=60°,∵AE 是∠BAD 的角平分线,∴∠DAE=∠EAB=∠BAD=×60°=30°,∵DF∥AB,∴∠F=∠BAE=30°,∴∠DAE=∠F=30°,∴AD=DF,∵∠B=90°﹣60°=30°,∴AD=AB=×11=5.5,∴DF=5.5.故答案为:5.5.【点评】本题考查了等腰三角形的性质,平行线的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质是解题的关键.三、解答题(共69分)18.(2015秋•黄冈校级期末)(1)化简:(x+y)(x﹣y)﹣(2x﹣y)(x+3y);(2)解方程:(3x+1)(3x﹣1)﹣(3x+1)2=﹣8.【考点】平方差公式;多项式乘多项式;解一元一次方程.【分析】(1)先根据平方差公式和多项式乘多项式法则计算,再合并同类项即可求解;(1)先根据平方差公式和完全平方公式计算,再合并同类项得到﹣6x﹣2=﹣8,再解一元一次方程即可求解.【解答】解:(1)原式=x2﹣y2﹣(2x2+5xy﹣3y2)=﹣x2﹣5xy+2y2;(2)去括号,得9x2﹣1﹣(9x2+6x+1)=﹣8,9x2﹣1﹣9x2﹣6x﹣1=﹣8,合并,得﹣6x﹣2=﹣8,解得x=1.【点评】本题考查了平方差公式,多项式乘多项式,完全平方公式,解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.19.解方程:.【考点】解分式方程.【分析】根据解分式方程的步骤,先去分母化为整式方程,再求出方程的解,最后进行检验即可.【解答】解: =1+,2x=x﹣2+1,x=﹣1,经检验x=﹣1是原方程的解,则原方程的解是x=﹣1.【点评】此题考查了解分式方程,用到的知识点是解分式方程的步骤:去分母化整式方程,解整式方程,最后要把整式方程的解代入最简公分母进行检验.20.如图,点B、F、C、E在同一直线上,BF=CE,AB∥ED,AC∥FD.求证:AB=DE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】由于BF=CE,利用等式性质可证BC=EF,而AB∥ED,AC∥FD,利用平行线的性质可得∠B=∠E,∠ACB=∠DFE,从而利用ASA可证△ABC≌△DEF,进而可得AB=DE.【解答】证明:∵BF=CE,∴BF+CF=CE+CF,即BC=EF,∵AB∥ED,∴∠B=∠E,∵AC∥FD,∴∠ACB=∠DFE,在△ABC和△DEF中,∵,∴△ABC≌△DEF,∴AB=DE.【点评】本题考查了全等三角形的判定和性质,解题的关键是注意先证明ASA所需要的三个条件.21.先化简,再求值:÷(x﹣2﹣),其中x=3.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,最后把x=3代入进行计算即可.【解答】解:原式=÷=÷=•=.当x=3时,原式=1.【点评】本题考查的是分式的化简求值,熟知分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.22.如图,△ABC中,A点坐标为(2,4),B点坐标为(﹣3,﹣2),C点坐标为(3,1).(1)在图中画出△ABC关于y轴对称的△A′B′C′(不写画法),并写出点A′,B′,C′的坐标.(2)求△ABC的面积.【考点】作图-轴对称变换.【专题】作图题.【分析】(1)根据网格结构找出点A′、B′、C′的位置,然后顺次连接即可;(2)利用三角形所在的矩形的面积减去四周三个小直角三角形的面积,然后列式计算即可得解.【解答】解:(1)如图,A′(﹣2,4),B′(3,﹣2),C′(﹣3,1);(2)S=6×6﹣×5×6﹣×6×3﹣×1×3,△ABC=36﹣15﹣9﹣1,=10.【点评】本题考查了利用轴对称变换作图,三角形的面积的求解,熟练掌握网格结构准确找出对应点的位置是解题的关键.23.如图,△ABC中,∠BAC=90°,AB=AC,O为BC的中点,点E、D分别为边AB、AC上的点,且满足OE⊥OD,求证:OE=OD.【考点】全等三角形的判定与性质;等腰直角三角形.【专题】证明题.【分析】连接AO,证明△BEO≌△ADO即可.【解答】证明:如图,连接AO,∵∠BAC=90°,AB=AC,O为BC的中点,∴AO=BO,∠OAD=∠B=45°,∵AO⊥BO,OE⊥OD,∴∠AOE+∠BOE=∠AOE+∠AOD=90°,在△AOD和△BOE中∴△AOD≌△BOE,∴OE=OD.【点评】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.24.(2015•莱芜)今年我市某公司分两次采购了一批大蒜,第一次花费40万元,第二次花费60万元.已知第一次采购时每吨大蒜的价格比去年的平均价格上涨了500元,第二次采购时每吨大蒜的价格比去年的平均价格下降了500元,第二次的采购数量是第一次采购数量的两倍.(1)试问去年每吨大蒜的平均价格是多少元?(2)该公司可将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8吨大蒜,每吨大蒜获利1000元;若单独加工成蒜片,每天可加工12吨大蒜,每吨大蒜获利600元.由于出口需要,所有采购的大蒜必需在30天内加工完毕,且加工蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少?【考点】一元一次不等式组的应用;分式方程的应用.【分析】(1)设去年每吨大蒜的平均价格是x元,则第一次采购的平均价格为(x+500)元,第二次采购的平均价格为(x﹣500)元,根据第二次的采购数量是第一次采购数量的两倍,据此列方程求解;(2)先求出今年所采购的大蒜数,根据采购的大蒜必需在30天内加工完毕,蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,据此列不等式组求解,然后求出最大利润.【解答】解:(1)设去年每吨大蒜的平均价格是x元,由题意得,×2=,解得:x=3500,经检验:x=3500是原分式方程的解,且符合题意,答:去年每吨大蒜的平均价格是3500元;(2)由(1)得,今年的大蒜数为:×3=300(吨),设应将m吨大蒜加工成蒜粉,则应将(300﹣m)吨加工成蒜片,由题意得,,解得:100≤m≤120,总利润为:1000m+600(300﹣m)=400m+180000,当m=120时,利润最大,为228000元.答:应将120吨大蒜加工成蒜粉,最大利润为228000元.【点评】本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.。

相关文档
最新文档