中学学科网2009年高考数学第二轮复习精品资料一 选择题 全国通用p
2009年普通高等学校招生全国统一考试理科数学(全国2卷)全解全析

2009年普通高等学校招生全国统一考试理科数学(全国2卷)全解全析一、选择题 1、102ii-= (A )-2+4i (B) -2-4i (C) 2+4i (D)2-4i 【答案】A【解析】运用复数基本运算化为复数代数形式2、设集合A={x |3>x },B ={x |041<--x x }则A B= (A )∅ (B ) (3,4) (C ) (-2,1) (D ) (4+∞)【答案】B【解析】解分式不等式并求交集3、已知 ABC 中,cotA=125-,则cosA= (A )1213 (B )513 (C )513- (D)1213-【答案】D【解析】由cotA=125-,知,ππ<<A 2,排除(A )、(B );若135cos -=A ,则1312sin =A 则125sin cos cot -==A A A 与题设不符,排除(C ),故选D 或由cotA=125-1213tan 1sec 125tan 2-=+-=⇒-=⇒A A A , ∴1312sec 1cos -==A A 【易错提醒】同角三角函数基本关系并注意所在象限的符号 4、.曲线y=21xx -在点(1,1)处的切线方程为 (A )x-y-2=0 (B)x+y-2=0 (C)x+4y-5=0 (D)x-4y-5=0 【答案】B 【解析】22)12(1)12(2)12(1'--=-⋅--⋅=x x x x y ,切线的斜率1)112(1'21-=-⨯-===x y k ∴切线方程为02)1(1=-+⇒--=-y x x y5.、已知正四棱柱1111ABCD A BC D -中,12AA AB =,E 为1AA 中点,则异面直线BE 与1CD 所成角的余弦值为(A (B) 15 (C) (D) 35【答案】C【解析】如图,取DD 1的中点F ,连接CF ,则CF ∥BE , ∴∠D 1CF 为所求。
09届第二轮复习高三数学试题

2009届箴言中学高三数学二轮试题(文科 )一、选择题:本大题共 10小题,每小题 5分,共50分•在每小题给出的四个选项中,只有一项 是符合题目要求的.• 1、设A 、B 是两个集合,定义 A-B 二{x|x 代且x -一 B },若M 二{x||x 1匡2}, N ={x | x =\si n 二 |,» 三 R },则 M - N=() A • [- 3, 1] B • [ -3, 0) C . [0, 1] D . [- 3, 0] 2、 函数f(x)=1 log 2x 与g(x)=2i 在同一直角坐标系下的图象大致是 () 3、 已知正方体 满足条件PD 1 A.圆 ABCD --ABC 1D 1中,M 为AB 中点,棱长为 = 3PM ,则动点 B.椭圆 2, P 在底面ABCD 上形成的轨迹是 C 双曲线 P 是底面 ABCD 上的动点,且 () D.抛物线 4、 如图,平面内的两条相交直线 界)。
设 OP =mOR nOP 2 , I 、II 、 III 、W(不包含边 A . m >0, n >0 B . m > 0, n V 0 C . m V 0, n >0 D . m V 0, n V0 等差数列{a n }中,a 3 - 8,a 7=20 , 若数列{ 1 }的前n 项和a n a n 1A 、14B 、15C 、16D 、18 5. 且点P 落在第III 部分,则实数 m , n 满足( OP 1和OP 2将该平面分割成四个部分 4 一,则n 的值为() 25 2 2方程(a 1)x -2ax-3=0的两根捲, () X 2满足x 2〈 x ( 1 - x 2)且0< X 1,则实数a 的取值范围 弓一3 乜丨 2,丿 从集合{1,2,3,…,9}中任取三个数排成一列,则这三个数成等差数列的概率是 2 4 2 4・、 B 、 C 、 D 、63 63 21 21 8•已知双曲线x 2 -y 2二a 2(a 0)的左、右顶点分别为 A 、B ,双曲线在第一象限的图象上有 一点 P , PAB = •, PBA =2 , APB 二『,贝U () A 、tan 二 1 tan :tan = 0 C 、tan 二"tan : 2tan = 0二、填空题:本大题共 5小题,每小题 A. 1, .3 B. 1 ,3,二 C. D. B 、 C 、 9.设偶函数f (x)对任意x • R ,都有 tan J 1 ta n ——ta n = 0 tan :" tan - -2tan = 05分,共25分.把答案填在题中横线上. 1 f(x 3) ,且当 [-3,-2]时,f(x) = 2x ,f(x)则 f (113.5) =2 210.在平面直线坐标系 xOy 中,△ ABC 的顶点A(-6,0)和C(6,0),顶点B 在双曲线—丄 =1的25 11左支上,则sin A-sinC =sin B11.定义在(-1,1)上的函数f(x)=_5x ・sin x,如果f (1-a) • f (1-a 2) . 0 ,则实数a 的取值 范围为 12. (X-2)(X-1)5的展开式中x 2项的系数为 ______________x +2y <6-,目标函数z =| 2x — y +1|的最小值是 .x _0,y _02 214.已知椭圆 笃•打邛(a .b .0)的右焦点为F(c,0)过F 作与x 轴垂直的直线与椭圆相交于点 P ,过点P 的椭圆的切线I 与x 轴相交于点 A ,则点A 的坐标为 ______________ .15. 已知集合P ={x 1 Ex 兰6,X W N},对它的非空子集 A,先将A 中的每个元素k 分别乘以k36(-1),再求和(如 A={1,3,6},可求得和为(-1) 1・(-1) 3,(-1) 6=2),则对M 的所有非空子集,这些和的总和是 ____________ .三、解答题:本大题共 6个小题,共75分.解答应写出文字说明,证明过程或演算步骤 •16. (本小题满分12分)△ ABC 中,3tan Atan B -tan A -tan B =、_3 . (I )求/ C 的大小;(n)设角A , B , C 的对边依次为a,b,c ,若c =2,且△ ABC 是锐角三角形,求 a 2 b 2的取 值范围.17. (本小题满分12分)如图,四棱锥 P - ABCD 中,底面 ABCD 是边长为 2的正方形,PB _ BC, PD _ CD ,且PA=2, E 为PD 中点.(1)求证:PA_平面ABCD ;(2 )求二面角E - AC -D 的大小;(3)在线段BC 上是否存在点2距离为 空 ?若存在,确定点 F 的位置;若不存在,请说明理由513•约束条件:丿2x +y 兰 6B C18. (本小题满分12 分)a *(1 )记q n (n • N ),试比较c n 与c n 」勺大小;n +12 a4(2)是否存在实数 ‘使得当x 「时,f(x) = -x 4X -0对任意n ・N 恒成立?n +1若存在,求出最大的实数■;若不存在,说明理由.佃.(本小题满分12分)某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响 •已知某学生选修甲而不选修乙和丙的概率为 0.08,选修甲和乙而不选修丙的概率是 0.12,至少选修一门的概 率是0.88,用■表示该学生选修的课程门数和没有选修的课程门数的乘积(I )记“函数f(X^X^ X 为R 上的偶函数”为事件 A ,求事件A 的概率;定义为,X 2 , I I I ,X n 的“倒平均数”为1平均数”为—(n N *),已知数列{a n }前n 项的“倒(n)求芒=2的概率20.(本小题满分13分)2 2已知椭圆x_ - X_ =1(a b .0)的右准线h : X = 2与x轴相交于点D ,右焦点F到上顶点的距a b离为2,点C(m,0)是线段OF上的一个动点•(I)求椭圆的方程;(n )是否存在过点F且与x轴不垂直的直线|与椭圆交于A、B两点,使得(CA - CB) _ BA,并说明理由•21 .(本小题满分14分) 已知正数数列{a n}的前n项和为S n,且a;• a;• a;•…,a;二S:.2(1)求证:a n 2S n - a n ;(2)求数列{a n}的通项公式;(3)若b n 3n- (-1)nj■ 2an.( ■为非零常数,n・N*),问是否存在整数入,使得对任意n N*,都有b n 1■ b n.2 21 62 2 2 a b [sin A • si n (_A 二 f]A2 216 2 2 16 1 1 16 8a 1 2」b 2 [sin 2 A -sin 2C][ (1-cos2A) (1-cos2C)] ______ 8(cos2A :;cos2C) 33 22 3 32^ -8 [cos 2A -^-)cos 2A ;;(」3)sin2A] =13 3 3 2 2 3即 20 :: a 2 b 2<8°3BC _ AB ,又 BC _ PB , ••• BC _ 平面 PAB ,二 BC _ PA .同理可证 CD _ PA ,•- PA_ 平面 ABCD .(2)解:设 M 为AD 中点,连结 EM ,又E 为PD 中点, 可得EM // PA ,从而EM _底面ABCD . 过M 作AC 的垂线MN ,垂足为N ,连结EN . 由三垂线定理有 EN _ AC ,• ENM 为二面角E - AC - D 的平面角.V2EMl在 Rt EMN 中,可求得 EM = 1, MN, • tan ^ENM2 .2MN1 ::-si n(A< <) 12 6J? 8sin(2A ')3 36匸仲二: 6 , 65二17.解法(1)证明:•••底面 ABCD 为正方形, 参考答案1.B2.D3.A4.B5.C6.D7.B8.C9. 0.210.11. 1 ::: a ::: 、. 2 12. 25 13.0214.(—,0) 15.96c16.解:(1)依题意:tan A 亠tan B1 -tan Atan B=7.3,即 tan(A B) - _ 3,又 0 ::: A • B :::二,C —A_B I ,3(2)由三角形是锐角三角形可得即二 ”A.二。
2009年全国统一高考数学试卷(理科)(全国卷ⅱ)及答案

2009年全国统一高考数学试卷(理科)(全国卷Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)=()A.﹣2+4i B.﹣2﹣4i C.2+4i D.2﹣4i2.(5分)设集合A={x||x|>3},B={x|<0},则A∩B=()A.φB.(3,4) C.(﹣2,1)D.(4,+∞)3.(5分)已知△ABC中,cotA=﹣,则cosA=()A.B.C.D.4.(5分)函数在点(1,1)处的切线方程为()A.x﹣y﹣2=0 B.x+y﹣2=0 C.x+4y﹣5=0 D.x﹣4y+3=05.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=2,E为AA1中点,则异面直线BE与CD1所成角的余弦值为()A.B.C.D.6.(5分)已知向量=(2,1),=10,|+|=,则||=()A.B. C.5 D.257.(5分)设a=log3π,b=log2,c=log3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a8.(5分)若将函数y=tan(ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx+)的图象重合,则ω的最小值为()A.B.C.D.9.(5分)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F 为C的焦点,若|FA|=2|FB|,则k=()A.B.C.D.10.(5分)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种 B.12种C.24种D.30种11.(5分)已知双曲线的右焦点为F,过F且斜率为的直线交C于A、B两点,若=4,则C的离心率为()A.B.C.D.12.(5分)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)4的展开式中x3y3的系数为.14.(5分)设等差数列{a n}的前n项和为S n,若a5=5a3,则=.15.(5分)设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C.若圆C的面积等于,则球O的表面积等于.16.(5分)求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A、B、C的对边长分别为a、b、c,cos(A﹣C)+cosB=,b2=ac,求B.18.(12分)如图,直三棱柱ABC﹣A1B1C1中,AB⊥AC,D、E分别为AA1、B1C 的中点,DE⊥平面BCC1.(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C为60°,求B1C与平面BCD所成的角的大小.19.(12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.20.(12分)某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;(Ⅲ)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望.21.(12分)已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为,(Ⅰ)求a,b的值;(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.22.(12分)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.2009年全国统一高考数学试卷(理科)(全国卷Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2009•全国卷Ⅱ)=()A.﹣2+4i B.﹣2﹣4i C.2+4i D.2﹣4i【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分子和分母进行乘法运算,整理成最简形式,得到结果.【解答】解:原式=,故选A2.(5分)(2009•全国卷Ⅱ)设集合A={x||x|>3},B={x|<0},则A∩B=()A.φB.(3,4) C.(﹣2,1)D.(4,+∞)【分析】先化简集合A和B,再根据两个集合的交集的意义求解.【解答】解:A={x||x|>3}⇒{x|x>3或x<﹣3},B={x|<0}={x|1<x<4},∴A∩B=(3,4),故选B.3.(5分)(2009•黑龙江)已知△ABC中,cotA=﹣,则cosA=()A.B.C.D.【分析】利用同角三角函数的基本关系cosA转化成正弦和余弦,求得sinA和cosA 的关系式,进而与sin2A+cos2A=1联立方程求得cosA的值.【解答】解:∵cotA=∴A为钝角,cosA<0排除A和B,再由cotA==,和sin2A+cos2A=1求得cosA=,故选D.4.(5分)(2009•全国卷Ⅱ)函数在点(1,1)处的切线方程为()A.x﹣y﹣2=0 B.x+y﹣2=0 C.x+4y﹣5=0 D.x﹣4y+3=0【分析】欲求切线方程,只须求出其斜率即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:依题意得y′=,因此曲线在点(1,1)处的切线的斜率等于﹣1,相应的切线方程是y﹣1=﹣1×(x﹣1),即x+y﹣2=0,故选B.5.(5分)(2009•黑龙江)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=2,E为AA1中点,则异面直线BE与CD1所成角的余弦值为()A.B.C.D.【分析】求异面直线所成的角,一般有两种方法,一种是几何法,其基本解题思路是“异面化共面,认定再计算”,即利用平移法和补形法将两条异面直线转化到同一个三角形中,结合余弦定理来求.还有一种方法是向量法,即建立空间直角坐标系,利用向量的代数法和几何法求解.本题采用几何法较为简单:连接A1B,则有A1B∥CD1,则∠A1BE就是异面直线BE与CD1所成角,由余弦定理可知cos ∠A1BE的大小.【解答】解:如图连接A1B,则有A1B∥CD1,∠A1BE就是异面直线BE与CD1所成角,设AB=1,则A1E=AE=1,∴BE=,A1B=.由余弦定理可知:cos∠A1BE=.故选C.6.(5分)(2009•黑龙江)已知向量=(2,1),=10,|+|=,则||=()A.B. C.5 D.25【分析】根据所给的向量的数量积和模长,对|a+b|=两边平方,变化为有模长和数量积的形式,代入所给的条件,等式变为关于要求向量的模长的方程,解方程即可.【解答】解:∵|+|=,||=∴(+)2=2+2+2=50,得||=5故选C.7.(5分)(2009•全国卷Ⅱ)设a=log3π,b=log2,c=log3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a【分析】利用对数函数y=log a x的单调性进行求解.当a>1时函数为增函数当0<a<1时函数为减函数,如果底a不相同时可利用1做为中介值.【解答】解:∵∵,故选A8.(5分)(2009•黑龙江)若将函数y=tan(ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx+)的图象重合,则ω的最小值为()A.B.C.D.【分析】根据图象的平移求出平移后的函数解析式,与函数y=tan(ωx+)的图象重合,比较系数,求出ω=6k+(k∈Z),然后求出ω的最小值.【解答】解:y=tan(ωx+),向右平移个单位可得:y=tan[ω(x﹣)+]=tan (ωx+)∴﹣ω+kπ=∴ω=k+(k∈Z),又∵ω>0∴ωmin=.故选D.9.(5分)(2009•黑龙江)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=()A.B.C.D.【分析】根据直线方程可知直线恒过定点,如图过A、B分别作AM⊥l于M,BN ⊥l于N,根据|FA|=2|FB|,推断出|AM|=2|BN|,点B为AP的中点、连接OB,进而可知,进而推断出|OB|=|BF|,进而求得点B的横坐标,则点B 的坐标可得,最后利用直线上的两点求得直线的斜率.【解答】解:设抛物线C:y2=8x的准线为l:x=﹣2直线y=k(x+2)(k>0)恒过定点P(﹣2,0)如图过A、B分别作AM⊥l于M,BN⊥l于N,由|FA|=2|FB|,则|AM|=2|BN|,点B为AP的中点、连接OB,则,∴|OB|=|BF|,点B的横坐标为1,故点B的坐标为,故选D10.(5分)(2009•黑龙江)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种 B.12种C.24种D.30种【分析】根据题意,分两步,①先求所有两人各选修2门的种数,②再求两人所选两门都相同与都不同的种数,进而由事件间的相互关系,分析可得答案.【解答】解:根据题意,分两步,①由题意可得,所有两人各选修2门的种数C42C42=36,②两人所选两门都相同的有为C42=6种,都不同的种数为C42=6,故只恰好有1门相同的选法有36﹣6﹣6=24种.11.(5分)(2009•全国卷Ⅱ)已知双曲线的右焦点为F,过F且斜率为的直线交C于A、B两点,若=4,则C的离心率为()A.B.C.D.【分析】设双曲线的有准线为l,过A、B分别作AM⊥l于M,BN⊥l于N,BD ⊥AM于D,由直线AB的斜率可知直线AB的倾斜角,进而推,由双曲线的第二定义|AM|﹣|BN|=|AD|,进而根据,求得离心率.【解答】解:设双曲线的右准线为l,过A、B分别作AM⊥l于M,BN⊥l于N,BD⊥AM于D,由直线AB的斜率为,知直线AB的倾斜角为60°∴∠BAD=60°,由双曲线的第二定义有:=∴,∴故选A.12.(5分)(2009•黑龙江)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下【分析】本题考查多面体展开图;正方体的展开图有多种形式,结合题目,首先满足上和东所在正方体的方位,“△”的面就好确定.【解答】解:如图所示.故选B二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2009•黑龙江)(x﹣y)4的展开式中x3y3的系数为6.【分析】先化简代数式,再利用二项展开式的通项公式求出第r+1项,令x,y 的指数都为1求出x3y3的系数【解答】解:,只需求展开式中的含xy项的系数.∵的展开式的通项为令得r=2∴展开式中x3y3的系数为C42=6故答案为6.14.(5分)(2009•全国卷Ⅱ)设等差数列{a n}的前n项和为S n,若a5=5a3,则=9.【分析】根据等差数列的等差中项的性质可知S9=9a5,S5=5a3,根据a5=5a3,进而可得则的值.【解答】解:∵{a n}为等差数列,S9=a1+a2+…+a9=9a5,S5=a1+a2+…+a5=5a3,∴故答案为915.(5分)(2009•黑龙江)设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C.若圆C的面积等于,则球O的表面积等于8π.【分析】本题可以设出球和圆的半径,利用题目的关系,求解出具体的值,即可得到答案.【解答】解:设球半径为R,圆C的半径为r,.因为.由得R2=2故球O的表面积等于8π故答案为:8π,16.(5分)(2009•全国卷Ⅱ)求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.【分析】如图,菱形ABCD的对角线AC和BD相交于点O,菱形ABCD各边中点分别为M、N、P、Q,根据菱形的性质得到AC⊥BD,垂足为O,且AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半得到OM=ON=OP=OQ=AB,得到M、N、P、Q四点在以O为圆心OM为半径的圆上.【解答】已知:如图,菱形ABCD的对角线AC和BD相交于点O.求证:菱形ABCD各边中点M、N、P、Q在以O为圆心的同一个圆上.证明:∵四边形ABCD是菱形,∴AC⊥BD,垂足为O,且AB=BC=CD=DA,而M、N、P、Q分别是边AB、BC、CD、DA的中点,∴OM=ON=OP=OQ=AB,∴M、N、P、Q四点在以O为圆心OM为半径的圆上.所以菱形各边中点在以对角线的交点为圆心的同一个圆上.三、解答题(共6小题,满分70分)17.(10分)(2009•黑龙江)设△ABC的内角A、B、C的对边长分别为a、b、c,cos(A﹣C)+cosB=,b2=ac,求B.【分析】本题考查三角函数化简及解三角形的能力,关键是注意角的范围对角的三角函数值的制约,并利用正弦定理得到sinB=(负值舍掉),从而求出答案.【解答】解:由cos(A﹣C)+cosB=及B=π﹣(A+C)得cos(A﹣C)﹣cos(A+C)=,∴cosAcosC+sinAsinC﹣(cosAcosC﹣sinAsinC)=,∴sinAsinC=.又由b2=ac及正弦定理得sin2B=sinAsinC,故,∴或(舍去),于是B=或B=.又由b2=ac知b≤a或b≤c所以B=.18.(12分)(2009•黑龙江)如图,直三棱柱ABC﹣A1B1C1中,AB⊥AC,D、E 分别为AA1、B1C的中点,DE⊥平面BCC1.(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C为60°,求B1C与平面BCD所成的角的大小.【分析】(1)连接BE,可根据射影相等的两条斜线段相等证得BD=DC,再根据相等的斜线段的射影相等得到AB=AC;(2)求B1C与平面BCD所成的线面角,只需求点B1到面BDC的距离即可,作AG⊥BD于G,连GC,∠AGC为二面角A﹣BD﹣C的平面角,在三角形AGC中求出GC即可.【解答】解:如图(I)连接BE,∵ABC﹣A1B1C1为直三棱柱,∴∠B1BC=90°,∵E为B1C的中点,∴BE=EC.又DE⊥平面BCC1,∴BD=DC(射影相等的两条斜线段相等)而DA⊥平面ABC,∴AB=AC(相等的斜线段的射影相等).(II)求B1C与平面BCD所成的线面角,只需求点B1到面BDC的距离即可.作AG⊥BD于G,连GC,∵AB⊥AC,∴GC⊥BD,∠AGC为二面角A﹣BD﹣C的平面角,∠AGC=60°不妨设,则AG=2,GC=4在RT△ABD中,由AD•AB=BD•AG,易得设点B1到面BDC的距离为h,B1C与平面BCD所成的角为α.利用,可求得h=,又可求得,∴α=30°.即B1C与平面BCD所成的角为30°.19.(12分)(2009•全国卷Ⅱ)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.【分析】(1)由题设条件知b1=a2﹣2a1=3.由S n+1=4a n+2和S n=4a n﹣1+2相减得a n+1=4a n﹣4a n﹣1,即a n+1﹣2a n=2(a n﹣2a n﹣1),所以b n=2b n﹣1,由此可知{b n}是以b1=3为首项、以2为公比的等比数列.(2)由题设知.所以数列是首项为,公差为的等差数列.由此能求出数列{a n}的通项公式.【解答】解:(1)由a1=1,及S n+1=4a n+2,得a1+a2=4a1+2,a2=3a1+2=5,所以b1=a2﹣2a1=3.=4a n+2,①由S n+1则当n≥2时,有S n=4a n﹣1+2,②=4a n﹣4a n﹣1,所以a n+1﹣2a n=2(a n﹣2a n﹣1),①﹣②得a n+1又b n=a n+1﹣2a n,所以b n=2b n﹣1,所以{b n}是以b1=3为首项、以2为公比的等比数列.(6分)(2)由(I)可得b n=a n+1﹣2a n=3•2n﹣1,等式两边同时除以2n+1,得.所以数列是首项为,公差为的等差数列.所以,即a n=(3n﹣1)•2n﹣2(n∈N*).(13分)20.(12分)(2009•全国卷Ⅱ)某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;(Ⅲ)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望.【分析】(Ⅰ)这一问较简单,关键是把握题意,理解分层抽样的原理即可.另外要注意此分层抽样与性别无关.(Ⅱ)在第一问的基础上,这一问处理起来也并不困难.直接在男工里面抽取一人,在女工里面抽取一人,除以在总的里面抽取2人的种数即可得到答案.(Ⅲ)求ξ的数学期望.因为ξ的可能取值为0,1,2,3.分别求出每个取值的概率,然后根据期望公式求得结果即可得到答案.【解答】解:(Ⅰ)因为甲组有10名工人,乙组有5名工人,从甲、乙两组中共抽取3名工人进行技术考核,根据分层抽样的原理可直接得到,在甲中抽取2名,乙中抽取1名.(Ⅱ)因为由上问求得;在甲中抽取2名工人,故从甲组抽取的工人中恰有1名女工人的概率(Ⅲ)ξ的可能取值为0,1,2,3,,,23ξ01P故Eξ==.21.(12分)(2009•黑龙江)已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l 的距离为,(Ⅰ)求a,b的值;(Ⅱ)C上是否存在点P,使得当l绕F 转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.【分析】(I)设F(c,0),则直线l的方程为x﹣y﹣c=0,由坐标原点O到l的距离求得c,进而根据离心率求得a和b.(II)由(I)可得椭圆的方程,设A(x1,y1)、B(x2,y2),l:x=my+1代入椭圆的方程中整理得方程△>0.由韦达定理可求得y1+y2和y1y2的表达式,假设存在点P ,使成立,则其充要条件为:点P的坐标为(x1+x2,y1+y2),代入椭圆方程;把A,B两点代入椭圆方程,最后联立方程求得c,进而求得P点坐标,求出m的值得出直线l的方程.【解答】解:(I)设F(c,0),直线l:x﹣y﹣c=0,由坐标原点O到l的距离为则,解得c=1又,∴(II)由(I)知椭圆的方程为设A(x1,y1)、B(x2,y2)由题意知l的斜率为一定不为0,故不妨设l:x=my+1代入椭圆的方程中整理得(2m2+3)y2+4my﹣4=0,显然△>0.由韦达定理有:,,①假设存在点P,使成立,则其充要条件为:点P的坐标为(x1+x2,y1+y2),点P在椭圆上,即.整理得2x12+3y12+2x22+3y22+4x1x2+6y1y2=6.又A、B在椭圆上,即2x12+3y12=6,2x22+3y22=6、故2x1x2+3y1y2+3=0②将x1x2=(my1+1)(my2+1)=m2y1y2+m(y1+y2)+1及①代入②解得∴,x1+x2=,即当;当22.(12分)(2009•全国卷Ⅱ)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.【分析】(1)先确定函数的定义域然后求导数fˊ(x),令g(x)=2x2+2x+a,由题意知x1、x2是方程g(x)=0的两个均大于﹣1的不相等的实根,建立不等关系解之即可,在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求出单调区间;(2)x2是方程g(x)=0的根,将a用x2表示,消去a得到关于x2的函数,研究函数的单调性求出函数的最大值,即可证得不等式.【解答】解:(I)令g(x)=2x2+2x+a,其对称轴为.由题意知x1、x2是方程g(x)=0的两个均大于﹣1的不相等的实根,其充要条件为,得(1)当x∈(﹣1,x1)时,f'(x)>0,∴f(x)在(﹣1,x1)内为增函数;(2)当x∈(x1,x2)时,f'(x)<0,∴f(x)在(x1,x2)内为减函数;(3)当x∈(x2,+∞)时,f'(x)>0,∴f(x)在(x2,+∞)内为增函数;(II)由(I)g(0)=a>0,∴,a=﹣(2x22+2x2)∴f(x2)=x22+aln(1+x2)=x22﹣(2x22+2x2)ln(1+x2)设h(x)=x2﹣(2x2+2x)ln(1+x),(﹣<x<0)则h'(x)=2x﹣2(2x+1)ln(1+x)﹣2x=﹣2(2x+1)ln(1+x)(1)当时,h'(x)>0,∴h(x)在单调递增;(2)当x∈(0,+∞)时,h'(x)<0,h(x)在(0,+∞)单调递减.∴故.。
09届第二轮复习高三数学试题(4)

2009届箴言中学高三数学二轮试题(文科)、选择题(本大题共8小题,每小题5分,共40分)设集合A珂-1,0,1},集合B -{0,1,2,3,},定义A BA*B中元素个数是A. 7已知全集UB . 10=R,集合A ={y y =-2%, x EC. 25R , B ={y y二{(x, y) x A B, y A B},则( )D. 52=x3— 3x,x • R,则Ap| eu B =()5.8.1 f< x;0 \ (B W xJ * f[a1 3a8 a15 =120,则2a g -印。
的值为( )B 22C 24> 2,命题q : x w Z ;如果"p且q ”与"非()x -1, x )Z(D){x(A 丫一等差数列CaJ中,A 20已知命题p: x -1条件的x为(A (x x^ 3或w—1,致}Z (B ){x-1 w x w 3,x^z}C 1—1, 0,1, 2,3D :0,1,2?在正整数数列中,由1开始依次按如下规则将某些数染成红色. 先染1 ,再染2个偶数2、4;再染4后面最邻近的3个连续奇数5、7、9;再染9后面最邻近的4个连续偶数10、12、14、16;再染此后最邻近的5个连续奇数17、19、21、23、25.按此规则一直染下去,得到一红色子数列1, 2, 4, 5, 7, 9, 10, 12, 14, 16, 17,….则在这个红色子数列中,由1开始的第2003个数是()A 3844B 3943C 3945如图,设A、B、C、D为球0上四点,若AB、AC、AD两两互相垂直,且AB=AC = .6 , AD=2,则A、D两点间的球面距离为()D -8同时为假命题, 则满足JIA32nC —3已知点A、B、C不共线,A CB A且有D 二T TAB BCC如图,在平面直角坐标系xOy中,P x,y对应到另一个平面直角坐标系BC CA CA AB一=:r——,则有( v3 \3-2)l t吕(B )BC|c|cA AB<I BC'DA 1,0、B 1,1、C 0,1,映射f将xOy平面上的点uO'v上的点P,2xy,x2-y2,则当点P沿着折线9.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中a,b •「1,2,3,4,5,6二若a 二b 或a 二b -1,就称甲乙 心有灵犀”•现任意找两人 玩这个游戏,则他们心有灵犀”的概率为 _______________ . 10.直线3x ・4y-15=0被圆x 2y 2 25截得的弦AB 的长为 __________ 。
09届第二轮复习高三数学试题(3)

2009届箴言中学高三数学二轮试题(文科)一、选择题:本小题共 10小题,每小题5分,共50分,在每小题所给的四个选项中,只有一项是符合题目要求的。
1 •设条件p : x一1 0 ;条件q : (x 1)(x 1) 0 ,则q 是p 的()条件x 1A.充分不必要B.必要不充分C.充要D.既不充分也不必1 2•二项式(2x 43)n的展开式中含有非零常数项,则正整数 n 的最小值为( )3x 3A • 7B • 12C . 14D • 53 •对于一个有限数列p ( P 1, P 2, , P n ) , p 的蔡查罗和(蔡查罗为一数学家)定义为 1—(S s 2 ,其中 S kP 1 P 2P n (1 k n),若一个 99 项的数列n(P 1, P 2, , p 99)的蔡查罗和为1000,那么100项数列(1,P 1, P 2, , P 99)的蔡查罗和为()A . 991B . 992C . 993D . 99924.对于使 x 2xM成立的所有常数 M 中,我们把 2M 的最小值1叫做 x 2x 的上确界, 若 a,b R ,且ab 1,则1 -的上确界为 ( )2a b991A .-B一C.—D . -42245 •古代“五行”学说认为:“物质分金,木,土,水,火五种属性,金克木,木克土,土克水, 水克火,火克金”将五种不同属性的物质任意排成一列, 则属性相克的两种物质不能相邻的排 法数为 ( )、填空题:本小题共 5小题,每小题5分,共25分,将答案填在题中相应的横线上。
外接球的半径 R 为 ( ) A . 5、、2 22B . 5C .5.2D . 4 28 •椭圆C 1:x ay1的左准线为 l ,左、 右焦点分别为 F 1、F 2,抛物线C 2的准线为1,焦点ABCD 中,三组对棱棱长分别相等且依次为 7 .在四面体 则此四面体ABCD 的 OF 1 OGP ,线段PF 2的中点为 G ,O 是坐标原点,则的PF 1PF 21 1C .--D . 一22为F 2, C 1与C 2的一个交点为 值为()A . 1B . 1B • 10C . 156 .已知平面内的四边形 边形ABCD A •梯形 r 曰 定是 ABCD 和该平面内任一点( )B .菱形D . 20juu2 jujjP 满足:AP CP uuuu uujirBP 2 DP 2,那么四C .矩形D .正方形 34、 ,41、5,9. 若 x x 1 a 。
2009年高考数学试题(全国卷)

2009年普通高等学校招生全国统一考试一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB ,则集合[u (A B )中的元素共有(A )3个 (B )4个 (C )5个 (D )6个(2)已知1iZ +=2+I,则复数z= (A )-1+3i (B)1-3i (C)3+I (D)3-i(3) 不等式11X X +-<1的解集为 (A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈 (4)设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于(A (B )2 (C (D(5) 甲组有5名同学,3名女同学;乙组有6名男同学、2名女同学。
若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有(A )150种 (B )180种 (C )300种 (D)345种(6)设a 、b 、c 是单位向量,且a ·b =0,则()()a c b c -•-的最小值为(A )2-(B 2 (C )1- (D)1(7)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为(A )4(B )4 (C )4 (D) 34(8)如果函数()cos 2y x φ=3+的图像关于点43π⎛⎫⎪⎝⎭,0中心对称,那么π的最小值为 (A )6π (B )4π (C )3π (D) 2π(9) 已知直线y=x+1与曲线y ln()x a =+相切,则α的值为(A)1 (B)2 (C) -1 (D)-2(10)已知二面角α-l -β为600 ,动点P 、Q 分别在面α、β内,P ,Q到α的距离为P 、Q 两点之间距离的最小值为(B)2 (C) (D)4(11)函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则(A) ()f x 是偶函数 (B) ()f x 是奇函数(C) ()(2)f x f x =+ (D) (3)f x +是奇函数(12)已知椭圆C: 2212x y +=的又焦点为F ,右准线为L ,点A L ∈,线段AF 交C 与点B 。
09届第二轮复习高三数学试题(1)

2009届箴言中学高三数学二轮试题(文科)、选择题(本大题共 10小题,每小题 5分,共50分,在每小题给出的四个选项中,只有一项 是符合题目要求的)1 •下列函数中,有反函数的是A . y =—^B . y = 5 2x 1-2C . y =sinxx +12. “ a 」”是“对任意的正数x , 2x - _1 ”的8xA .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件3. 等差数列 的公差d =0® =9d ,若a k 是4与a ?k 的等比中项,贝U k A . 2 B . 4 C . 6 D . 8 4 .已知集合 A 二{(x, y) | y = 2x 2, xR }, B 二{( x, y) | y =2x , xR },则集合 Ap]B 的真子 集的个数为A . 3B . 4C . 7D . 8、斗 JI、5.把曲线ycosx ,2y-1=0按向量a = q,-1)平移,得到的曲线方程是A . (1「y)sin x 2y 「1=0B . (y 「1)sin x 2y -3 = 0C . (y 1)sin x 2y1=0D . (y 1)sin x -2y -1 = 06 .已知三棱柱ABC -AB1G 的侧棱与底面边长都相等,A 在底面ABC 内的射影为ABC 的中心,贝U AB1与底面ABC 所成的角的正弦值为B . 2C .仝D .辽3332 2令 =1(a 0,b 0)的焦点,而且被该双a b曲线的右准线分成弧长为2:1的两段圆弧,那么该双曲线的离心率为A . .5B . .5/2C . 2D . 3 8.函数f (x)定义在R 上,常数a=0,下列正确的命题个数是① 若f (a x) f (a -x),贝U 函数y = f (x)的对称轴是直线x = a ② 函数y = f(a - x)和y = f (a - x)的对称轴是x =0③ 若f (a - x) = f (x - a),贝U 函数y 二f (x)的对称轴是x = 0 ④ 函数y = f (x -a)和y = f (a -x)的图象关于直线x = a 对称A . 1B . 2C . 3D . 4二、填空题(本大题共5小题,每小题5分,共25分,把答案填在题中的横线上)2 29. 已知F 1、F 2是椭圆~^ + 丄=1的左右焦点,弦 AB 过F 1,若 ABF 2的周长为8,则椭12k+2 k+12圆的离心率为 ______ .10. 实数 x, y 满足 tanx = x,tany = y ,且 x = y ,贝U sin(x 一 - 一二 _______________________x + yx _ y11 . C’x -2)6 的展开式中的常数项是 ____________ (用数字作答)。
2009年全国高考理科数学试题及答案-全国1

2009年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ) 本试卷分第卷(选择题)和第卷(非选择题)两部分.第卷1至2页,第卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.......... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R = 如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B ∙=∙球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A B ,则集合[()u AB I中的元素共有(A )(A )3个 (B )4个 (C )5个 (D )6个解:{3,4,5,7,8,9}AB =,{4,7,9}(){3,5,8}U A BC A B =∴=故选A 。
也可用摩根律:()()()U U U C AB C A C B =(2)已知1iZ+=2+i,则复数z=(B ) (A )-1+3i (B)1-3i (C)3+i (D)3-i 解:(1)(2)13,13z i i i z i =+⋅+=+∴=- 故选B 。
(3) 不等式11X X +-<1的解集为( D )(A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈 解:验x=-1即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选择题的解法选择题是高考数学试卷中的三大题型之一.它的基本特点是:(1)知识覆盖面广,题型灵活多变,经常出现一些数学背景新颖的创新题.这些创新题目注重基础性,增强综合性,体现时代气息;在注重考查基础知识、技能、方法的同时,加大了对能力考查的力度,考潜能,考应用,体现着高考数学命题改革的导向作用.(2)绝大多数选择题题目属于低中档题.因为主要的数学思想和教学方法能通过它得到充分的体现和应用,并且因为它还有相对难度(如思维层次,解题方法的优劣选择,解题速度的快慢等),所以使之成为具备较佳区分度的基本题型之一.(3)选择题不要求书写解题过程,不设中间分,因此一步失误,就会造成错选,导致全题无分.(4)选择题的分数一般占总分的40%左右.选择题得分率的高低及解题速度的快慢直接影响着每位考生的情绪和全卷的成绩.因此,准确、快速是解选择题的策略.准确是解高考选择题的先决条件,这要求考生要仔细审题,认真分析,合理选择解题方法,正确推演或判断,谨防疏漏,确保准确;快速是结合高考数学单项选择题的结构,题目本身提供的条件、特征或信息,以及不要求书写解题过程的特点,灵活选用简单、合理的解法或特殊化法,避免繁琐的运算、作图或推理,避免“小题大做”,给解答题(特别是中高档题)留下充裕的时间,争取得高分.具体说来,就是要突出解题方向的探索、解题思路的分析、解题方法的选择以及解题思维过程的展示和解题回顾反思等环节;熟练掌握各种基本题型的一般解法,在此基础上逐步掌握解选择题的解题思路、常用方法、规律及相关技巧;注重提高口算、心算和笔算的能力,做到“基本概念理解透彻,基本联系脉络清晰,基本方法熟练掌握,基本技能准确无误”,达到“既然会解,就要解对”的地步,而且需要思维清晰、敏捷、通畅,解法合理、简捷.为此,研究和探索选择题的解题思路、常用方法与技巧就显得非常必要和重说明:因为有些试题可用多种解法,所以统计的分值有重复现象.其中表格为(全国卷):第一讲 直解对照法直解对照法是直接从题设的条件出发,利用已知条件、相关的概念、性质、公式、公理、定理、法则等知识,通过严谨推理、准确运算、合理验证,直接得出正确结论,然后对照题目所给出的选项“对号入座”,从而确定正确选择支的方法.【调研1】如果函数()y f x =的导函数...的图像如下图,给出下列判断: ① 函数()y f x =在区间1(3,)2--内单调递增; ② 函数()y f x =在区间1(,3)2-内单调递减; ③ 函数()y f x =在区间(4,5)内单调递增;④ 当2x =时,函数()y f x =有极小值;⑤ 当12x =-时,函数()y f x =有极大值; 则上述判断中正确的是( ) A. ① ③ B. ③ ④ C. ③ D. ① ③ ⑤答案:B解析:根据原函数()y f x =与导函数()y f x '=的图像间的关系,并列表得:【误点警示】本例是一道甄别个性品质的好题,具有较强的迷惑性,有利高校选拔.求解本例时,易出现审题偏差以及原函数与导函数的单调区间、极值等相混淆,误判命题②、⑤.求解这类题目最直接、最有效的方法是利用表格,分析整理相关信息.【调研2】已知第I 象限的点()P a b ,在直线210x y +-=上,则11b +的最小值为( )A.3+B.4C.D.2+答案:D分析:本例涉及不等式与直线以及初中数学等相关知识,具有一定的综合性.求解过程中,需去掉其数学形式,还原其数学本质:将本例转化为“已知21(0,0)a b a b +=>>,求11a b +的最小值”,转化为条件最值问题求解.解析:11112()(2)33b a a b a b a b a b +=++=++≥+=3+2b a a b=时取等号) 【方法点拨】因导数工具的引入与广泛运用,利用均值不等式求最值的高考要求已大大降低;但若能掌握一些关于利用均值不等式求最值的技巧,对提高解题的速度与准确程度很有帮助.利用均值不等式求最值有以下四个常用技巧:技巧①:等分相拆 如求函数2(1)y x x =-(01x <<)的最大值时,要保证和为定值以及等号成立,2x 只能等分相拆....成11422x x ⨯⨯,而不能拆1613344x x ⨯⨯或912233x x ⨯⨯等形式; 技巧②:平方升次 如求函数2(1)y x x =-(01x <<)的最大值时,无法直接构造和为定值,但可以尝试两边平方后再构造和为定值; 技巧③:分离常数 如求函数2101a S a =-(1a >)的最值时,可以先强行分离常数:2101a S a =-210(1)20(1)101a a a -+-+=-1010(1)201a a =+-+-,再利用均值不等式求解; 技巧④:常数活用 如本例中“活用常数1”:111111()1()(2)ab a b a b a b+=+⨯=++. (文科)【调研3】二次函数2(1)(21)1y a a x a x =+-++,当1a =,2,3,…,n ,…时,其图像在x 轴上截得的弦长依次为1d ,2d ,…,n d ,…,则12n d d d ++为( ) A. 1(1)n n ⋅+ B.(1)n n n ⋅+ C.11n + D.1n n + 答案:D解析:设二次函数2(1)(21)1y a a x a x =+-++与x 轴的分布交点为1(,0)x ,2(,0)x ,则令0y =得2(1)(21)10a a x a x +-++=∴(1)[(1)1]0ax a x -+-=,解之得11x a =,211x a =+ ∴弦长1211||1a d x x a a =-=-+令1,2,3,a n =……,得 12111111(1)()()122311n d d d n n n +++=-+-++-=-++……=1n n + 【方法探究】(理科)【调研3】二次函数2(1)(21)1y a a x a x =+-++,当1a =,2,3,…,n ,…时,其图像在x 轴上截得的弦长依次为1d ,2d ,…,n d ,…,则12lim()n n d d d →∞++的值是( )A.4B.3C.2D.1答案:D分析:本例应先找出弦长表达式,再求和12n d d d ++,最后求极限,次序井然,不容马虎. 解析:设二次函数2(1)(21)1y a a x a x =+-++与x 轴的分布交点为1(,0)x ,2(,0)x ,则令0y =得2(1)(21)10a a x a x +-++=∴(1)[(1)1]0ax a x -+-=,解之得11x a =,211x a =+ ∴弦长1211||1a d x x a a =-=-+ 令1,2,3,a n =……,得12111111(1)()()122311n d d d n n n +++=-+-++-=-++…… ∴121lim()lim(1)11n n n d d d n →∞→∞+++=-=+…. (文理科)【方法探究】本例求弦长很容易想到利用韦达定理,走“设而不求”的道路;但就本题而言直接求根的这种“原始手段”反而更为简便.至于何时用“设而不求”求弦长,何时直接求根再求弦长,这个问题比较辩证,应具体问题,具体分析.一般地说,方程根比较容易解出时,应首先考虑直接求根.1.我国的《洛书》记载着世界上最古老的一个幻方:将1,2,……,9填入33⨯的方格内,使三行、三列、二对角钱的三个数之和都等于15,如图所示: 一般地,连续的正整数1,2,3,……,2n 填入n n ⨯个方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n 阶幻方. 记n 阶幻方的对角线上数的和为n N ,如上图的幻方记为315N =,那么10N 的值为( )A.505B.506C.504D.5072.在∆ABC 中,3sin 463cos 41A B A B +=+=cos sin ,,则∠C 的大小为( ) A.π6 B.56π C.ππ656或 D.ππ323或 3.定义在R 上的偶函数)(x f 满足)()2(x f x f =-,且在[-3,-2]上是减函数,βα,是钝角三角形的两个锐角,则下列不等式关系中正确的是( )A.(sin )(cos )f f αβ> B.(cos )(cos )f f αβ<C.(cos )(cos )f f αβ> D.(sin )(cos )f f αβ<(文科)4.设命题p :在直角坐标平面内,点)cos ,(sin ααM 与(1,2)N αα+-(a R ∈),在直线02=-+y x 的异侧;命题q :若向量a ,b ,满足0>⋅,则与的夹角为锐角.以下结论正确的是( ).A.“q p 或”为真,“q p 且”为真 B.“q p 或”为真,“q p 且”为假”C.“q p 或”为假,“q p 且”为真D.“q p 或”为假,“q p 且”为假(理科)4.已知函数323,1()11,1x x x f x x ax x ⎧+->⎪=-⎨⎪+≤⎩在点1x =处连续,则[(1)]f f -=( ) A.11 B.3- C.3 D.11-【参考答案】1.答案: A解析: 由n 阶幻方的定义可知:十阶幻方是将1,2,3,……,100填入1010⨯表格中,每行、每列、每条对角线上的数的和相等故10100(1100)210N +=⨯=505.点评:本题看似复杂,关键在于善抓住有效信息:n 阶幻方的定义.2.答案:A解析:由3sin 463cos 41A B A B +=+=⎧⎨⎩cos sin 平方相加得21)sin(=+B A 又∵A ∠、B ∠、C ∠是△ABC 的内角,即()C A B π∠=-∠+∠∴1sin 2C =,即6C π=或56π. 若C =56π,则A B +=π6 ∵13cos 4sin 0A B -=> ∴1cos 3A < 又∵1312< ∴3A π∠>,56C π∠≠ 故6C π∠= 点评:本题要注意充分挖掘题目条件,隐含条件cos A <13比较隐蔽,极易误选为C . 3.答案:D 解析:∵()y f x =是偶函数,且在[3,2]--上是减函数 ∴()y f x =在[2,3]上是增函数又∵(2)(2)()f x f x f x -=-= ∴()y f x =是以周期2T =的周期函数.故()y f x =在[0,1]上是增函数∵,αβ是钝角三角形的两个锐角 ∴2παβ+<,即022ππαβ<<-< ∴sin sin()2παβ<- 即sin cos αβ<又∵0sin cos 1αβ<<< ∴(sin )(cos )f f αβ<(文科)4.答案:B解析:判断复合命题q p 或、q p 且的关键是准确判断命题p 与命题q 的真假.∵sin cos )24πααα+=+< ∴sin cos 20αα+-<又∵||||||||||a b a b a b -≤±≤+ ∴1232αα++-≥>,即1220αα++--> 故点)cos ,(sin ααM 与(1,2)N αα+-在直线02=-+y x 的异侧,命题p 为真命题.又∵向量a 和向量b 共线也有0a b ⋅> ∴命题q 为假命题.从而有“q p 或”为真,“q p 且”为假”,所以本题的答案为B.(理科)4.答案:D解析:3322222323(1)(3)(1)3111x x x x x x x x x x x x x x x +--++--++-===++--- ∵ 函数3231()111x x x f x x ax x ⎧+->⎪=-⎨⎪+≤⎩在点1x =处连续∴ 11lim ()lim ()x x f x f x +-→→=,即51a =+ ∴4a =∴ (1)4(1)13f -=⨯-+=- [(1)]4(3)1f f -=⨯-+=- 第二讲 概念辨析法从题设条件出发,通过对数学概念的辨析,少量运算或推理,直接选择出正确结论,我们称这种方法为概念辨析法.这类题目常涉及一些似是而非、很容易混淆的概念或性质,这需要同学们在平时注意辨析有关概念,准确区分相应概念的内涵与外延,同时在审题时需加小心,准确审题以保证正确选择.一般说来,这类题目运算量小,侧重判断,下笔容易,但稍不留意则易掉入命题者设置的陷阱.【调研1】已知b a bx ax x f +++=3)(2是偶函数,定义域为[1,2]a a -,则1()2f =( ) A.1324a b +B.133122b + C.1312D.无法确定 答案:C分析:本例主要考查函数奇偶性概念,破题的关键在于明确函数定义域必须关于原点对称,从而确定a 的值.解析:∵b a bx ax x f +++=3)(2是偶函数∴0b =,且定义域为]2,1[a a -关于原点对称,即12a a -=- ∴ 13a =∴21()13f x x =+ 22[,]33x ∈- 故113()212f = 【技巧点拨】函数奇偶性是函数五大性质之一,求解与奇偶性相关的题目,注意以下结论,提高解题速度.①.函数奇偶性是整体性质,其定义域必须关于原点对称,从而有函数定义域关于原点对称是函数具有奇偶性的必要但不充分条件.②.二次函数2()f x ax bx c =++为偶函数的充要条件是0b =,一次函数()f x ax b =+为奇函数的充要条件是0b =;③.若奇函数()y f x =在原点有定义,则其函数图像必过原点,即(0)0f =;④.偶(奇)函数在对称区间单调性相同(反).【调研2】已知集合{ }M =长方体、{ }N =正四棱柱、{ }P =直四棱柱,下列式子正确的是 ( )A.M N N =B.P M M =C.M N N =D.()M P N N =答案:C分析:本例涉及直四棱柱、正四棱柱以及长方体的概念,有一定的迷惑性.求解本例的关键是理清正四棱柱、长方体的内涵与外延,明确相互关系.解析:四棱柱的概念如下图用集合语言表示为:{ }{ }⊆正四棱柱长方体{ }⊆直四棱柱,即N M P ⊆⊆∴M M N =、P M P =、()M P N M =,从而排除A、B、D.【方法探究】本例是以四棱柱相关概念为内核,以集合为形表,有一定的新颖性和迷惑性.集合与向量一样,都是重要的数学语言,在各省市高考卷和各地高考模拟卷中,常常出现以其他板块知识为内核,集合语言进行包装,改头换面,有一定的新意和灵活度.如以下两例分别是由集合和向量进行包装:①集合{()|22}M x y x y =-≤,,{()|1}P x y x y =-≥-,,{()|1}S x y x y =+≥,,若T=M P S ,点(,)E x y T ∈,则y x z 32+=的最大值为_ __.②已知在平面直角坐标系中,(0,0)O ,(2,1)M -,(1,1)N -,(1,1)Q ,(2,3)T ,动点(,)P x y 满足不等式2OP OM ⋅≤,1OP ON ⋅≥-,1OP OQ ⋅≥,则w OP OT =⋅的最大值为_____.以上两题看似毫不相干,但都是由线性规划“变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为__________”进行包装而来.求解这类题目的关键是“去掉数学形式、理解数学本质”.(文科)【调研3】如图, 已知正六边形123456PP P P P P ,下列向量的数量积中最大的是( )A.1213PP PP ⋅B.1214PP PP ⋅C.5121PP PP ⋅D.1216PP PP ⋅ 答案:A 分析:求解本例的关键是中有理清各对向量的模长与夹角.解析:设边长为a ,在正六边形123456PP P P P P 1315||||3PP PP a ==、 14||2PP a =、1213,6PP PP π<>= 1214,3PP PP π<>=、1215,2PP PP π<>=和12162,3PP PP π<>=∴ 21213121312133||||cos ,cos 62PP PP PP PP PP PP a a π⋅=⋅⋅<>=⨯=; 2121412141214||||cos ,2cos 3PP PP PP PP PP PP a a a π⋅=⋅⋅<>=⨯⨯=121512151215||||cos ,2cos 02PP PP PP PP PP PP a a π⋅=⋅⋅<>=⨯⨯=和2121612161216121621||||cos ,||||cos032PP PP PP PP PP PP PP PP a π⋅=⨯⋅<>=⨯⨯=-< ∴数量积中最大的是1213PP PP ⋅. 【方法探究】本例主要考查向量夹角及数量积的概念,求解过程中注意利用正六边形的几何性质,同时注意向量的方向,准确找出相应向量的夹角.本例可以简化以上求解过程,由12162,3P P P P π<>=和1215,2PP PP π<>=直接排除C、D,只需比较1213PP PP ⋅与1214PP PP ⋅即可. (理科)【调研3】下列随机变量ξ的分布列不属于二项分布的是( )A.某事业单位有500名在职人员,人事部门每年要对他们进行年度考核,每人考核结论为优秀的概率是0.25.假设每人年度考核是相互独立的,ξ为考核结论为优秀的人数;B.某汽车总站附近有一个加油站,每辆车出汽车总站后,再进加油站加油的概率是0.12且每辆车是否加油是相互独立的.某天出汽车总站有50辆汽车,ξ为进站加油的汽车数;C.某射手射中目标的概率为p ,设每次射击是相互独立的.ξ为从开始射击到击中目标所需要的射击次数;D.某周内,每次下载某网站数据后被病毒感染的概率为0.5.ξ表示下载的n 次数据后被病毒感染的次数. 答案:C分析:如何识别二项分布?关键在于紧扣二项分布的概念,抓三点判断:①.每次实验只有两类对立的结果;②.n 次相同事件相互独立;③.每次实验的某一结果的概率是恒定的.解析:选项A:每人考核结论只有“优秀”、“不优秀”两个对立结果,且每人考核结论为优秀是相互独立,并且概率为常数0.25,所以随机变量ξ服从二项分布;选项B:每辆车出汽车总站后,只有进站加油和不进站两个结果,同时每辆车进站加油的概率为常数0.12,而且相互独立的,所以随机变量ξ服从二项分布;选项C:在一次又一次的射击中,第一次射中我们关注的事件A,随机变量ξ表示第一次击中目标时射击的次数,显然随机变量ξ服从几何分布,不服从二项分布.选项D:同选项A、B,可判断随机变量ξ服从二项分布.【技巧点拨】三类特殊分布及判定技巧二项分布、几何分布与正态分布是中学数学的三大特殊分布,在实际中有着广泛的应用.《2006年理科数学考试大纲》对这三种特殊分布仅要求到“了解”层次,但近年的高考试卷中多有涉及,甚至在2006(,)B n p,则(,)B n p,每次实验只有两类对立的结(2)n次相同事件,相互独1.若,,||||1a b R a b∈+>成立的充分不必要条件.......是()A.1||≥+ba B.11||||22a b≥≥且 C.1≥a D.1b<-2.有下列命题(1)若a b>,则22ac bc>;(2)直线10x y--=的倾斜角为045,纵截距为1;(3)直线1l11y k x b=+与直线2l11y k x b=+平行的充要条件是12k k=且12b b≠;(4)当0x>且1x≠时,1lg2lgxx+≥;(5)到坐标轴距离相等的点的轨迹方程为0x y-=;其中真命题的个数是()A.0 B.1 C.2 D.33.函数ln(1)(1)y x x =->的反函数是( )A.1()1()x fx e x R -=+∈ B.1()101()x f x x R -=+∈ C.1()101(1)x f x x -=+> D.1()1(1)x f x e x -=+>4.函数xx x x x x f cos sin 21)(24++++=的最大值为M ,最小值为m ,则m M +的值为( ) A .1 B .2 C .3 D .4【参考答案】1.答案:D解析:根据充分不必要条件的概念知,本题等价于“,,a b R ∈||||1a b +>⇐( )”.2.答案:B 解析:(1)当C =0时,不等式22ac bc >不成立;(2)重点考查直线倾斜角、截距等概念,10x y --=的倾斜角为045,纵截距应为-1,这是易错点;(3)小题是教材结论,本命题为真命题;(4)小题考查均值不等式成立条件,1lg 2lg x x+≥的成立条件应为lg 0x >,即1x >; (5)小题是由教材第69页变化而来,显然为假命题.3.答案:A 解法一 :回归概念∵ ln(1)y x =- ∴ 1y x e =+ 兑换x 、y 得1x y e =+又∵1x > ∴ln(1)y x =-的值域为R.∴函数ln(1)(1)y x x =->的反函数为1()1()x fx e x R -=+∈.解法二 :特值排除 ∵ 函数ln(1)(1)y x x =->过点(2,0)A ,1(1,1)B e +-∴ 函数ln(1)(1)y x x =->的反函数1()y f x -=过点(0,2)A '、1(1,1)B e'-+,排除B 、C 、D. 点拨:反函数问题是中学数学的重要概念,也是历届高考的热点.在求解以选择题的形态出现的“求某函数的反函数”问题时,注意运用结论“()f a b =⇔1()a fb -=” 快速求解. 4.答案:B解析:∵ xx x x x y cos sin 224+++=是奇函数,奇函数的最大值与最小值的和等于0 ∴x x x x x x f cos sin 21)(24++++=是由奇函数xx x x x y cos sin 224+++=的图象向上平移1个单位得到的 ∴xx x x x x f cos sin 21)(24++++=的最大值M 与最小值m 的和等于2 点拨:本题主要考查函数奇偶性的灵活运用,函数不具有奇偶性,但局部具有奇偶性时,再如求解“已知53()sin 5f x ax bx cx d x =++++(,,,a b c d 为常数)且30f =-,则(2f +=__________”,可类比本题处理技巧,请同学们自己动手完成.。