概率论与数理统计第二章课件(PPT)
《概率论与数理统计》课件-第2章随机变量及其分布 (1)

HAINAN UNIVERSITY
概率论与数理统计
第二五章 基随本机极变限量定及理其分布
泊松分布的应用
“稠密性”问题(一段时间内,电话交换中心接到的呼叫次 数,公共汽车车站候车的乘客数,售票窗口买票的人数, 原子放射的粒子数,保险公司在一定时期内被索赔的次 数等)都服从泊松分布.
随机变量的分布函数
1.定义: 设X为一随机变量, x为任意实数, 称函数 F(x)=P{X≤x}为X的分布函数.
注: ① F(x)是一普通函数, 其定义域为 ,; ② F x的值为事件X x的概率; ③ F x可以完全地描述随机变量取值的规律性.
例如: Pa X b PX b PX a
连续型随机变量及概率密度函数
1.定义: 设X ~ F(x), 若存在一个非负可积的函数 f (x),
使 x R, 有
F ( x)
PX
x
x
f
(t)dt
,
则称X为连续型随机变量, f (x) 称为X的概率密度函数或
分布密度函数.
2.几何意义:
HAINAN UNIVERSITY
概率论与数理统计
第二五章 基随本机极变限量定及理其分布
二、随机变量的概念
定义: 设试验E的样本空间为 , 若对于每个样本
点 , 均有一个实数 X ()与之对应, 这样就得
到一个定义在 上的单值函数 X X () , 称X为随
机变量.
X
样本空间
实数
注: ① 随机变量是一个定义在样本空间上的实函数, 它取值的随机性是由样本点的随机性引起的;
x 1
x0
0 x x
不是 (不满足规范性)
第二章2《概率论与数理统计教程》PPT课件

联合概率函数的性质
1) p(xi , yj ) 0,
2) p(xi , yj )1;
ij
3) P(X,Y)D p(xi , yj ); (xi ,yj )D
若二维随机r.v.的联合概率函数 p(xi , yj )知道,则 联合概率分布函数为
F(xy, )p(i,xyj) xix yjy
4 -6
y
注:若将二维随机变量(X,Y) 看作是平面上的随机点的坐标,
(x,y)
则分布函数在点(x,y)处的函 数值,就是随机点(X,Y)落在 如图所示的以点(x,y)为顶点 而位于该点左下方的无穷矩形区 域4内- 3的概率
O
x
联合分布函数的性质
1) 0F(x,y)1
2)F(x,y)分别是变量x,y的单调不减函数; 3)对任意x,y,有
例1. 将一枚均匀的硬币抛掷4次, X表示正面向上的 次数, Y表示反面朝上次数, 求(X,Y)的联合概率分布.
例2. 设随机变量Y~U(0,1),令
0, |Y|1 0, |Y|2 X1 1, |Y|1,X2 1, |Y|2
求(X1,X2)的联合概率分布。 例3. 二维随机向量(X,Y)的联合概率分布为:
XY 0 1
-1 0.05 0.1
0
0.1 0.2
4-7 1
a 0.2
2
求:(1)常数a的取值;
0.1
(2)P(X≥0,Y≤1);
0.1
0.05 (3) P(X≤1,Y≤1)
二维连续随机变量的联合概率密度
定义:
P (xX x x ,y Y y y)
f(x ,y)lim
y x 0 0
x y
若此极限存在,则称此极限为二维连续随 机变量(X,Y)的联合概率密度。
概率论与数理统计课件第2章

第2章 随机变量及其分布为了更深刻地揭示随机现象的统计规律性,有必要将随机试验的结果数量化,即把随机试验的结果及实数对应起来,可以凭借更多的数学工具研究随机试验的结果,因此需要引入随机变量的概念.2.1 随机变量及其分布函数随机变量的概念定义 2.1 设E 是随机试验,Ω是其样本空间. 如果对每个Ω∈e ,总有一个实值函数)(e X X =及之对应,则称Ω上的实值函数)(e X 为E 的一个随机变量.随机变量常用大写字母Z Y X ,,等表示,其取值用小写字母z y x ,,等表示.若一个随机变量仅取有限个或可列个值,则称其为离散随机变量.若一个随机变量取值充满数轴上的一个区间),(b a ,则称其为连续随机变量,其中a 可以是∞-,b 可以是∞+.通过以下几个例子,可以很好地理解上述随机变量抽象的定义.(1) 掷一颗骰子,出现的点数X . (2) 单位时间内某手机被呼叫的次数Y .(3)某品种杨树的寿命T . (4)测量某物理量的误差ε.(5)若某个试验只有两个结果,例如,播种一颗银杏种子,可以定义随机变量.值得注意的是:(1)对任意实数x ,}{x X ≤表示随机事件;(2)可以求出概率)(x XP ≤.在上面的例子中,,316161)6()5()4(=+==+==>X P X P X P 等;但是不能求得以下概率,如)100(=Y P ,)1500(>T P ,5.1|(|≤εP 等,因此还需要引入随机变量分布函数的概念.随机变量的分布函数定义2.2 设X 是一个随机变量,对任意实数x ,称)()(x X P x F ≤= ()为随机变量X 的分布函数.且称X 服从)(x F ,记为)(~x F X .有时也可用)(x F X (把X 作为F 的下标)以表明是X 的分布函数. 例2.1 向半径为r 的圆内随机抛一点,求此点到圆心之距离X 的分布函数)(x F ,并求.解 事件“x X ≤”表示所抛之点落在半径为)0(r x x ≤≤的圆内,故由几何概率知222)()()(r x rx x X P x F ==≤=ππ,从而43)21(1)2(1)2(1)2(2=-=-=≤-=>r F r X p r Xp . 从分布函数的定义可以看出,任一随机变量X (离散的或连续的)都有一个分布函数.有了分布函数,就可据此计算得及随机变量X 有关事件的概率.下面先给出分布函数的3个基本性质.定理 2.1 任一随机变量的分布函数)(x F 都具有如下三条基本性质:(1)单调性 )(x F 是定义在整个实数轴),(∞+-∞上的单调非减函数,即对任意的21x x <,有)()(21x F x F ≤.(2)有界性 对任意的x ,有1)(0≤≤x F ,且 0)(lim )(==-∞-∞→x F F x ,1)(lim )(==+∞+∞→x F F x . (3)右连续性 )(x F 是x 的右连续函数,即对任意的0x ,有 )()0(00x F x F =+.值得注意,满足这3个性质的函数一定是某个随机变量的分布函数.例2.2 设随机变量X 的分布函数为 +∞<<-∞+=x x B A x F ,arctan )(,试求:⑴待定系数B A ,;⑵随机变量X 落在(-1,1)内的概率.解 ⑴ 由0)(=-∞F ,1)(=+∞F , 可得 , 解得 ,于是+∞<<-∞+=x x x F ,arctan 121)(π.⑵ )1()1()11()11(--=≤<-=<<-F F X P X P .利用随机变量X 的分布函数,可以计算有关X 的各种事件的概率.例如,对任意的实数b a ,,有 )()()(a F b F b X a P -=≤<,)0()()(--==a F a F a XP ,)0(1)(--=≥b F b X P , )(1)(b F b XP -=>, )()0()(a F b F b X a P --=<<, )0()()(--=≤≤a F b F b Xa P ,)0()0()(---=<≤a F b F b X a P . 特别当)(x F 在a 及b 连续时,有 )()0(a F a F =-,)()0(b F b F --. 例2.3 设随机变量X 的分布函数为 ,试求:(1))31(≤<X P ;(2))2(>XP ;(3))5.1(=X P . 解 (1)6.04.01)1()3()31(=-=-=≤<F F X p ; (2)4.06.01)2(1)2(=-=-=>F X p ; (3)04.04.0)05.1()5.1()5.1(=-=--==F F X p .§2.2 离散型随机变量的分布律定义2.3 设X 是一个离散型随机变量,其所有可能的取值是 ,,,,21i x x x ,则称X 取i x 的概率 ,2,1,)(===i x X P p i i()为X 的概率分布律或简称为分布律,记为}{~i p X ,分布律也可用列表的方法来表示:或记成⎪⎪⎭⎫ ⎝⎛ii p p px x x X 2121~ 分布律的基本性质: (1) ,2,1,0=≥i p i ;(2).由离散型随机变量X 的分布律很容易写出X 的分布函数:∑≤=≤=xx i i p x X P x F )()(.它的图形是有限级(或无穷级)的阶梯函数.在离散场合,常用分布律来描述分布,很少用到分布函数.因为求离散随机变量X 的有关事件的概率时,用分布律比用分布函数来得更方便.例 设离散型随机变量X 的分布律为试求)5.0(≤X P ,)5.25.1(≤<XP 并写出X的分布函数.解 25.0)1()5.0(=-==≤X P XP ,5.0)2()5.25.1(===≤<X P XP ,⎪⎪⎩⎪⎪⎨⎧≥=++<≤=+<≤-<=3,125.05.025.021,75.05.025.010,25.01,0)(x x x x x F .)(x F 的图形如图2—1所示._x特别地,常量c 可看作仅取一个值的随机变量X ,即 1)(==c XP .这个分布常称为单点分布或退化分布,它的分布函数是 . () 其图形如图2—2.以下例子说明,已知离散型随机变量的分布函数,可以求出它的分布律.例2.5 设随机变量X 的分布函数为 , 则X 的分布律为2.3 常见离散型随机变量分布1.两点分布_ 图 2 — 2_x若离散型随机变量X 的分布律为则称随机变量X 服从参数为p 的两点分布(或10-分布),记为),1(~p B X .例 播种一颗银杏种子,银杏的发芽率为0.9,定义随机变量,则)9.0,1(~B X . 2.二项分布若离散型随机变量X 的分布律为kn k p p k n k X P --⎪⎪⎭⎫ ⎝⎛==)1()(,n k ,,2,1,0 =. (2.4)则称随机变量X 服从参数为p 的二项分布,记为),(~p n B X .两点分布是二项分布中当1=n 时的特例.例2.7 假设银杏移栽的成活率为,现移栽10颗,问至少有8颗成活的概率是多少?解 设移栽银杏的颗数为X ,则)95.0,10(~B X ,而所求概率为)10()9()8()8(=+=+==≥X P X P X P XP9885.005.095.01010010=⎪⎪⎭⎫ ⎝⎛. 3.泊松分布若离散型随机变量X 的分布律为, ,2,1,0=k , (2.5)其中参数0>λ,则称随机变量X 服从参数为λ的泊松分布,记为)(~λP X.例 已知某种产品表面上的疵点数服从参数5.0=λ的泊松分布,若规定疵点数不超过一个的产品为合格品,疵点数至少为两个的产品为不合格品.试求此产品为不合格品的概率. 解 设X 为此产品表面上的疵点数,则)5.0(~P X,即, ,2,1,0=k .于是有)1()0(1)2(1)2(=-=-=<-=≥X P X P X P X P. 4.几何分布若离散型随机变量X 的分布律为 1)(-==k pq k XP , ,2,1=k , (2.6)其中p q p -=<<1,10,则称随机变量X 服从参数为p 的几何分布,记为)(~p G X.设E 为一随机试验,A 为其事件,p A P =)(,q p A P =-=1)(,现作独立重复试验直到A 出现为止. 以X 表示事件A 出现的总次数,则随机变量X 可取值 ,,,2,1k .以k A 表示在第k 重试验中事件A 出现的事件,则 )()(121k k A A A A P k XP -===)()()()()(A P A P A P A P A A A A P = =1-k pq , ,2,1=k . 5. 超几何分布若离散型随机变量X 的分布律为, (2.7) 其中N n N M ≤≤≤≤0,0,k 是满足不等式 ),min(),0max(M n k m N n ≤≤+-的所有整数,则称随机变量X 服从参数为N M n ,,的超几何分布,记为),,(~N M n H X.例 设一批木工板共N 张,其中有M 张次品(N M ≤≤0),M N -n (N n ≤≤0)张,以X表示所取得的次品数,试求随机变量X 的分布律.解 若M N n -=,则X 可取的最小数显然为0;若M N n ->,则X 可取的最小数为)(M N n --. 这样,X 可取的最小数是 ),0max(m N n +-.若M n ≤,则X 可取的最大数为n ;若M n >,则X 可取的最大数为)(M N n --. 这样,X 可取的最大数是 ),min(M n . 按古典概型计算得 ,其中,N n N M ≤≤≤≤0,0,k 是满足不等式),min(),0max(M n k m N n ≤≤+-的所有整数.2.4 连续型随机变量的概率密度函数定义 2.4 设随机变量X 的分布函数为)(x F ,如果存在实数轴上的一个非负可积函数)(x f ,使得对任意实数x ,有⎰∞-=xdt t f x F )()(,(2.8)则称X 为连续型随机变量,称)(x f 为X的概率密度函数,简称为密度函数.在)(x F 的可导点处有 ()()F x f x '=.(2.9)密度函数的基本性质: (1)0)(≥x f ; (2)⎰∞+∞-=1)(dx x f .(3)若X 的密度函数为)(x f ,则 ,其中I 为某一区间.(4)若X 为连续型随机变量,则=<<)(b X a P =<≤)(b X a P =≤<)(b X a P )(b X a P ≤≤.注意及离散情形的区别.例 已知随机变量X 的密度函数为,求(1)常数c ;(2))3/10(<<X p ;(3)分布函数)(x F . 解 (1)由⎰∞+∞-=dx x f )(1,得2=c ; (2)912)3/10(3/1023/10===<<⎰x xdx X p ; (3)根据x 的取值情况来确定积分⎰∞-=x dt t f x F )()(.当0<x 时,00)(==⎰∞-xdt x F ;当10<≤x 时,⎰∞-=00)(dt x F 202x dt t x=+⎰; 当1≥x 时,⎰∞-=00)(dt x F ⎰+102dt t 101=+⎰xdt . 从而得随机变量X 的密度函数为 ,_x)(x F 的图形如图2—3.例2.11 设随机变量X 的密度函数为⎪⎩⎪⎨⎧<≤-<≤=其他,021,210,)(x x x x x f ,试求随机变量X 的分布函数)(x F .解 当0<x 时,0)()(==⎰∞-xdt t f x F ; 当10<≤x 时,;当21<≤x 时,122)2()(2110-+-=-+=⎰⎰x x dt t dt t x F x;当2≥x 时,1)2()(2110=-+=⎰⎰dt t dt t x F . 综上所述,得X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤-+-<≤<=2,121,12210,20,0)(22x x x x x x x x F)(x F 的图形如图2—4.2.5 常见连续型随机变量分布1.均匀分布若连续型随机变量X 的密度函数(见图2—5(1))为⎪⎩⎪⎨⎧≤≤-=其他,0,1)(b x a ab x f , (0) 则称X 服从区间],[b a 上的均匀分布,记为),(~b a U X ,其分布函数为(见图2—5(2))._ 图 2 — 4_x0,(),1,x a x aF x a x b b ax b <⎧⎪-⎪=≤<⎨-⎪≥⎪⎩.(2.11)例1 设随机变量X 服从区间]1,0[上的均匀分布,现对X 进行4次独立观测,试求至少有3次观测值大于1/2的概率. 解 设Y 是3次独立观测中观测值大于1/2的次数,则),4(~p B Y ,其中.由)1,0(~U X ,知X的密度函数为.所以211)21(121==>=⎰dx X p p ,于是0413)1(44)1(34)4()3()3(p p p p Y P Y P Y P -⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛==+==≥ 165)21()21()21(443=+⨯=.2.指数分布若连续型随机变量X 的密度函数为(0>θ), (2.12)1/(b-a)a图2—7(1)p(x)x图2—7(2)F(x)x则称X 服从参数为θ的指数分布,记为.例2 设某电子产品的使用寿命X (h )服从参数为500=θ的指数分布,试求该电子产品的使用寿命超过1000h 的概率. 解 由,知 ⎪⎩⎪⎨⎧≤>=-0,00,5001)(500x x e x f x. 于是1353.05001)1000(210005005001000≈===>-∞+--∞+⎰e e dx e X p xx.3.正态分布正态分布是概率论及数理统计中最重要的一个分布,后面还要指出正态分布是一切分布的中心.1)正态分布的密度函数和分布函数 若连续型随机变量X 的密度函数为, +∞<<∞-x , (2.13)则称X 服从参数为2,σμ的正态分布,记为),(~2σμN X.其中参数+∞<<∞-μ,0>σ.其密度函数)(x f 图形如图2—6(1)所示.)(x f 的图形是一条钟形线,其对称轴为μ=x .)(x f 在μ=x 处取最大值,曲线上对应于图2—8(1)x图2—8(2)σμ±=x 的点为拐点.正态分布),(2σμN 的分布函数为⎰∞---=xt dtex F 222)(21)(σμσπ.(2.14)它是一条光滑上升的S 形曲线,见图2—6(2).图2—7给出了在μ和σ变化时,相应正态密度曲线的变化情况.(1)从图2—7(1)中可以看出:如果固定σ,改变μ的值,则图形沿x 轴平移,而不改变其形状.也就是说正态密度函数的位置由参数μ所确定,因此也称μ为位置参数.(2)从图2—7(2)中可以看出:如果固定μ,改变σ的值,则σ越小,曲线越陡峭;σ越大,曲线越扁平.也就是说正态函数的尺度由参数σ所确定,因此也称σ为尺度参数.2)标准正态分布称0=μ,1=σ的正态分布)1,0(N 为标准正态分布. 记标准正态分布的密度函数为)(x ϕ,分布函数为)(x Φ,即,+∞<<∞-x ,图2—9(1)图2—9(2))(x Φ,+∞<<∞-x .由于标准正态分布的分布函数不含任何未知参数,故其值)()(x X P x ≤=Φ完全可以算出,附表2对0≥x 给出了)(x Φ的值,利用这张表可以算得(1)-=-Φ1)(x )(x Φ. (2))(1)(x x XP Φ-=>. (3))()()(a b x Xa P Φ-Φ=<<.(4)1)(2)|(|-Φ=<c c X P . 例3 设)1,0(~N X,利用附表1,求下列事件的概率:(1)8944.0)25.1()25.1(=Φ=≤X p .(2)1056.08944.01)25.1(1)25.1(=-=Φ-=>X p .(3)1056.08944.01)25.1(1)25.1()25.1(=-=Φ-=-Φ=-<X p . (4)7888.018944.021)25.1(2)25.1(=-⨯=-Φ=≤X p . 3)一般正态分布的标准化为了计算及一般正态变量有关的事件的概率,需要将一般正态分布进行标准化,然后再查标准正态分布函数表. 若),(~2σμN X,则(1). (2.15) (2))()()(σμσμ-Φ--Φ=≤<a b b X a P .(2.16)例4 设)4,86(~N X ,试求 (1))9282(<<X p ; (2)常数a ,使得95.0)(=<a XP .解 (1))28682()28692()9282(-Φ--Φ=<<X p1)2()3()2()3(-Φ+Φ=-Φ-Φ= 9759.019772.09987.0=-+=. (2)由95.0)286()(=-Φ=<a a X p ,或,其中1-Φ为Φ的反函数.从附表1由里向外反查得 9495.0)64.1(=Φ,9505.0)65.1(=Φ,再利用线性内插法可得95.0)645.1(=Φ,即645.1)95.0(1=Φ-,故 , 从中解得29.89=a .2.6 随机变量函数的分布设)(x g y =是定义在直线上的一个函数,X 是一个随机变量,那么)(X g Y=作为X 的一个函数,同样也是一个随机变量. 我们所要研究的问题是:已知X 的分布,如何求)(X g Y=的分布.2.6.1 离散型随机变量函数的分布设X 是一个离散型随机变量,X 的分布律为则)(X g Y =也是一个离散型随机变量,此时Y 的分布律可表示为Y)()()(21i x g x g x gPip p p 21当 ),(,),(),(21i x g x g x g 中有某些值相等时,则把那些相等的值分别合并,并将对应的概率相加即可.例2.15 已知X 的分布律为(1)求121+=X Y 的分布律;(2)求X X Y -=32的分布律. 解 (1)121+=X Y 的分布律为(2) X X Y -=32的分布律为再将相等的值合并得2.6.2 连续型随机变量函数的分布通过以下几则例子,介绍求连续型随机变量函数的分布的一种方法,称之为分布函数法.例2.16 设随机变量X 的密度函数为⎩⎨⎧<<=其他,010,2)(x x x f X , 试求随机变量12+=X Y 的密度函数)(y f Y .解 )12()()(y X P y Y P y F Y ≤+=≤=))1(21(21)()(-='=y p y F y f X Y Y.一般地,还可以利用分布函数法证明以下定理. 定理 设X 是连续型随机变量,其密度函数为)(x f X .)(X g Y=是另一个随机变量.若)(x g y =严格单调,其反函数)(y h 有连续导函数,则)(X g Y=的密度函数为⎩⎨⎧<<'=其他,0,|)(|)]([)(b y a y h y h f y f X Y .(2.17)其中)}(),(min{+∞-∞=g g a ,)}(),(max{+∞-∞=g g b .证明 不妨设)(x g y =是严格单调递增函数,这时它的反函数)(y h 也是严格单调递增函数,且)(>'y h .记)(-∞=g a ,)(+∞=g b ,这就意味着)(x g y =仅在区间),(b a 取值,于是当a y <时,0)()(=≤=y Y P y F Y ; 当b y >时,1)()(=≤=y Y P y F Y ; 当b y a ≤≤时,))(()()(y X g P y Y P y F Y ≤=≤= =dt t f y h X P y h X ⎰∞-=≤)()())((. 由此得Y 的密度函数为⎩⎨⎧<<'=其他,0,)()]([)(by a y h y h f y f X Y .同理可证当)(x g y =是严格单调递减函数时,结论也成立.但此时应注意0)(<'y h ,所以要加绝对值符号,这时,)(+∞=g a ,)(-∞=g b .利用上述定理,可以证明以下一个很有用的结论. 定理2.3 若),(~2σμN X,则.证明 是严格递增函数,仍在),(∞+-∞上取值,其反函数为μσ+==y y h x )(,σ=')(y h ,由定理可得2221)()()]([)(y X X Y e y f y h y h f y f -=+='=πσμσ,所以.定理 设随机变量X 服从正态分布),(~2σμN X ,则当0≠a 时,有~b aX Y +=),(~22σμa b a N X +.证明 当)0(0<>a 时,b ax y +=是严格递增(减)函数,仍在),(∞+-∞上取值,其反函数为a b y y h x /)()(-==,a y h /1)(=',由定理可得|1|)(|)(|)]([)(aa b y f y h y h f y f X X Y -='= }2)]([exp{)|(|21222σμσπa b a y a +--=. 这是正态分布),(22σμa b a N +的密度函数,结论得证.这个定理表明:正态变量的线性函数仍为正态变量.特别地,取σ/1=a ,σμ/-=b ,则~b aX Y +=)1,0(N ,此即定理2.3.定理 若X 的分布函数)(x F X 为连续严格递增的连续函数,则)(X F YX =服从区间)1,0(上均匀分布)1,0(U .证明 由于分布函数)(x F X 仅在区间]1,0[上取值,所以 当0<y 时,0))(()()(=≤=≤=y X F P y Y P y F X Y . 当1≥y 时,1))(()()(=≤=≤=y X F P y Y P y F X Y . 当10<≤y 时,))(()()(y X F P y Y P y F X Y ≤=≤= y y F F y F X P X X X ==≤=--)(()((11.从而⎩⎨⎧<<='=其他,010,1)()(x y F y f Y Y ,所以~Y )1,0(U .前面的例子及定理,都要求)(x g 严格单调,这在有些场合不能满足.以下的两个例子是更一般的情形.例 设随机变量X 服从标准正态分布)1,0(N ,试求2X Y =的分布.解 由于02≥=X Y ,所以当0≤y 时,0)()(=≤=y Y P y F Y . 当0>y 时,)()()()(2y X y P y X P y Y P y F Y ≤≤-=≤=≤= , 从而21)()21)((21)()()(-=---='=yy yy yy y F y f Y Y ϕϕϕ,于是 ⎪⎩⎪⎨⎧≤>=--0,00,21)(221y y e y y f y Y π.(2.6.2)具有上述密度函数的分布称为自由度为1的卡方分布,记为)1(~2χY .例 设随机变量X 的密度函数为 ⎪⎩⎪⎨⎧<<=其他,00,2)(2ππx x x f X ,求X Y sin =的密度函数)(y f Y .解 由于X 在区间),0(π内取值,所以X Y sin =的可能取值为区间)1,0(.在Y 的可能取值区间外,0)(=y F Y .当10<<y 时,)(sin )()(y X P y Y P y F Y ≤=≤=)arcsin ()arcsin 0(ππ≤≤-+≤≤=X y P y X Pdt t f y X )(arcsin 0⎰=dt t f y X )(arcsin ⎰-+ππ 从而 22222121)arcsin (21arcsin 2)()(y y y y y y F y f Y Y -=--+-='=ππππ.综合得 ⎪⎩⎪⎨⎧<<-=其他,010,12)(2y yy f Y π.。
概率论与数理统计图文课件最新版-第2章-随机变量及其分布

函数 f ( x),使得对于任意实数 x 有:
x
F ( x) f (t)dt ( P( X x))
则称 X 为连续型变量,f ( x)为 X 的概率密度函数 注 ▲ 连续型随机变量与离散型随机变量的区别
离散型: P( X xk ) 0 连续型:P( X xk ) 0
机
多,而且还不能一 一列
变 连续型随机变量 量
举,而是充满一个区间
例如,“电视机的寿命”,实际中
常 遇到的“测量误差”等等.
概率统计
第二章知识结构图
随机变量
离散型随 机变量
连续型随 机变量
分布律
分布 函数
函数的 分布
概率 密度
分布 函数
函数的 分布
定义 常用分布
概率统计
定义 常用分布
第四节 连续型随机变量及其概率密度
0 x 0
则称 X 为服从参数 的指数分布.
概率统计
二 . 连续型随机变量的分布函数
定义: 若定义在 (, )上的可积函数 f ( x)
满足: (1). f ( x) 0
(2). f ( x)dx 1
f (x)确定了 分布函数F(x),
则称 F ( x)
x
f ( x)dx
f (x)是F(x)的 导函数, F(x)是f (x)的一
(2) 某段时间内候车室的旅客数目为 X , 则它也是一个随机变量,它可以取 0 及一切 自然数。X 是定义在样本空间,则:
S e {人数 人数 0}
X X (e)的值域RX [0, )
概率统计
二. 随机变量的分类 离散型随机变量
概率论与数理统计第2章ppt课件

1 3x
0
1
2
3X
处的离跳散跃型高随度机恰变为量P{的X=分x布i}.函数为跳跃函数,在xi
§4. 连续型随机变量的概率密度
1. 定义:对于随机变量X的分布函F(x), 如果存在非负函数f(x),使对于任意实数x有:
F(x)xf(t)dt
则称X为连续型随机变量;称f(x)为X的概率 密度函数。简称密度函数。
精选课件
21
例4. 3个人抓阄数。
解:X的概率分布: P{X=1}=1/3
P{X=2}=2/3×1/2=1/3
P{X=3}=2/3×1/2×1/1=1/3
X的分布函数:
Y
0 x <1
1
1/3 1 x <2
2/ 3
F(x)=
2/3 2 x <3 1/ 3
则:P{X=k} Cnk pnkqnnk 其中:qn=1-pn
(令=μV; pn=μ△V=μV/n= /n):
考虑当 n +时
P{X=k} =nl imCnkpnkqnnk
limn! ()k(1)nk
nl n i m k1 k !!n(nn (n n k1)) !n (n n kn 1)k((11 n))kn
k
k!
k=0、1、2、3、……
n
Poissn定理:n为正整数,pn=/n, >0。 则对任一非负整数k有:
nl im Cnkpnkqnnk
k
k!
其中:= npn.
例3. 某人打靶命中率为0.001, 重复射击 5000次,求至少命中2次的概率。
解:设X为至命中次数。
P(X2) =1-P(X<2) =1-P(X=0)-P(X=1)
概率论与数理统计--第二章PPT课件

F(x) pk xk x
分布函数F(x)在x xk , 其跳跃值为pk P{X
对k 所1,有2,满足处x有k 跳 x跃的,k求和。
xk }
第26页/共57页
第四节 连续型随机变量及其概率密度
定义 对于随机变量X的分布函数F(x),如果存在非 负函数f (x),使对于任意实数有
售量服从参数为 10的泊松分布.为了以95%以上的
概率保证该商品不脱销,问商店在月底至少应进该商 品多少件? 解 设商店每月销售该种商品X件,月底的进货量为n件,
按题意要求为 PX n 0.95
由X服附从录的泊1松0的分泊布松表分知布k,140 1则k0!k有e1k0n01k00!k.9e1160 6
可以用泊松分布作近似,即
n
k
pk
1
p
nk
np k
k!
enp , k
0,1, 2,
.
例 4 为保证设备正常工作,需要配备一些维修工.如果各台设备
发生故障是相互独立的,且每台设备发生故障的概率都是 0.01.
试求在以下情况下,求设备发生故障而不能及时修理的概率.
(1) 一名维修工负责 20 台设备.
于是PX I P(B) Pw X (w) I.
随机变量的取值随试验的结果而定,而试验的各个 结果出现有一定的概率,因而随机变量的取值有一 定的概率.
按照随机变量可能取值的情况,可以把它们分为两 类:离散型随机变量和非离散型随机变量,而非离 散型随机变量中最重要的是连续型随机变量.因此, 本章主要研究离散型及连续型随机变量.
x
x
4. F(x 0) F(x) 即F(x)是右连续的
第23页/共57页
《概率论与数理统计》课件 概率学与数理统计 第二章

作为某一个离散型随机变量的分布律。
为了直观地表达分布律,我们还可以作类似图2-1的分布律图。
图2-1
图2-1中 xi 处垂直于 x 轴的线段高度为 pi,它表示 X 取 xi 的概 率值。
例2.1 一盒中装有编号为1,2,3,4,5的五个球,现从中任意取三 个球,求所抽出三个球的中间号码 X 的概率分布。
Pa X b PX b PX a Fb 0 Fa
Pa X b PX a Pa<X b
Fa Fa 0 Fb Fa
Fb Fa 0
随机变量的分类:
1. 离散型随机变量:随机变量只取数轴上的有限个或可列个点。 2. 连续型随机变量:随机变量的可能取值充满数轴上的一个或 若干区间。 3. 奇异型随机变量:既不是离散型随机变量,也不是连续型随 机变量。在理论上很有价值,而实际问题中很少有应用。
解 以 p 表示每盏灯禁止汽车通过的概率,显然 X 的可能取值
为0,1,2,3,4,易知 X 的分布律为
表2-3
或写成
P X k 1 pk p,k 0,1,2,3 P X 4 1 p4
将 p 0.4, p 0.6 代入上式,所得结果如表2-4所示。
表2-4
二、常用离散型随机变量的分布
1
PX 2 1 PX 2 1 PX k k 0
1 0.9995000 50.9994999
≈1 50 e5 5e5 0! 1!
查表可得 P X 2 1 0.00674 0.03369 0.95957
例2.6 某人进行射击,设每次射击的命中率为,独立射击400次, 试求至少击中两次的概率。
记作 X 0 -1 分布。写成分布律表形式见表2-5。
表2-5
对于一个随机试验,若它的样本空间只包含两个元素,
王学民《概率论与数理统计》第二章课件

表2.2.1 二项分布的泊松分布近似
n k nk 二项分布 p q k
泊松分布
k
k!
n=100 p=0.01 0.366
e
k n=10 p=0.1 0 0.349
n=20 p=0.05 0.358
n=40 p=0.025 0.363
λ=1(=np)
0.368
1
2 3 4 ⋮
k! 其中λ>0是个常数,则称X服从参数为λ的泊松分布 ,记作X~P(λ)。 容易验证: (1)P(X=k)>0,k=0, 1, 2, ⋯; k k (2) P X k e e e e 1。 k 0 k 0 k ! k 0 k !
(3) F lim F x 0, F lim F x 1;
x x
(4)F(x+0)=F(x),即F(x)在每一点x处都是右连续的。
离散型随机变量X的分布函数为 F x P X x P X xk
图2.4.2 X的密度曲线
图2.4.3
X的分布函数曲线
二、几个常见的连续型分布
1.均匀分布 2.正态分布 3.指数分布
1.均匀分布
如果连续型随机变量X具有如下的概率密度函数 1 , a xb f x b a 其他 0 , 则称X服从[a, b]上的均匀分布,记作X~U[a, b]。X的 分布函数为 xa 0, x a F x , a xb b a xb 1,
X P
x1 p1
x2 p2
⋯ ⋯
xn pn
⋯ ⋯
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例4. 某人射击的命中率为0.02,他独立射击400 次,试求其命中次数不少于2的概率。 解 设X表示400次独立射击中命中的次数, 则X~B(400, 0.02),故 P X 2 1 P X 0 P X 1
1 C
0 400
0.02 0.98
k k
nk
, (k 0,1,...,n)
其中 0 p 1,,则称X服从参数为n,p的 p q 1 二项分布, 简记为 X
B n, p .
例 设 X B 2, p , Y B 3, p .设
P X 1
5 9
,试求
P Y 1 .
二、离散型随机变量分布律的定义
看一个例子 从中任取3 个球 取到的白球数X是一个随机变量 . (1) X 可能取的值是0,1,2 ; (2) 取每个值的概率为:
3 C3 1 P{ X 0} 3 C5 10
1 C32C 2 3 P{ X 1} 3 C5 5 1 3 2 2
CC 3 P{ X 2} 3 C5 10
例1
设随机变量X的分布律为
X
p
1
0
1
2
3 0.1
a b 0.2 0.3
求a,b满足什么条件。
a b 0.4, a 0, b 0
一旦知道一个离散型随机变量X的分布律后,我们便可求得X
所生成的任何事件的概率。特别地,对任意 a b,有
P a X b P X xi P X xi a x b a x b 1 1 pk
0
400
C
1 400
0.02 0.98
1
399
泊松定理 设 0 是常数,n是任意正整数,且 np ,则对任意取定的非负整数k,有
n
k k lim Cn pn 1 pn n nk
k
k!
e
例4. 某人射击的命中率为0.02,他独立射击400 次,试求其命中次数不少于2的概率。
X
1
p 1, q 1 p ,则称X服从0-1分布,X的分布
0
P X 1 p, P X 0 q
pk
p
q
2 二项分布 (Binomial distribution)
定义 若随机变量X的可能取值为0,1,„,n,而X
的分布律为
P{ X k} C n p (1 p)
解
用泊松定理 取 =np=(400)(0.02)=8, 故 近似地有 P{X2}=1- P{X=0}-P {X=1}
=1-(1+8)e-8=0.996981.
泊松分布(Poisson
定义2 的分布律为
distribution)
设随机变量X的可能取值为0,1,2,„,n,„,而X
pk P X k
P{X 1} =P{X=0}+P{X=1} =(0.2)3+3(0.8)(0.2)2
=0.104
练习
例3.从某大学到火车站途中有6个交通岗,假设在各 个交通岗是否遇到红灯相互独立,并且遇到红灯的概 率都是1/3. (1)设X为汽车行驶途中遇到的红灯数,求X的分布律. (2)求汽车行驶途中至少遇到5次红灯的概率. 解:(1)由题意,X~B(6,1/3),于是,X的分布律为:
例2 设X服从泊松分布,且已知 P X 1 P X 2 ,求
设
Ai={第i个路口遇红灯}, i=1,2,3
路口1
路口2
路口3
P{X=0}=P(A1)=1/2,
X表示该汽车首次遇到红灯前已通过的路口的个数
路口1
路口2
路口3
1 1 P{X=1}=P( A1 A2 ) = 1/4 2 2
路口1
路口2
路口3
1 1 1 P{X=2}=P( A1 A2 A3 ) =1/8 2 2 2
X表示该汽车首次遇到红灯前已通过的路口的个数
路口1
路口2
路口3
1 1 1 P(X=3)= P( A1 A2 A3 ) =1/8 2 2 2
即
X
p
0
1
2
3
1 2
1 4
1 8
1 8
练习 1.设离散型随机变量X的分布律为
2 1 P X i a , i 1, 2, 3; 3 2 2 P X i a , i 1, 2, 3,. 3
一、随机变量的概念
在实际问题中,随机试验的结果可以用数量来 表示,由此就产生了随机变量的概念. 1、有些试验结果本身与数值有关(本身就是一 个数). 例如,掷一颗骰子面上出现的点数; 每天进入一号楼的人数; 昆虫的产卵数; 四月份北京的最高温度;
2、在有些试验中,试验结果看来与数值无关,但 我们可以引进一个变量来表示它的各种结果.也就 是说,把试验结果数值化.
P( X 2)P( A1 A2 )(1 p) p 2 P( X 3)P( A1 A2 A3) (1 p) p k 1 可见 k1,2, P( X k)(1 p) p
这就是求所需射击发数X的分布律.
· 几个常用的离散型分布 (一)贝努利(Bernoulli)概型与二项分布 1. (0-1)分布 若随机变量X只取两个可能值0,1,且 其中 0 律为
i i
分别求上述各式中的常数
a.
练习 2 某射手连续向一目标射击,直到命中为止,已知 他每发命中的概率是p,求所需射击发数X 的分布律. 解: 显然,X 可能取的值是1,2,… , 为计算 P{X =k }, k = 1,2, …, Ak = {第k发命中},k =1, 2, …, 于是
P{X=1}=P(A1)=p,
1 2 P{X k} C 3 3
k 6 k 6 k
k 0,1,...,6
(2) P{X 5} P{X 5} P{X 6} 5 6 13 5 1 2 1 C6 3 3 3 729
0 2 0 2
例2 某类灯泡使用时数在1000小时以上 的概率是0.2,求三个灯泡在使用1000 小时以后最多只有一个坏了的概率.
解: 设X为三个灯泡在使用1000小时已坏的灯泡数 .
X ~ B (3, 0.8),
P( X k)C (0.8) (0.2) , k 0,1,2,3
k 3 k
3k
练习 引入适当的随机变量描述下列事件: ①将3个球随机地放入三个格子中, 事件A={有1个空格},B={有2个空格}, C={全有球}。 X=空格数 ②进行5次试验,事件D={试验成功一次}, F={试验至少成功一次},G={至多成功3次} Y=试验成功次数
随机变量的分类:
离散型随机变量 连续型 随机变量 非离散型 奇异型(混合型)
(2) 有了随机变量的分布,事件的概率就可以根据分布求出来。
3 4 3 10
P C P X 1 P X 0 P X 1 1 1 2 6 2 3
例3 某篮球运动员投中篮圈概率是0.9,求他两次独
立投篮投中次数X的概率分布.
解: X可取值为0,1,2 ; 0 2 0 P X 0 C2 0.9 1 0.9 0.01 1 1 1 P X 1 C2 0.9 1 0.9 0.18
解 由 P X 1
5 知, 9
4 P X 0 1 P X 1 9
1 4 即 C p 1 p ,由此得 p 3 9 1 再由 Y B 3, 可得 3 19 3 0 0 P Y 1 1 P Y 0 1 C3 p 1 p 27
3 C6 1 P X 0 P H 0 3 C10 6
1 2 C4C6 1 P X 1 P H1 3 C10 2
2 1 C4 C6 3 P X 2 P H 2 3 C10 10
C 1 P X 3 P H3 C 30
正如裁判员在运 动场上不叫运动 员的名字而叫号 码一样,二者建 立了一种对应关 系.
定义1
设E是随机试验,样本空间为
,如果对于每一个结果
(样本点) ,有一个实数 X 与之对应,这样就得到一个 定义在
上的实值函数 X
X ,称为随机变量。随机变
量通常用X,Y,Z,„或 X1 , X 2 ,来表示。 随机变量的特点 1 它的取值带有随机性; 2 X取各个值有一定的概率
P X 2 C 0.9 1 0.9 0.81
2 2 2 0
常常表示为:
X
p
0 1 2 0.81 0.01 0.18
ห้องสมุดไป่ตู้
这就是X的分布律.
例4 一汽车沿一街道行驶,需要通过三个均设有红绿 信号灯的路口,每个信号灯为红或绿与其它信号灯为 红或绿相互独立,且红绿两种信号灯显示的时间相等. 以X表示该汽车首次遇到红灯前已通过的路口的个数, 求X的分布律. 解: 依题意, X可取值0, 1, 2, 3.
pk (k=1,2, …) 满足:
(1) pk 0, (2)
p
k 1
k=1,2, …
k
1
用这两条性质 判断一个函数 是否是分布律
离散型随机变量表示方法
(1)公式法
P{ X xk } pk , k 1, 2,
(2)列表法 X
pk
x1 p1
x2 x k p2 pk
解
(1)查表可得
P X 10 P X 10 P X 11