2018年极坐标和参数方程知识点+典型例题讲解+同步训练

合集下载

2018版高考数学 考点55 极坐标与参数方程试题解读与变式

2018版高考数学 考点55 极坐标与参数方程试题解读与变式

考点55 极坐标与参数方程【考纲要求】1.了解坐标系的作用,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.2.了解极坐标的基本概念,会在极坐标系中用极坐标刻画点的位置,能进行极坐标和直角坐标的互化.3.能在极坐标系中给出简单图形表示的极坐标方程.4.了解参数方程,了解参数的意义.5.能选择适当的参数写出直线、圆和椭圆的参数方程. 【命题规律】极坐标与参数方程近几年是在第22题解答题中考查,主要是极坐标方程、参数方程与平面直角坐标方程的互化、直线与曲线的位置关系的判断以及距离的最值问题.难度中等. 【典型高考试题变式】(一)参数方程与极坐标方程的综合运用例1.【2017新课标3】在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,x m m my k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设()3:cos sin 0l ρθθ+=,M 为l 3与C 的交点,求M 的极径.【分析】(1)由题意得直线l 1,l 2的普通方程,然后消去参数即可得到曲线C 的普通方程; (2)联立两个极坐标方程可得2291cos ,sin 1010θθ==【解析】(1)消去参数t 得1l 的普通方程()1:2l y k x =-; 消去参数m 得l 2的普通方程()21:2l y x k=+. 设(),P x y ,由题设得()()212y k x y x k ⎧=-⎪⎨=+⎪⎩,消去k 得()2240x y y -=≠. 所以C 的普通方程为()2240x y y -=≠.【名师点睛】本题考查了极坐标方程的求法及应用,重点考查了转化与化归能力.遇到求曲线交点、距离、线段长等几何问题时,求解的一般方法是分别化为普通方程和直角坐标方程后求解,或者直接利用极坐标的几何意义求解.要结合题目本身特点,确定选择何种方程.【变式1】【2018衡水联考】在平面直角坐标系xOy 中,已知曲线C :12x t y ⎧=-+⎪⎪⎨⎪=⎪⎩(α为参数),以原点O 为极点, x 轴的正半轴为极轴建立极坐标系,直线lcos 14πρθ⎛⎫+=- ⎪⎝⎭. (1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)过点()1,0M -,且与直线l 平行的直线1l 交曲线C 于A , B 两点,求点M 到A , B 两点的距离之积.【解析】(1)由题知,曲线C 化为普通方程为2213x y +=,由cos 124πρθ⎛⎫+=- ⎪⎝⎭,得cos sin 2ρθρθ-=-,所以直线l 的直角坐标方程为20x y -+=.(2)由题知,直线1l的参数方程为12x y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t为参数), 代入曲线C :2213x y +=中,化简,得2220t --=, 设A , B 两点所对应的参数分别为1t , 2t ,则121t t =-,所以121MA MB t t ⋅==.【变式2】【2018山西两校联考】在平面直角坐标系xOy 中,曲线13cos :sin x C y αα=⎧⎨=⎩ (α为参数),以坐标原点O 为极点, x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=-. (1)分别求曲线1C 的普通方程和曲线2C 的直角坐标方程; (2)若P Q 、分别为曲线12C C 、上的动点,求PQ 的最大值.【解析】(1)因为曲线1C 参数方程为3cos sin x y αα=⎧⎨=⎩,所以cos 3sin xy αα⎧=⎪⎨⎪=⎩,因为22sin cos 1αα+=,所以1C 的普通方程为2219x y +=. 因为曲线2C 的极坐标方程为2sin ρθ=-,即22sin ρρθ=-, 故曲线2C 的直角坐标方程为222x y y +=-,即()2211x y ++=.(二)参数方程的运用例2.【2017年新课标1】在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数).(1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到la .【分析】(1)先将曲线C 和直线l 的参数方程化成普通方程,然后联立两方程即可求出交点坐标;(2)由直线l 的普通方程为440x y a +--=,设C 上的点为(3cos ,sin )θθ,易求得该点到l 的距离为d =对a 再进行讨论,即当4a ≥-和4a <-时,求出a 的值.【解析】(1)曲线C 的普通方程为2219x y +=. 当1a =-时,直线l 的普通方程为430x y +-=.由22430,19x y x y +-=⎧⎪⎨+=⎪⎩解得3,0x y =⎧⎨=⎩或21,2524.25x y ⎧=-⎪⎪⎨⎪=⎪⎩从而C 与l 的交点坐标为(3,0),2124(,)2525-.【名师点睛】化参数方程为普通方程的关键是消参,可以利用加减消元、平方消元、代入法等等;在极坐标方程与参数方程的条件下求解直线与圆的位置关系问题时,通常将极坐标方程化为直角坐标方程,参数方程化为普通方程来解决.【变式1】已知直线l 的参数方程为⎩⎪⎨⎪⎧x =a -2t ,y =-4t ,(t 为参数),圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ,(θ为参数). (1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围.【解析】(1)消去参数t 可得直线l 的普通方程为2x -y -2a =0, 消去参数θ可得圆C 的普通方程为x 2+y 2=16. (2)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =|-2a |5≤4,解得-25≤a ≤25.【变式2】【2017云南省、四川省、贵州省联考】在平面直角坐标系xOy 中,已知曲线:sin x a C y a⎧=⎪⎨=⎪⎩(a为参数),直线:60l x y --=.(1)在曲线C 上求一点P ,使点P 到直线l 的距离最大,并求出此最大值;(2)过点(1,0)M -且与直线l 平行的直线1l 交C 于A ,B 两点,求点M 到A ,B 两点的距离之积. 【解析】(1)设点,sin )P a a ,则点P 到直线l 的距离为|2sin()6|a d π--==所以当sin()13a π-=-时,31(,)22P -,此时max d =.【数学思想】 ①数形结合思想. ②分类讨论思想. ③转化与化归思想. 【温馨提示】①在参数方程、极坐标方程与平面直角坐标方程互化的过程中,要注意等价性,注意其中曲线上的点的横、纵坐标的取值范围是否因为转化而发生改变,如果发生改变则它们所表示的曲线就不是同一曲线. ②参数方程、极坐标方程是解析几何中曲线方程的另外两种表示形式,可以说是曲线的两种巧妙的表示形式,有时解决一些问题要借助参数的几何意义. 【典例试题演练】1.以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,且两个坐标系取相等的单位长度.已知直线l 的参数方程是232x y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),曲线C 的极坐标方程是2cos 2sin ρθθ=.(1)写出直线l 的普通方程和曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于A ,B 两点,点M 为AB 的中点,点P的极坐标为)4π,求||PM 的值.【解析】(1)因为直线的参数方程是232x y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),消去参数t 得直线l 的普通方程为30x y -+=.由曲线C 的极坐标方程2cos 2sin ρθθ=,得22cos 2sin ρθρθ=. 所以曲线C 的直角坐标方程为22x y =.(2)由23,2,y x x y =+⎧⎨=⎩得2260x x --=,设11(,)A x y ,22(,)B x y ,则AB 的中点1212(,)22x x y y M ++, 因为122x x +=,所以(1,4)M , 又点P 的直角坐标为(1,1),所以||3PM ==.2.【2018黑龙江齐齐哈尔一模】在直角坐标系xOy 中,直线l 的参数方程为23312x ty t =-⎧⎪⎨=-+⎪⎩ (t 为参数),以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为2cos 4πρθ⎛⎫=- ⎪⎝⎭. (1)求直线l 的普通方程与圆C 的直角坐标方程; (2)设直线l 与圆C 相交于,A B 两点,求AB.3.【2017广东湛江市调研】已知极点与直角坐标系原点重合,极轴与x 轴的正半轴重合,圆C 的极坐标方程为sin a ρθ=,直线的参数方程为32545x t y t⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数).(1)若2a =,直线l 与x 轴的交点为,M N 是圆C 上一动点,求MN 的最大值; (2)若直线l 被圆C 截得的弦长等于圆C倍,求a 的值.【解析】(1)当2a =时,圆C 的极坐标方程为2sin ρθ=,可化为22sin ρρθ=,化为直角坐标方程为2220x y y +-=,即()2211x y +-=.直线l 的普通方程为4380x y +-=,与x 轴的交点M 的坐标为()2,0. 因为圆心()0,1与点()2,0M所以MN1.(2)由sin a ρθ=可得2sin a ρρθ=,所以圆C 的普通方程为22224a a x y ⎛⎫+-= ⎪⎝⎭.因为直线l 被圆C 截得的弦长等于圆C倍,所以由垂径定理及勾股定理得:圆心到直线l 的距离为圆C 半径的一半,122a=⋅.解得32a =或3211a =. 4.【2017河南省豫北名校联盟对抗赛】在平面直角坐标系xOy 中,曲线C 的参数方程为4cos 2sin x y θθ=⎧⎨=⎩(θ为参数).(1)求曲线C 的普通方程;(2)经过点(2,1)M (平面直角坐标系xOy 中点)作直线l 交曲线C 于,A B 两点,若M 恰好为线段的三等分点,求直线l 的斜率.【解析】(1)由曲线C 的参数方程,得cos ,4sin ,2x y θθ⎧=⎪⎪⎨⎪=⎪⎩所以曲线C 的普通方程为221164x y +=. (2)设直线l 的倾斜角为1θ,则直线的参数方程为112cos ,1sin .x t y t θθ=+⎧⎨=+⎩(t 为参数).代入曲线C 的直角坐标方程,得2221111(cos 4sin )(4cos 8sin )80t t θθθθ+++-=,所以111222111222114cos 8sin ,cos 4sin 8.cos 4sin t t t t θθθθθθ+⎧+=-⎪+⎪⎨-⎪=⎪+⎩由题意可知122t t =-.所以22111112sin 16sin cos 3cos 0θθθθ++=,即2121630k k ++=.解得k =所以直线l 5.【2017河南省广东省佛山市检测】在极坐标系中,射线:6l πθ=与圆:2C ρ=交于点A ,椭圆D 的方程为22312sin ρθ=+,以极点为原点,极轴为x 轴正半轴建立平面直角坐标系xOy .(1)求点A 的直角坐标和椭圆D 的参数方程;(2)若E 为椭圆D 的下顶点,F 为椭圆D 上任意一点,求AE AF ⋅的取值范围.(2)设) sin Fθθ,,又()0 1E -,,所以() 2AE =-,,()3 sin 1AF θθ=-,,于是()()3cos 32sin 12sin 3cos 55AE AF θθθθθϕ⋅=-+--=--+=++,因为()1sin 1θϕ-≤+≤,所以()555θϕ++≤+,所以AE AF ⋅5 5⎡⎣,. 6.【2018广西柳州摸底联考】在平面直角坐标系xOy 中,曲线1C 的参数方程为24{ 4x t y t== (其中t 为参数).以坐标原点O 为极点, x 轴正半轴为极轴建立极坐标系并取相同的单位长度,曲线2C 的极坐标方程为cos 42πρθ⎛⎫+=⎪⎝⎭. (1)把曲线1C 的方程化为普通方程, 2C 的方程化为直角坐标方程;(2)若曲线1C , 2C 相交于,A B 两点, AB 的中点为P ,过点P 做曲线2C 的垂线交曲线1C 于,E F 两点,求PE PF ⋅.【解析】(1)曲线1C 的参数方程为24{ 4x t y t==(其中t 为参数),消去参数可得24y x =.曲线2C的极坐标方程为cos 4πρθ⎛⎫+= ⎪⎝⎭,展开为)cos sin 22ρθρθ-=, 化为10x y --=..(2)设()()1122,,,A x y B x y ,且中点为()00,P x y ,联立2410y xx y ⎧=⎨--=⎩,解得2610x x -+=,所以12126,1x x x x +==.所以12003,22x x x y +===. 线段AB的中垂线的参数方程为3222x y ⎧=-⎪⎪⎨⎪=+⎪⎩(t为参数),代入24y x =,可得2160t +-=, 所以1216t t =-,所以1216PE PF t t ⋅==.。

极坐标和参数方程的典型例题

极坐标和参数方程的典型例题

极坐标和参数方程的典型例题在数学中,极坐标和参数方程是研究平面曲线的重要工具。

极坐标是一种用极径和极角来表示平面上点位置的坐标系统,而参数方程则是用一个或多个参数来表示曲线上的点的坐标。

在本文中,我们将通过一些典型例题来探讨如何使用极坐标和参数方程解决问题。

例题一:极坐标下的圆首先让我们考虑一个非常简单的例子,即极坐标下的圆。

圆的极坐标方程为:$$ \\begin{cases} r = a \\\\ \\theta \\in [0, 2\\pi) \\end{cases} $$其中,r表示极径,a表示圆的半径,$\\theta$表示极角。

这个方程说明了圆上的每个点都满足极径等于半径a,并且极角可以在0到$2\\pi$之间取值。

例题二:参数方程下的抛物线接下来,我们考虑一个使用参数方程描述的曲线:抛物线。

抛物线的参数方程为:$$ \\begin{cases} x = at^2 \\\\ y = 2at \\end{cases} $$其中,a为常数,t为参数。

根据这个参数方程,我们可以看到x和y都是t的二次函数。

这个参数方程给出了抛物线上的每个点的坐标。

例题三:极坐标和参数方程的转换有时候,我们需要在极坐标和参数方程之间进行转换。

下面的例题将展示如何将一个极坐标方程转换为参数方程。

考虑极坐标方程:$$ \\begin{cases} r = 2\\cos\\theta \\\\ \\theta \\in [0, \\pi] \\end{cases} $$我们可以使用三角恒等式来将这个极坐标方程转换为参数方程。

首先,我们注意到r是$\\theta$的函数,而x和y是r的函数。

根据极坐标和直角坐标之间的关系,我们有下面的关系式:$$ \\begin{cases} x = r\\cos\\theta \\\\ y = r\\sin\\theta \\end{cases} $$将极坐标方程中的r代入上述关系式,我们得到参数方程:$$ \\begin{cases} x = 2\\cos(\\theta)\\cos(\\theta) = 2\\cos^2(\\theta) \\\\y = 2\\cos(\\theta)\\sin(\\theta) = \\sin(2\\theta) \\end{cases} $$ 通过这个转换,我们将极坐标方程转换为了参数方程。

2018年高考数学专项训练-极坐标和参数方程

2018年高考数学专项训练-极坐标和参数方程

2018年高考数学专项训练-极坐标和参数方程1.【2017·黑龙江伊春二中期末】在直角坐标系xoy中,直线l的参数方程为(t为参数),在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为.(Ⅰ)求圆C的直角坐标方程;(Ⅱ)设圆C与直线l交于点A、B,若点P的坐标为,求|PA|+|PB|.2.极坐标系中,已知圆ρ=10cos(1)求圆的直角坐标方程.(2)设P是圆上任一点,求点P到直线距离的最大值.3.在平面直角坐标系xOy中,曲线C的参数方程为(α为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.(Ⅰ)求C的普通方程和l的倾斜角;(Ⅱ)设点P(0,2),l和C交于A,B两点,求|PA|+|PB|.4.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知曲线C 1的极坐标方程为ρ2=,直线l 的极坐标方程为ρ=.(Ⅰ)写出曲线C 1与直线l 的直角坐标方程;(Ⅱ)设Q 为曲线C 1上一动点,求Q 点到直线l 距离的最小值.5.【2017·普宁一中】已知曲线C 的极坐标方程为2ρsin θ+ρcos θ=10,以极点为直角坐标系原点,极轴所在直线为x 轴建立直角坐标系,曲线C 1的参数方程为(α为参数).(Ⅰ)求曲线C 的直角坐标方程和曲线C 1的普通方程;(Ⅱ)若点M 在曲线C 1上运动,试求出M 到曲线C 的距离的最小值及该点坐标.6.【2018·成都龙泉中学】在直角坐标系xoy 中,设倾斜角为α的直线l 的参数方程为3cos sin x t y t αα=+⎧⎨=⎩(t 为参数)与曲线1:cos tan x C y θθ⎧=⎪⎨⎪=⎩(θ为参数)相交于不同的两点A 、B .(I )若3πα=,求线段AB 的中点的直角坐标;(II )若直线l 的斜率为2,且过已知点(3,0)P ,求||||PA PB ⋅的值.7.已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2﹣2ρcos (θ﹣)=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程;(2)设两圆交点分别为A 、B ,求直线AB 的参数方程,并利用直线AB 的参数方程求两圆的公共弦长|AB|.8.在直角坐标系xOy 中,圆C 的方程为(x+6)2+y 2=25.(I )以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程; (II )直线l的参数方程为(t 为参数),α为直线l 的倾斜角,l 与C 交于A ,B 两点,且|AB|=,求l 的斜率.9.【2017·江苏高考】在平面坐标系中xOy 中,已知直线l 的参考方程为⎪⎩⎪⎨⎧=+-=,2,8ty t x (t 为参数),曲线C 的参数方程为⎪⎩⎪⎨⎧==,22,22s y s x (s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.10.【2017·全国Ⅱ卷】在直角坐标系xoy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为4cos =θρ。

2018年极坐标和全参数方程知识点+典型例题讲解+同步训练

2018年极坐标和全参数方程知识点+典型例题讲解+同步训练

极坐标和参数方程知识点+典型例题讲解+同步训练知识点回顾(一)曲线的参数方程的定义:在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即⎩⎨⎧==)()(t f y t f x 并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数. (二)常见曲线的参数方程如下:1.过定点(x 0,y 0),倾角为α的直线:ααsin cos 00t y y t x x +=+= (t 为参数)其中参数t 是以定点P (x 0,y 0)为起点,对应于t 点M (x ,y )为终点的有向线段PM 的数量,又称为点P 与点M 间的有向距离.根据t 的几何意义,有以下结论.○1.设A 、B 是直线上任意两点,它们对应的参数分别为t A 和t B ,则AB =A B t t -=B A A B t t t t ⋅--4)(2.○2.线段AB 的中点所对应的参数值等于2BA t t +. 2.中心在(x 0,y 0),半径等于r 的圆:θθsin cos 00r y y r x x +=+= (θ为参数)3.中心在原点,焦点在x 轴(或y 轴)上的椭圆:θθsin cos b y a x == (θ为参数) (或 θθsin cos a y b x ==)中心在点(x0,y0)焦点在平行于x 轴的直线上的椭圆的参数方程为参数)ααα(.sin ,cos 00⎩⎨⎧+=+=b y y a x x 4.中心在原点,焦点在x 轴(或y 轴)上的双曲线:θθtg sec b y a x == (θ为参数) (或θθec a y b x s tg ==)5.顶点在原点,焦点在x 轴正半轴上的抛物线:pty ptx 222== (t 为参数,p >0)直线的参数方程和参数的几何意义过定点P (x 0,y 0),倾斜角为α的直线的参数方程是 ⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数).(三)极坐标系1、定义:在平面内取一个定点O ,叫做极点,引一条射线Ox ,叫做极轴,再选一个长度单位和角度的正方向(通常取逆时针方向)。

2018年极坐标和参数方程知识点+典型例题讲解+

2018年极坐标和参数方程知识点+典型例题讲解+

极坐标和参数方程知识点+典型例题讲解+同步训练知识点回顾(一)曲线的参数方程的定义:在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即 ⎩⎨⎧==)()(t f y t f x 并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数.(二)常见曲线的参数方程如下:1.过定点(x 0,y 0),倾角为α的直线:ααsin cos 00t y y t x x +=+= (t 为参数)其中参数t 是以定点P (x 0,y 0)为起点,对应于t 点M (x ,y )为终点的有向线段PM 的数量,又称为点P 与点M 间的有向距离.根据t 的几何意义,有以下结论.○1.设A 、B 是直线上任意两点,它们对应的参数分别为t A 和t B ,则AB =A B t t -=B A A B t t t t ⋅--4)(2.○2.线段AB 的中点所对应的参数值等于2BA t t +. 2.中心在(x 0,y 0),半径等于r 的圆:θθsin cos 00r y y r x x +=+= (θ为参数)3.中心在原点,焦点在x 轴(或y 轴)上的椭圆:θθsin cos b y a x == (θ为参数)(或θθsin cos a y b x ==)中心在点(x0,y0)焦点在平行于x 轴的直线上的椭圆的参数方程为参数)ααα(.sin ,cos 00⎩⎨⎧+=+=b y y a x x 4.中心在原点,焦点在x 轴(或y 轴)上的双曲线:θθtg sec b y a x == (θ为参数) (或 θθec a y b x s tg ==)5.顶点在原点,焦点在x 轴正半轴上的抛物线:pty pt x 222== (t 为参数,p >0)直线的参数方程和参数的几何意义过定点P (x 0,y 0),倾斜角为α的直线的参数方程是 ⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数).(三)极坐标系1、定义:在平面内取一个定点O ,叫做极点,引一条射线Ox ,叫做极轴,再选一个长度单位和角度的正方向(通常取逆时针方向)。

2018极坐标与参数方程知识点及对应例题(学案)

2018极坐标与参数方程知识点及对应例题(学案)

2018极坐标及参数方程 《一》参数方程及其应用 考点一 参数方程与普通方程的互化 考点二、求直线上点的坐标例1.求点A (−1,−2)关于直线l :2x −3y +1 =0的对称点A ' 的坐标。

1、直线l 过点)4,2(0P ,倾斜角为6π,求出直线l 上与点)4,2(0P 相距为4的点的坐标。

考点三 求定点到过定点的直线与其它曲线的交点的距离 例1.设直线经过点(1,5),倾斜角为,1)求直线和直线的交点到点的距离;2)求直线和圆的两个交点到点的距离的和与积.1、直线l 过点)0,4(0-P ,倾斜角为6π,且与圆722=+y x 相交于A 、B 两点。

(1)求弦长AB.(2)求A P 0和B P 0的长 考点四 求直线与曲线相交的弦长例1 过抛物线的焦点作斜角为的直线与抛物线交于A 、B 两点,求|AB|.1.已知直线L:x+y-1=0与抛物线y=交于A,B 两点,求线段AB 的长和点M(-1,2)到A,B 两点的距离之积.2:已知直线l 过点P (2,0),斜率为34,直线l 和抛物线x y 22=相交于A 、B 两点,设线段AB 的中点为M,求:(1)P 、M 两点间的距离(2)M 点的坐标;(3)线段AB 的长|AB|2.(2014福州高中毕业班质量检测, 21(2))在平面直角坐标系以轴非负半轴为极轴建立极坐标系,已知曲线的极坐标方程为, 直线l 的参数方程为:(为参数) ,两曲线相交于,两点.(Ⅰ)写曲线直角坐标方程和直线普通方程;(Ⅱ)若, 求的值.考点五、求解中点问题例1,已知经过点P(2,0),斜率为的直线和抛物线相交于A,B 两点,设线段AB 的中点为M,求点M 的坐标.1、过点)0,1(0P ,倾斜角为4π的直线l 和抛物线x y 22=相交于A 、B 两点,求线段AB 的中点M 点的坐标。

考点六,求点的轨迹问题例1.已知双曲线 ,过点P (2,1)的直线交双曲线于P 1,P 2,求线段P 1P 2的中点M 的轨迹方程。

2018年高考数学总复习 极坐标与参数方程

2018年高考数学总复习  极坐标与参数方程

第二节 极坐标与参数方程(选修4-4)考纲解读1.理解坐标系的作用.2.了解在直角坐标系伸缩变换作用下平面图形的变化情况.3.能在极坐标中用极坐标表示点的位置.理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.4.能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义.5.了解柱坐标系、球坐标系中表示空间中的点的位置的方法,并与空间直角坐标系中表示点的位置方法相比较,了解它们的区别.6.了解参数方程,了解参数的意义.7.能选择适当的参数写出直线、圆和圆锥曲线的参数方程. 8.掌握参数方程化普通方程的方法.命题趋势探究本章是新课标新增内容,属选考内容,在高考中可能有所体现.参数方程是解析几何、平面向量、三角函数、圆锥曲线与方程等知识的综合应用和进一步深化,是研究曲线的工具之一,值得特别关注.知识点精讲一、极坐标系在平面上取一个定点O ,由点O 出发的一条射线Ox 、一个长度单位及计算角度的正方向(通常取逆时针方向),合称为一个极坐标系.点O 称为极点,Ox 称为极轴.平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ (弧度制)来刻画(如图16-31和图16-32所示).这两个实数组成的有序实数对(,)ρθ称为点M 的极坐标. ρ称为极径,θ称为极角.二、极坐标与直角坐标的互化设M 为平面上的一点,其直角坐标为(,)x y ,极坐标为(,)ρθ,由图16-31和图16-32可知,下面的关系式成立:cos sin x y ρθρθ=⎧⎨=⎩或222tan (0)x y yx x ρθ⎧=+⎪⎨=≠⎪⎩(对0ρ<也成立). xθOρ(,)M ρθ图 16-31yxθOρ(,)M x y图 16-32三、极坐标的几何意义r ρ=——表示以O 为圆心,r 为半径的圆;0θθ=——表示过原点(极点)倾斜角为0θ的直线,0(0)θθρ=≥为射线;2cos a ρθ=表示以(,0)a 为圆心过O 点的圆.(可化直角坐标: 22cos a ρρθ=222x y ax ⇒+=222()x a y a ⇒-+=.)四、直线的参数方程直线的参数方程可以从其普通方程转化而来,设直线的点斜式方程为00()y y k x x -=-,其中tan (k αα=为直线的倾斜角),代人点斜式方程:00sin ()()cos 2y y x x απαα-=-≠,即00cos sin x x y y αα--=. 记上式的比值为t ,整理后得00cos t sin x x t y y αα=+⎧⎨=+⎩,2πα=也成立,故直线的参数方程为00cos t sin x x t y y αα=+⎧⎨=+⎩(t 为参数,α为倾斜角,直线上定点000(,)M x y ,动点(,)M x y ,t 为0M M 的数量,向上向右为正(如图16-33所示).五、圆的参数方程若圆心为点00(,)M x y ,半径为r ,则圆的参数方程为00cos (02)sin x x r y y r θθπθ=+⎧≤≤⎨=+⎩.六、椭圆的参数方程椭圆2222C :1x y a b +=的参数方程为cos sin x a y b θθ=⎧⎨=⎩(θ为参数,(02)θπ≤≤).七、双曲线的参数方程000(,)M x yO(,)M x ytyx图16-33双曲线2222C :1x y a b -=的参数方程为sec tan x a y b θθ=⎧⎨=⎩(,)2k k πθπ≠+∈Z . 八、抛物线的参数方程抛物线22y px =的参数方程为222x pt y pt⎧=⎨=⎩(t 为参数,参数t 的几何意义是抛物线上的点与顶点连线的斜率的倒数).题型归纳即思路提示题型196 极坐标方程化直角坐标方程思路提示对于极坐标方程给出的问题解答一般都是通过化为直角坐标方程,利用直角坐标方程求解.这里需注意的是极坐标系与直角坐标系建立的对应关系及其坐标间的关系cos sin x y ρθρθ=⎧⎨=⎩. 例16.7 在极坐标系中,圆4sin ρθ=的圆心到直线6πθ=(ρ∈R )的距离是 .分析 将极坐标方程转化为平面直角坐标系中的一般方程求解.解析 极坐标系中的圆4sin ρθ=转化为平面直角坐标系中的一般方程为224x y y +=,即22(2)4x y +-=,其圆心为(0,2),直线6πθ=转化为平面直角坐标系中的方程为:33y x =,即30x y -=.圆心(0,2)到直线30x y -=的距离为22|023|31(3)-=+.变式1 已知曲线12,C C 的极坐标方程分别为cos 3ρθ=,4cos ρθ=,(0,0)2πρθ≥≤<,则曲线1C 与2C 交点的极坐标为 .变式2 ⊙1O 和⊙2O 的极坐标方程分别为4cos ρθ=,4sin ρθ=-.(1)把⊙1O 和⊙2O 的极坐标方程分别化为直角坐方程; (2)求经过⊙1O 和⊙2O 交点的直线的直角坐标方程.变式3 已知一个圆的极坐标方程是53cos 5sin ρθθ=-,求此圆的圆心和半径. 例16.8 极坐标方程(1)()0(0)ρθπρ--=≥表示的图形是( )A. 两个圆B.两条直线C.一个圆和一条射线D.一条直线和一条射线 分析 将极坐标方程化为直角坐标方程.解析 因为(1)()0(0)ρθπρ--=≥,所以1ρ=或θπ=(0)ρ≥.2211x y ρ=⇒+=,得221x y +=,表示圆心在原点的单位圆;(0)θπρ=≥表示x 轴的负半轴,是一条射线.故选C .变式 1 极坐标方程cos ρθ=和参数方程123x ty t =--⎧⎨=+⎩(t 参数)所表示的图形分别是( )A.圆、直线B.直线、圆C.圆、圆D.直线、直线 变式2 在极坐标系中,点(2,)6P π-到直线:sin()16l πρθ-=的距离是 . 变式3 (2012陕西理15)直线2cos 1ρθ=与圆2cos ρθ=相交的弦长为 .题型197 直角坐标方程化为极坐标方程思路提示如果题目中已知的曲线为直角坐标方程,而解答的问题是极坐标系下的有关问题,这里要利用直角坐标与极坐标关系式cos sin x y ρθρθ=⎧⎨=⎩,将直角坐标方程化为极坐标方程.例16.9 (2012辽宁理23)在直角坐标系xOy 中,圆1C :224x y +=,圆2C :22(2)4x y -+=.(1)在以O 为极点,x 轴为极轴的极坐标系中,分别写出圆1C , 2C 的极坐标方程,并求出圆1C , 2C 的交点坐标(用极坐标表示); (2)求出1C 与2C 的公共弦的参数方程.解析 (1)圆1C 的极坐标方程为2ρ=,圆2C 的极坐标方程为4cos ρθ=.24cos ρρθ=⎧⎨=⎩解得2ρ=,3πθ=±,故圆1C 与圆2C 的交点的坐标为 (2,),(2,)33ππ-.注:极坐标系下点的表示不唯一.(2)解法一:由cos sin x y ρθρθ=⎧⎨=⎩,得圆1C 与圆2C 的交点的坐标分别为(1,3),(1,3)-.故圆1C 与2C 的公共弦的参数方程为1(33)x t y t =⎧-≤≤⎨=⎩. 解法二: 将1x =代入cos sin x y ρθρθ=⎧⎨=⎩得cos 1ρθ=,从而1cos ρθ=.于是圆1C 与2C 的公共弦的参数方程为1()tan 33x y ππθθ=⎧-≤≤⎨=⎩.变式1 (2012 江西理 15)曲线C 的直角坐标方程为2220x y x +-=,以原点为极点,x 轴的正半轴为极抽建立极坐标系,则曲线C 的极坐标方程为 _.题型198 参数方程化普通方程思路提示已知直线或曲线的参数方程讨论其位置关系、性质问题一般要通过消参(代入法、加减法,三角法)转化为普通方程解答. 例16.10 若直线340x y m ++=与圆1cos 2sin x y θθ=+⎧⎨=-+⎩( θ为参数)没有公共点,则实数m的取值范围是 .解析 将圆的参数方程1cos 2sin x y θθ=+⎧⎨=-+⎩( θ为参数)化为普通方程22(1)(2)1x y -++=,圆心(1,2)-,半径1r =.直线与圆无公共点,则圆心到直线的距离大于半径,|38|15m -+>|5|5m ⇒->,得10m >或0m <,即m 的范围是(,0)(10,)-∞+∞. 变式1 在平面直角坐标系xOy 中,直线l 的参数方程33x t y t =+⎧⎨=-⎩(参数t ∈R ),圆C 的参数方程为2cos 2sin 2x y θθ=⎧⎨=+⎩(参数[0,2]θ∈π),则圆C 圆心坐标为 _,圆心到直线l 的距离为 .变式2 (2013湖北理16)在庄角坐标系xOy 中,椭圆C 的参数方程cos sin x a y b ϕϕ=⎧⎨=⎩(ϕ为参数,0a b >>),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 与圆O 的极坐标方程分别为2sin()42m πρθ+=(m 为非零数)与b ρ=.若直线l 经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为 .变式3 参数方程sin cos sin cos x y θθθθ=+⎧⎨=⎩(θ是参数)的普通方程是 .例16.11 已知动圆22:2cos 2sin 0C x y ax by θθ+--=(,a b 是正常数,a b ≠,θ是参数),则圆心的轨迹是 .解析 由动圆22:2cos 2sin 0C x y ax by θθ+--=得222222(cos )(sin )cos sin x a y b a b θθθθ-+-=+.圆心坐标为(cos ,sin )a b θθ(θ为参数),设cos x a θ=,sin y b θ=,则221x y a b ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,即22221x y a b +=为所求轨迹方程,所以圆心的轨迹是椭圆.变式1 方程2232(05)1x t t y t ⎧=+⎪≤≤⎨=-⎪⎩表示的曲线是( ) A. 线段 B. 双曲线的一支 C. 圆弧 D. 射线变式2 已知直线11cos :sin x t C y t αα=+⎧⎨=⎩(t 为参数),2cos :sin x C y θθ=⎧⎨=⎩(θ为参数).(1)当3πα=时,求1C 与2C 的交点坐标;(2)过坐标原点O 作1C 的垂线,垂足为A ,P 为OA 的中点.当α变化时,求点P 轨迹的参数方程,并指出它是什么曲线.题型199 普通方程化参数方程思路提示对于直线与圆锥曲线方程化为参数方程问题实质是引入第三个变量的换元法,这里有代数换元(如抛物线22y px =的参数方程222x pt y pt=⎧⎨=⎩)或三角换元(如椭圆22221x y a b +=的参数方程cos sin x a y b θθ=⎧⎨=⎩).例16.12 在平面直角坐标系xOy 中,设(,)P x y 是椭圆2213x y +=上的一个动点,求S x y =+的最大值.分析 利用椭圆的参数方程,建立,x y 与参数θ的关系,运用三角函数最值的求法,求解x y +的最大值.解析 点(,)P x y 是椭圆2213x y +=上的一个动点,则3cos sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数),[0,2]θ∈π,则3cos sin x y θθ+=+2sin()3πθ=+,[0,2]θ∈π,故max ()2x y +=.变式1 已知点(,)P x y 是圆2220x y y +-=上的动点.(1)求2x y +的取值范围;(2)若0x y a ++≥恒成立,求实数a 的取值范围. 变式2 直线l 过(1,1)P ,倾斜角6πα=.(1) 写出l 的参数方程;(2)l 与圆224x y +=相交于,A B 两点,求P 到,A B 两点的距离之积.变式3 已知抛物线2:4C y x =,点(,0)M m在x 轴的正半轴上,过M 的直线l 与C 相交于,A B 两点,O 为坐标原点.(1)若1m =时,l 的斜率为1,求以AB 为直径的圆的方程;(2)若存在直线l 使得||,||,||AM OM MB 成等比数列,求实数m 的取值范围.题型200 参数方程与极坐标方程的互化思路提示参数方程与极坐标方程的互化问题,需要通过普通方程这一中间桥梁来实现,先将参数方程(极坐标方程)化为普通方程,再将普通方程化为极坐标方程(参数方程).例16.13 已知曲线C 的参数方程为2cos 2sin x ty t⎧=⎪⎨=⎪⎩(t 为参数),C 在点(1,1)处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为 .分析 把曲线C 的参数方程化为普通方程,求出切线l 的普通方程,然后把求出的直线l 的普通方程化为极坐标方程.解析 由22sin cos 1t t +=得曲线C 的普通方程为222x y +=,过原点O 及切点(1,1)的直线的斜率为1,故切线l 的斜率为1-,所以切线l 的方程为1(1)y x -=--,即20x y +-=.把cos x ρθ=,sin y ρθ=代入直线l 的方程可得cos sin 20ρθρθ+-=,即2sin()204πρθ+-=,化简得sin()24πθ+=.变式1 设曲线C 的参数方程为2x ty t=⎧⎨=⎩(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为 .最有效训练题60(限时45分钟)1.极坐标方程cos 2sin 2ρθθ=表示的曲线为( )A. 一条射线和一个圆B. 两条直线C. 一条直线和一个圆D. 一个圆 2.圆22(sin cos )ρθθ=-的圆心的一个极坐标是( )A. (2,2)-B. (2,)4πC. 3(2,)4π D. 7(2,)4π3.在极坐标系中,若等边△ABC 的两个顶点是(2,)4A π,5(2,)4B π.那么顶点C 的坐标可能是( )A. 3(4,)4π B. 3(23,)4πC. (23,)πD. (3,)π 4.直线的参数方程为sin 501cos50x t y t ⎧=-⎪⎨=-⎪⎩(t 为参数),则直线的倾斜角为( )A. 40B. 50C. 140D. 130 5.过点(2,3)A 的直线的参数方程为232x ty t=+⎧⎨=+⎩(t 为参数),若此直线与直线30x y -+=相交于点B ,则||AB =( )A. 5B. 25C. 35D.3526.设曲线C 的参数方程23cos 13sin x y θθ=+⎧⎨=-+⎩( θ为参数),直线l 的方程为320x y -+=,则曲线C 上到直线l 的距离为71010的点的个数为( ) A. 1 B. 2 C. 3 D. 4 7.已知直线l 的极坐标方程为2sin()42πρθ-=,圆M 的参数方程为22cos 12sin x y θθ=+⎧⎨=-+⎩( θ为参数),则圆M 上的点到直线l 的最短距离为 . 8.在平面直角坐标系xOy 中,曲线1C 和2C 的参数方程分别为5cos 5sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数,02πθ≤≤)和21222x t y t⎧=-⎪⎪⎨⎪=-⎪⎩(t 为参数),则曲线1C 与2C 的交点坐标为 .9.已知抛物线的参数方程为222x pty pt=⎧⎨=⎩(t 为参数),其中0p >,焦点为F ,准线为l ,过抛物线上一点M 作准线l 的垂线,垂足为E ,若||||EF MF =,点M 的横坐标是3,则p = .10.在极坐标系中,O 为极点,已知两点,M N 的极坐标分别为2(4,)3π,(2,)4π,求△OMN 的面积.11.已知椭圆221164x y +=,O 为坐标原点,,P Q 为椭圆上的两动点,若OP OQ ⊥,求22||||OP OQ +的最大值.12. 已知曲线12cos :sin x C y θθ=⎧⎨=⎩(θ为参数),曲线2247:23cos 016C ρρθ-+=. (1)若,P Q 分别是曲线1C 和曲线2C 上的两个动点,求线段PQ 长度的最小值; (2)若曲线1C 上与x 轴、y 轴的正半轴分别交于,A B 点,P 是曲线1C 上第一象限内的动点,O 是坐标原点,试求四边形OAPB 面积的最大值.。

极坐标与参数方程经典练习题 带详细解答

极坐标与参数方程经典练习题 带详细解答

1.极坐标系与直角坐标系xoy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴.已知直线l的参数方程为122x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),曲线C 的极坐标方程为2sin 8cos ρθθ=.(Ⅰ)求C 的直角坐标方程;(Ⅱ)设直线l 与曲线C 交于,A B 两点,求弦长||AB .2.已知直线l 经过点1(,1)2P ,倾斜角α=6π,圆C的极坐标方程为)4πρθ=-.(1)写出直线l 的参数方程,并把圆C 的方程化为直角坐标方程;(2)设l 与圆C 相交于两点A 、B ,求点P 到A 、B 两点的距离之积. 3.(本小题满分10分)选修4-4:坐标系与参数方程已知直线l 的参数方程是)(242222是参数t t y t x ⎪⎪⎩⎪⎪⎨⎧+==,圆C 的极坐标方程为)4cos(2πθρ+=.(I )求圆心C 的直角坐标;(Ⅱ)由直线l 上的点向圆C 引切线,求切线长的最小值. 4.已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x 轴的正半轴重合,且两坐标系有相同的长度单位,圆C 的参数方程为12cos 12sin x y αα=+⎧⎨=-+⎩(α为参数),点Q的极坐标为7)4π。

(1)化圆C 的参数方程为极坐标方程;(2)直线l 过点Q 且与圆C 交于M ,N 两点,求当弦MN 的长度为最小时,直线l 的直角坐标方程。

5.在极坐标系中,点M 坐标是)2,3(π,曲线C 的方程为)4sin(22πθρ+=;以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,斜率是1-的直线l 经过点M . (1)写出直线l 的参数方程和曲线C 的直角坐标方程;(2)求证直线l 和曲线C 相交于两点A 、B ,并求||||MB MA ⋅的值.6.(本小题满分10分) 选修4-4坐标系与参数方程 在直角坐标系中,曲线1C 的参数方程为⎩⎨⎧+==ααsin 22cos 2y x ,(α为参数) M 是曲线1C 上的动点,点P 满足2=,(1)求点P 的轨迹方程2C ;(2)在以D 为极点,X 轴的正半轴为极轴的极坐标系中,射线3πθ=与曲线1C ,2C 交于不同于原点的点A,B 求AB7.在平面直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐V 标方程为πcos =13ρθ⎛⎫-⎪⎝⎭,M ,N 分别为曲线C 与x 轴、y 轴的交点. (1)写出曲线C 的直角坐标方程,并求M ,N 的极坐标;(2)求直线OM 的极坐标方程. 8.在直角坐标系中,曲线C 1的参数方程为:2cos x y αα=⎧⎪⎨=⎪⎩(α为参数),以原点为极点,x 轴的正半轴为极轴,并取与直角坐标系相同的长度单位,建立极坐标系,曲线C 2是极坐标方程为:cos ρθ=, (1)求曲线C 2的直角坐标方程;(2)若P ,Q 分别是曲线C 1和C 2上的任意一点,求PQ 的最小值.9.已知圆C 的极坐标方程为2cos ρθ=,直线l的参数方程为1221122x x t ⎧=+⎪⎪⎨⎪=+⎪⎩ (t 为参数),点A的极坐标为4π⎫⎪⎪⎝⎭,设直线l 与圆C 交于点P 、Q .(1)写出圆C 的直角坐标方程;(2)求AP AQ ⋅的值.10.已知动点P ,Q 都在曲线C :2cos 2sin x ty t =⎧⎨=⎩(β为参数)上,对应参数分别为t α=与2t α=(0<α<2π),M 为PQ 的中点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

极坐标和参数方程知识点+典型例题讲解+同步训练知识点回顾(一)曲线的参数方程的定义:在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即⎩⎨⎧==)()(t f y t f x 并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数. (二)常见曲线的参数方程如下:1.过定点(x 0,y 0),倾角为α的直线:ααsin cos 00t y y t x x +=+= (t 为参数)其中参数t 是以定点P (x 0,y 0)为起点,对应于t 点M (x ,y )为终点的有向线段PM 的数量,又称为点P 与点M 间的有向距离.根据t 的几何意义,有以下结论.○1.设A 、B 是直线上任意两点,它们对应的参数分别为t A 和t B ,则AB =A B t t -=B A A B t t t t ⋅--4)(2.○2.线段AB 的中点所对应的参数值等于2BA t t +. 2.中心在(x 0,y 0),半径等于r 的圆:θθsin cos 00r y y r x x +=+= (θ为参数)3.中心在原点,焦点在x 轴(或y 轴)上的椭圆:θθsin cos b y a x == (θ为参数) (或 θθsin cos a y b x ==)中心在点(x0,y0)焦点在平行于x 轴的直线上的椭圆的参数方程为参数)ααα(.sin ,cos 00⎩⎨⎧+=+=b y y a x x 4.中心在原点,焦点在x 轴(或y 轴)上的双曲线:θθtg sec b y a x == (θ为参数) (或θθec a y b x s tg ==)5.顶点在原点,焦点在x 轴正半轴上的抛物线:pty ptx 222== (t 为参数,p >0)直线的参数方程和参数的几何意义过定点P (x 0,y 0),倾斜角为α的直线的参数方程是 ⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数).(三)极坐标系1、定义:在平面内取一个定点O ,叫做极点,引一条射线Ox ,叫做极轴,再选一个长度单位和角度的正方向(通常取逆时针方向)。

对于平面内的任意一点M ,用ρ表示线段OM 的长度,θ表示从Ox 到OM 的角,ρ叫做点M 的极径,θ叫做点M 的极角,有序数对(ρ, θ)就叫做点M 的极坐标。

这样建立的坐标系叫做极坐标系。

2、极坐标有四个要素:①极点;②极轴;③长度单位;④角度单位及它的方向.极坐标与直角坐标都是一对有序实数确定平面上一个点,在极坐标系下,一对有序实数ρ、θ对应惟一点P (ρ,θ),但平面内任一个点P 的极坐标不惟一.一个点可以有无数个坐标,这些坐标又有规律可循的,P (ρ,θ)(极点除外)的全部坐标为(ρ,θ+πk 2)或(ρ-,θ+π)12(+k ),(∈k Z ).极点的极径为0,而极角任意取.若对ρ、θ的取值范围加以限制.则除极点外,平面上点的极坐标就惟一了,如限定ρ>0,0≤θ<π2或ρ<0,π-<θ≤π等. 极坐标与直角坐标的不同是,直角坐标系中,点与坐标是一一对应的,而极坐标系中,点与坐标是一多对应的.即一个点的极坐标是不惟一的.3、极坐标与直角坐标互化公式:图1典型例题讲解极坐标考点一 极坐标与直角坐标的互化1.点P 的直角坐标为(-2,2),那么它的极坐标可表示为________. 答案:⎝ ⎛⎭⎪⎫2,3π42.已知圆C :22(1)(1x y ++-=,则圆心C 的极坐标为_______(0,02)ρθπ>≤<答案:(2(2,)3π) 3.把点)4,3(),6,5(ππ--B A 的极坐标化为直角坐标。

4.曲线的极坐标方程ρ=4sinθ化 成直角坐标方程为A.x 2+(y+2)2=4B.x 2+(y-2)2=4C.(x-2)2+y 2=4D.(x+2)2+y 2=4解:将ρ=22y x +,sin θ=22y x y +代入ρ=4sin θ,得x 2+y 2=4y ,即x 2+(y-2)2=4.∴应选B.5.若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________. 解析 ∵ρ=2sin θ+4cos θ,∴ρ2=2ρsin θ+4ρcos θ. ∴x 2+y 2=2y +4x ,即x 2+y 2-2y -4x =0.6化极坐标方程2cos 0ρθρ-=为直角坐标方程为( )A .201y y +==2x 或B .1x =C .201y +==2x 或xD .1y = 7.极坐标ρ=cos(θπ-4)表示的曲线是A.双曲线B.椭圆C.抛物线D.圆解:原极坐标方程化为ρ=21(cosθ+sinθ)⇒22ρ=ρcosθ+ρsinθ,∴普通方程为2(x 2+y 2)=x+y ,表示圆.应选D.考点二 直线的极坐标方程的应用1.过点(2,)3π且与极轴垂直的直线方程为( )A.4cos ρθ=- B . cos 10ρθ-= C.sin ρθ= D. ρθ= 2.在极坐标系中,直线l 过点(1,0)且与直线3πθ=(ρ∈R )垂直,则直线l 极坐标方程为 .答案:2sin()16πρθ+=(或2cos()13πρθ-=、cos sin 1ρθθ+=)3.设点A 的极坐标为⎝ ⎛⎭⎪⎫2,π6,直线l 过点A 且与极轴所成的角为π3,则直线l 的极坐标方程为________________.[审题视点] 先求直角坐标系下的直线方程再转化极坐标方程.【解析】∵点A 的极坐标为⎝ ⎛⎭⎪⎫2,π6,∴点A 的平面直角坐标为(3,1),又∵直线l 过点A 且与极轴所成的角为π3,∴直线l 的方程为y -1=(x -3)tan π3,即3x -y -2=0,∴直线l 的极坐标方程为3ρcos θ-ρsin θ-2=0,可整理为ρcos ⎝ ⎛⎭⎪⎫θ+π6=1或ρsin ⎝ ⎛⎭⎪⎫π3-θ=1或ρsin ⎝ ⎛⎭⎪⎫θ-4π3=1.答案 ρcos ⎝ ⎛⎭⎪⎫θ+π6=1或3ρcos θ-ρsin θ-2=0或ρsin ⎝ ⎛⎭⎪⎫π3-θ=1或ρsin ⎝ ⎛⎭⎪⎫θ-4π3=1.4.极点到直线()cos sin ρθθ+=________ _____。

解析:直线:()06l R x πθρ=∈↔=;点C 到直线l=5.在极坐标系中,直线l 的方程为ρsin θ=3,则点⎝ ⎛⎭⎪⎫2,π6到直线l 的距离为________.解析:∵直线l 的极坐标方程可化为y =3,点⎝ ⎛⎭⎪⎫2,π6化为直角坐标为(3,1), ∴点⎝ ⎛⎭⎪⎫2,π6到直线l 的距离为2.考点三 圆的极坐标方程的应用1.在极坐标系中,以)2,2(πa 为圆心,2a为半径的圆的极坐标方程是 。

解析:由极坐标方程与直角坐标方程的互化公式cos ,sin ,x y ρθρθ=⎧⎨=⎩得22222cos x y x ρρθ+-=-0=,又0ρ>,所以2cos ρθ=.2.在极坐标中,已知圆C 经过点()4Pπ,,圆心为直线sin 3ρθπ⎛⎫-= ⎪⎝⎭与极轴的交点,求圆C 的极坐标方程.解析:∵圆C 圆心为直线sin 32ρθπ⎛⎫-=- ⎪⎝⎭与极轴的交点,∴在sin 3ρθπ⎛⎫-= ⎪⎝⎭中令=0θ,得1ρ=。

∴圆C 的圆心坐标为(1,0)。

∵圆C 经过点()4Pπ,,∴圆C 的半径为PC =。

∴圆C 经过极点。

∴圆C 的极坐标方程为=2cos ρθ。

3.在极坐标系中,圆4sin ρθ=的圆心到直线()6R πθρ=∈的距离是_____【解析】距离是圆224sin (2)4x y ρθ=↔+-=的圆心(0,2)C4.在极坐标系中,已知圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a 的值。

解析:22cos ρρθ=,圆ρ=2cosθ的普通方程为:22222,(1)1x y x x y +=-+=, 直线3ρcosθ+4ρsinθ+a=0的普通方程为:340x y a ++=,1,=解得:2a =,或8a =-。

5.在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ=2sin θ与ρcos θ=-1的交点的极坐标为________.解析 ρ=2sin θ的直角坐标方程为x 2+y 2-2y =0,ρcos θ=-1的直角坐标方程为x =-1,联立方程,得⎩⎨⎧ x 2+y 2-2y =0,x =-1,解得⎩⎨⎧x =-1,y =1,即两曲线的交点为(-1,1),又0≤θ<2π,因此这两条曲线的交点的极坐标为⎝ ⎛⎭⎪⎫2,3π4.6.已知曲线12C C ,的极坐标方程分别为cos 3ρθ=,π4cos 002ρθρθ⎛⎫=< ⎪⎝⎭,≥≤,则曲线1C 与2C 交点的极坐标为 .解析:联立解方程组cos 3(0,0)4cos 2ρθπρθρθ=⎧≥≤<⎨=⎩解得6ρπθ⎧=⎪⎨=⎪⎩,即两曲线的交点为)6π。

7在极坐标系(),ρθ(0,02πρθ>≤<)中,曲线2sin ρθ=与2cos ρθ=的交点的极坐标为_____解析:4π⎫⎪⎭两式相除得tan 12sin 44ππθθρ=⇒=⇒==标为4π⎫⎪⎭ 8.在极坐标系中,若过点(1,0)且与极轴垂直的直线交曲线ρ=4cos θ于A 、B 两点,则|AB |=________.[审题视点] 先将直线与曲线的极坐标方程化为普通方程,再利用圆的知识求|AB |. 【解析】注意到在极坐标系中,过点(1,0)且与极轴垂直的直线的直角坐标方程是x =1,曲线ρ=4cos θ的直角坐标方程是x 2+y 2=4x ,即(x -2)2+y 2=4,圆心(2,0)到直线x =1的距离等于1,因此|AB |=24-1=2 3.9.直线2cos 1ρθ=与圆2cos ρθ=相交的弦长为 .【解析】2cos 1ρθ=是过点⎪⎭⎫⎝⎛0,21且垂直于极轴的直线, 2cos ρθ=是以()0,1为圆心,1为半径的圆,则弦长=321122=⎪⎭⎫⎝⎛-.10.在极坐标系中,直线ρsin ⎝ ⎛⎭⎪⎫θ+π4=2被圆ρ=4截得的弦长为________.解析 由ρsin ⎝ ⎛⎭⎪⎫θ+π4=2,得22(ρsin θ+ρcos θ)=2可化为x +y -22=0.圆ρ=4可化为x 2+y 2=16,由圆中的弦长公式得:2 r 2-d 2=2 42-⎝⎛⎭⎪⎫2 222=4 3.参数方程知识点1.参数方程的概念:在平面直角坐标系中,若曲线C 上的点(,)P x y 满足()()x f t y f t =⎧⎨=⎩,该方程叫曲线C 的参数方程,变量t 是参变数,简称参数。

相关文档
最新文档