高考数学总复习全套讲义
高中数学复习讲义

高中数学复习讲义一、代数1.1 一元一次方程1.2 一元二次方程1.3 平面直角坐标系1.4 解析几何与向量1.5 指数与对数1.6 三角函数与三角恒等变换1.7 数列与数学归纳法二、几何2.1 平面与立体几何基本概念2.2 直线与角2.3 三角形与三角形的性质2.4 四边形与四边形的性质2.5 圆与圆的性质2.6 空间几何与立体几何三、概率与统计3.1 随机事件与概率的计算3.2 组合与排列3.3 抽样与统计四、数学思想方法4.1 推理与证明4.2 逻辑与谬误4.3 数学建模与解题策略五、应用题本讲义将针对高中数学涵盖的主要内容进行复习总结,旨在帮助大家全面复习数学知识,掌握解题方法和技巧,为高考做好充分准备。
一、代数1.1 一元一次方程一元一次方程是数学中最基础的方程形式之一,解一元一次方程需要掌握方程的基本性质和求解方法。
我们将重点讲解常见的一元一次方程类型,并提供解题思路和方法。
掌握一元一次方程的求解技巧对于解决实际问题具有重要意义。
1.2 一元二次方程一元二次方程在高中数学中起着重要的作用,解一元二次方程需要掌握配方法、因式分解法以及求根公式等知识点。
我们将介绍一元二次方程的基本概念和解法,并通过大量例题帮助大家提高解题能力。
1.3 平面直角坐标系平面直角坐标系是研究平面几何和解析几何的基础,了解坐标系的性质和坐标变换的规律对于解决几何问题至关重要。
我们将详细介绍直角坐标系的相关概念和性质,并结合实例进行讲解,帮助大家掌握平面直角坐标系的应用。
1.4 解析几何与向量解析几何是将代数与几何相结合的重要数学分支,研究空间中点、直线、平面等几何对象的解析表达和性质。
向量是解析几何中的重要工具,学习向量的表示方法和运算规律有助于解决几何问题。
我们将讲解解析几何基本概念和向量的数学性质,并通过练习题提高大家的解题能力。
1.5 指数与对数指数和对数是高中数学中重要的数学工具和运算方法,涉及到数学表达式的简化、方程的求解等。
2025年新人教版高考数学一轮复习讲义 第一章 §1.1 集 合

2025年新人教版高考数学一轮复习讲义第一章§1.1 集 合1.了解集合的含义,了解全集、空集的含义.2.理解元素与集合的属于关系,理解集合间的包含和相等关系.3.会求两个集合的并集、交集与补集.4.能用自然语言、图形语言、集合语言描述不同的具体问题,能使用Venn图表示集合间的基本关系和基本运算.第一部分 落实主干知识第二部分 探究核心题型课时精练第一部分落实主干知识1.集合与元素(1)集合中元素的三个特性: 、 、 .(2)元素与集合的关系是 或 ,用符号 或 表示.(3)集合的表示法: 、 、 .确定性互异性无序性属于不属于∈∉列举法描述法图示法(4)常见数集的记法集合非负整数集(或自然数集)正整数集整数集有理数集实数集符号___ N *(或N +)___ ______ NZQ R2.集合的基本关系(1)子集:一般地,对于两个集合A ,B ,如果集合A 中 都是集合B 中的元素,就称集合A 为集合B 的子集,记作 (或B ⊇A ).(2)真子集:如果集合A ⊆B ,但存在元素x ∈B ,且 ,就称集合A 是集合B 的真子集,记作 (或B A ).(3)相等:若A ⊆B ,且 ,则A =B .(4)空集:不含任何元素的集合叫做空集,记为∅.空集是 的子集,是 的真子集.任意一个元素A ⊆B x ∉A A B B ⊆A 任何集合任何非空集合3.集合的基本运算表示运算集合语言图形语言记法并集________________ ______ 交集______________________ 补集____________________{x |x ∈A ,或x ∈B }A ∪B {x |x ∈A ,且x ∈B }A ∩B {x |x ∈U ,且x ∉A }∁U A常用结论1.若集合A有n(n≥1)个元素,则集合A有2n个子集,2n-1个真子集.2.空集是任何集合的子集,是任何非空集合的真子集.3.A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.4.∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)集合{x ∈N |x 3=x },用列举法表示为{-1,0,1}.( )(2){x |y =x 2+1}={y |y =x 2+1}={(x ,y )|y =x 2+1}.( )(3)若1∈{x 2,x },则x =-1或x =1.( )(4)对任意集合A ,B ,都有(A ∩B )⊆(A ∪B ).( )√×××2.(必修第一册P14T4改编)设集合A={x|3≤x<7},B={x|2<x<10},则(∁R A)∩B等于A.{x|2<x≤3}B.{x|7<x<10}√C.{x|2<x<3或7≤x<10}D.{x|2<x≤3或7<x<10}因为∁R A={x|x<3或x≥7},B={x|2<x<10},所以(∁R A)∩B={x|2<x<3或7≤x<10}.3.(必修第一册P35T9改编)已知集合A={1,3,a2},B={1,a+2},若2A∪B=A,则实数a=________.因为A∪B=A,所以B⊆A,所以a+2∈A.当a+2=3,即a=1时,A={1,3,1},不满足集合中元素的互异性,不符合题意;当a+2=a2时,a=-1(舍去)或a=2,此时A={1,3,4},B={1,4},符合题意.综上,实数a=2.4.(必修第一册P9T5改编)已知集合A={x|0<x<a},B={x|0<x<2},若B⊆A,[2,+∞)则实数a的取值范围为___________.因为B⊆A,所以利用数轴分析法(如图),可知a≥2.返回第二部分探究核心题型例1 (1)(2023·长春模拟)已知集合A ={(x ,y )|x 2+y 2=4},B ={(x ,y )|x +y =0},则A ∩B 的子集个数为A.1B.2C.3D.4√题型一 集合的含义与表示集合A={(x,y)|x2+y2=4}表示以(0,0)为圆心,2为半径的圆上的所有点,集合B={(x,y)|x+y=0}表示直线x+y=0上的所有点,因为直线x+y=0经过圆心(0,0),所以直线与圆相交,所以A∩B的元素个数为2,则A∩B的子集个数为4.(2)已知集合A={0,m,m2-3m+2},且2∈A,则实数m的值为√A.2B.3C.0D.-2因为集合A={0,m,m2-3m+2},且2∈A,则m=2或m2-3m+2=2,解得m∈{0,2,3}.当m=0时,集合A中的元素不满足互异性;当m=2时,m2-3m+2=0,集合A中的元素不满足互异性;当m=3时,A={0,3,2},符合题意.综上所述,m=3.思维升华解决集合含义问题的关键点(1)一是确定构成集合的元素.(2)确定元素的限制条件.(3)根据元素的特征(满足的条件)构造关系式解决相应问题.跟踪训练1 (1)(2023·苏州模拟)设集合A={1,2,3},B={4,5},C={x+y |x∈A,y∈B},则C中元素的个数为√A.3B.4C.5D.6因为集合A={1,2,3},B={4,5},C={x+y|x∈A,y∈B},所以C={5,6,7,8}.即C中元素的个数为4.(2)若含有3个实数的集合既可表示成 ,又可表示成{a2,a+b,0},1则a2 024+b2 024=________.此时两集合分别是{a,1,0},{a,a2,0},则a2=1,解得a=1或a=-1.当a=1时,不满足互异性,故舍去;当a=-1时,满足题意.所以a2 024+b2 024=(-1)2 024+02 024=1.例2 (1)(2023·海口质检)已知集合A ={x |x >5},B ={x |1-log 2x <0},则A.A ⊆BB.B ⊆AC.A ∩B =∅D.A ∪B =R因为集合A ={x |x >5},集合B ={x |1-log 2x <0}={x |x >2},所以A ⊆B .√题型二 集合间的基本关系(2)已知集合A={x|x<-1或x≥3},B={x|ax+1≤0},若B⊆A,则实数a的取值范围是√∵B⊆A,∴①若B=∅,即ax+1≤0无解,此时a=0,满足题意.②若B≠∅,即ax+1≤0有解,思维升华(1)空集是任何集合的子集,在涉及集合关系问题时,必须考虑空集的情况,否则易造成漏解.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn图等来直观解决这类问题.跟踪训练2 (1)已知集合M={x|y = ,x∈R},N={x|x=m2,m∈M},则集合M,N的关系是√A.M NB.N MC.M⊆∁R ND.N⊆∁R M因为M={x|y= ,x∈R}={x|-1≤x≤1},N={x|x=m2,m∈M}={x|0≤x≤1},所以N M.(2)设集合A ={x |-1≤x +1≤6},B ={x |m -1<x <2m +1},当x ∈Z 时,集合A 的非空真子集的个数为________;当B ⊆A 时,实数m 的取值范围是________________________.254{m |m ≤-2或-1≤m ≤2}易得A={x|-2≤x≤5}.若x∈Z,则A={-2,-1,0,1,2,3,4,5},即A中含有8个元素,∴A的非空真子集的个数为28-2=254.①当m-1≥2m+1,即m≤-2时,B=∅,B⊆A;②当m>-2时,B={x|m-1<x<2m+1}≠∅,综上所述,m的取值范围是{m|m≤-2或-1≤m≤2}.题型三 集合的基本运算命题点1 集合的运算例3 (1)(2022·新高考全国Ⅰ)若集合M={x | <4},N={x|3x≥1},则M∩N 等于√所以M={x|0≤x<16};因为N={x|3x≥1},(2)(多选)已知M ,N 均为实数集R 的子集,且N ∩(∁R M )=∅,则下列结论中正确的是A.M ∩(∁R N )=∅B.M ∪(∁R N )=RC.(∁R M )∪(∁R N )=∁R MD.(∁R M )∩(∁R N )=∁R M√√∵N∩(∁R M)=∅,∴N⊆M,如图,若N是M的真子集,则M∩(∁R N)≠∅,故A错误;由N⊆M可得M∪(∁R N)=R,故B正确;由N⊆M可得∁R N⊇∁R M,故C错误,D正确.命题点2 利用集合的运算求参数的值(范围)例4 (1)(多选)已知A={x|x2+x-6=0},B={x|mx+1=0},且A∪B=A,则m的值可能为√√√由题意知A={x|x2+x-6=0},由x2+x-6=0,解得x=2或x=-3,所以A={2,-3},因为A∪B=A,所以B⊆A,当B=∅时,m=0,满足题意;(2)(2024·本溪模拟)设集合A={x|x<a2},B={x|x>a},若A∩(∁R B)=A,则实数a的取值范围为√A.[0,1]B.[0,1)C.(0,1)D.(-∞,0]∪[1,+∞)因为B={x|x>a},所以∁R B={x|x≤a},又A∩(∁R B)=A,所以A⊆∁R B,又A={x|x<a2},所以a2≤a,解得0≤a≤1,即实数a的取值范围为[0,1].思维升华对于集合的交、并、补运算,如果集合中的元素是离散的,可用Venn图表示;如果集合中的元素是连续的,可用数轴表示,此时要注意端点的情况.跟踪训练3 (1)(多选)已知集合A ={x |x 2-2x >0},B ={x |1<x <3},则A.(∁R A )∪B ={x |0≤x <3}B.(∁R A )∩B ={x |1<x <2}C.A ∩B ={x |2<x <3}D.A ∩B 是{x |2<x <5}的真子集√√√由x2-2x>0,得x<0或x>2,所以A={x|x<0或x>2},所以∁R A={x|0≤x≤2},对于A,因为B={x|1<x<3},所以(∁R A)∪B={x|0≤x<3},所以A正确;对于B,因为B={x|1<x<3},所以(∁R A)∩B={x|1<x≤2},所以B错误;对于C,因为A={x|x<0或x>2},B={x|1<x<3},所以A∩B={x|2<x<3},所以C正确;对于D,因为A∩B={x|2<x<3},所以A∩B是{x|2<x<5}的真子集,所(2)已知集合A,B满足A={x|x>1},B={x|x<a-1},若A∩B=∅,则实数a的取值范围为√A.(-∞,1]B.(-∞,2]C.[1,+∞)D.[2,+∞)因为集合A,B满足A={x|x>1},B={x|x<a-1},且A∩B=∅,则a-1≤1,解得a≤2.题型四 集合的新定义问题例5 (多选)群论是代数学的分支学科,在抽象代数中具有重要地位,且群论的研究方法也对抽象代数的其他分支有重要影响,例如一元五次及以上的方程没有根式解就可以用群论知识证明.群的概念则是群论中最基本的概念之一,其定义如下:设G是一个非空集合,“·”是G上的一个代数运算,即对所有的a,b∈G,有a·b∈G,如果G的运算还满足:①∀a,b,c∈G,有(a·b)·c=a·(b·c);②∃e∈G,使得∀a∈G,有e·a=a·e=a;③∀a∈G,∃b∈G,使a·b=b·a=e,则称G关于“·”构成一个群.则下列说法正确的有A.G={-1,0,1}关于数的乘法构成群√√对于A,若G={-1,0,1},则对所有的a,b∈G,有a·b∈{1,0,-1}=G,满足乘法结合律,即①成立,满足②的e为1,但当a=0时,不存在b∈G,使得a·b=b·a=e=1,即③不成立,故A 错误;对于C,若G=R,则对所有的a,b∈R,有a+b∈R,满足加法结合律,即①成立,满足②的e为0,思维升华集合新定义问题的“三定”(1)定元素:确定已知集合中所含的元素,利用列举法写出所有元素.(2)定运算:根据要求及新定义运算,将所求解集合的运算问题转化为集合的交集、并集或补集的基本运算问题,或转化为数的有关运算问题.(3)定结果:根据定义的运算进行求解,利用列举法或描述法写出所求集合中的所有元素.跟踪训练4 (多选)设A 为非空实数集,若对任意x ,y ∈A ,都有x +y ∈A ,x -y ∈A ,且xy ∈A ,则称A 为封闭集.下列叙述中,正确的为A.集合A ={-2,-1,0,1,2}为封闭集B.集合A ={n |n =2k ,k ∈Z }为封闭集C.封闭集一定是无限集D.若A 为封闭集,则一定有0∈A √√对于A,在集合A={-2,-1,0,1,2}中,-2-2=-4不在集合A中,∴集合A不是封闭集,故A错误;对于B,集合A={n|n=2k,k∈Z},设x,y∈A,则x=2k1,y=2k2,k1,k2∈Z,∴x+y=2(k1+k2)∈A,x-y=2(k1-k2)∈A,xy=4k1k2∈A,∴集合A={n|n=2k,k∈Z}为封闭集,故B正确;对于C,封闭集不一定是无限集,如:{0}为封闭集,故C错误;对于D,若A为封闭集,则取x=y,得x-y=0∈A,故D正确.知识过关一、单项选择题1.(2022·全国乙卷)设全集U={1,2,3,4,5},集合M满足∁U M={1,3},则√A.2∈MB.3∈MC.4∉MD.5∉M由题意知M={2,4,5}.2.(2023·新高考全国Ⅰ)已知集合M={-2,-1,0,1,2},N={x|x2-x-6≥0},则M∩N等于A.{-2,-1,0,1}B.{0,1,2}√C.{-2}D.{2}方法一 因为N={x|x2-x-6≥0}=(-∞,-2]∪[3,+∞),而M={-2,-1,0,1,2},所以M∩N={-2}.方法二 因为M={-2,-1,0,1,2},将-2,-1,0,1,2代入不等式x2-x-6≥0,只有-2使不等式成立,所以M∩N={-2}.。
高考数学总复习全套讲义

高中数学复习讲义 第一章 集合与简易逻辑第1课时 集合的概念及运算【考点导读】1. 了解集合的含义,体会元素与集合的属于关系;能选择自然语言,图形语言,集合语言描述不同的具体问题,感受集合语言的意义和作用.2. 理解集合之间包含与相等的含义,能识别给定集合的子集;了解全集与空集的含义.3. 理解两个集合的交集与并集的含义,会求两个集合的交集与并集;理解在给定集合中一个子集补集的含义,会求给定子集的补集;能使用文氏图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.4. 集合问题常与函数,方程,不等式有关,其中字母系数的函数,方程,不等式要复杂一些,综合性较强,往往渗透数形思想和分类讨论思想.【基础练习】1.集合{(,)02,02,,}x y x y x y Z ≤≤≤<∈用列举法表示{(0,0),(0,1),(1,0),(1,1),(2,0),(2,1)}.2.设集合{21,}A x x k k Z ==-∈,{2,}B x x k k Z ==∈,则A B ⋂=∅.3.已知集合{0,1,2}M =,{2,}N x x a a M ==∈,则集合M N ⋂=_______. 4.设全集{1,3,5,7,9}I =,集合{1,5,9}A a =-,{5,7}I C A =,则实数a 的值为____8或2___.【范例解析】例.已知R 为实数集,集合2{320}A x x x =-+≤.若R B C A R ⋃=,{01R B C A x x ⋂=<<或23}x <<,求集合B .分析:先化简集合A ,由R B C A R ⋃=可以得出A 与B 的关系;最后,由数形结合,利用数轴直观地解决问题.解:(1){12}A x x =≤≤Q ,{1R C A x x ∴=<或2}x >.又R B C A R ⋃=,R A C A R ⋃=,{0,2}可得A B ⊆.而{01R B C A x x ⋂=<<或23}x <<,∴{01x x <<或23}x <<.B ⊆借助数轴可得B A =⋃{01x x <<或23}x <<{03}x x =<<.【反馈演练】1.设集合{}2,1=A ,{}3,2,1=B ,{}4,3,2=C ,则()C B A U ⋂=_________. 2.设P ,Q 为两个非空实数集合,定义集合P +Q =},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P +Q 中元素的个数是____8___个.3.设集合2{60}P x x x =--<,{23}Q x a x a =≤≤+. (1)若P Q P ⋃=,求实数a 的取值范围; (2)若P Q ⋂=∅,求实数a 的取值范围; (3)若{03}P Q x x ⋂=≤<,求实数a 的值.解:(1)由题意知:{23}P x x =-<<,Q P Q P ⋃=,Q P ∴⊆. ①当Q =∅时,得23a a >+,解得3a >.②当Q ≠∅时,得2233a a -<≤+<,解得10a -<<. 综上,(1,0)(3,)a ∈-⋃+∞.(2)①当Q =∅时,得23a a >+,解得3a >;②当Q ≠∅时,得23,3223a a a a ≤+⎧⎨+≤-≥⎩或,解得3532a a ≤-≤≤或.综上,3(,5][,)2a ∈-∞-⋃+∞.(3)由{03}P Q x x ⋂=≤<,则0a =.第2课命题及逻辑联结词【考点导读】1.了解命题的逆命题,否命题与逆否命题的意义;会分析四种命题的相互关系.2.了解逻辑联结词“或”,“且”,“非”的含义;能用“或”,“且”,“非”表述相关的数学内容.3.理解全称量词与存在量词的意义;能用全称量词与存在量词叙述简单的数学内容.理解对含有一个量词的命题的否定的意义;能正确地对含有一个量词的命题进行否定.【基础练习】1.下列语句中:①230x-=;②你是高三的学生吗?③315x->.+=;④536其中,不是命题的有____①②④_____.2.一般地若用p和q分别表示原命题的条件和结论,则它的逆命题可表示为若q则p,否命题可表若则,逆否命题可表示为q p若则;原命题与逆否命题互为逆否命题,否命题与逆命题⌝⌝⌝⌝p q互为逆否命题.【范例解析】例1.写出下列命题的逆命题,否命题,逆否命题并判断真假.(1)平行四边形的对边相等;(2)菱形的对角线互相垂直平分;(3)设,,,+=+.a b c d R∈,若,==,则a c b da b c d分析:先将原命题改为“若p则q”,在写出其它三种命题.解:(1)原命题:若一个四边形是平行四边形,则其两组对边相等;真命题;逆命题:若一个四边形的两组对边相等,则这个四边形是平行四边形;真命题; 否命题:若一个四边形不是平行四边形,则其两组对边至少一组不相等;真命题;逆否命题:若一个四边形的两组对边至少一组不相等,则这个四边形不是平行四边形;真命题. (2)原命题:若一个四边形是菱形,则其对角线互相垂直平分;真命题;逆命题:若一个四边形的对角线互相垂直平分,则这个四边形是菱形;真命题; 否命题:若一个四边形不是菱形,则其对角线不垂直或不平分;真命题;逆否命题:若一个四边形的对角线不垂直或不平分,则这个四边形不是菱形;真命题. (3)原命题:设,,,a b c d R ∈,若,a b c d ==,则a c b d +=+;真命题; 逆命题:设,,,a b c d R ∈,若a c b d +=+,则,a b c d ==;假命题; 否命题:设,,,a b c d R ∈,若a b ≠或c d ≠,则a c b d +≠+;假命题; 逆否命题:设,,,a b c d R ∈,若a c b d +≠+,则a b ≠或c d ≠;真命题.点评:已知原命题写出其它的三种命题首先应把命题写成“若p 则q ”的形式,找出其条件p 和结论q ,再根据四种命题的定义写出其它命题;对于含大前提的命题,在改写命题时大前提不要动;在写命题p 的否定即p ⌝时,要注意对p 中的关键词的否定,如“且”的否定为“或”,“或”的否定为“且”,“都是”的否定为“不都是”等.例2.写出由下列各组命题构成的“p 或q ”,“p 且q ”,“非p ”形式的命题,并判断真假. (1)p :2是4的约数,q :2是6的约数;(2)p :矩形的对角线相等,q :矩形的对角线互相平分;(3)p :方程210x x -+=的两实根的符号相同,q :方程210x x -+=的两实根的绝对值相等. 分析:先写出三种形式命题,根据真值表判断真假. 解:(1)p或q:2是4的约数或2是6的约数,真命题;p且q:2是4的约数且2是6的约数,真命题;非p:2不是4的约数,假命题.(2)p或q:矩形的对角线相等或互相平分,真命题;p且q:矩形的对角线相等且互相平分,真命题;非p:矩形的对角线不相等,假命题.(3)p或q:方程210-+=的两实根的符号相同或绝对值相等,假命题;x xp且q:方程210-+=的两实根的符号相同且绝对值相等,假命题;x x非p:方程210-+=的两实根的符号不同,真命题.x x点评:判断含有逻辑联结词“或”,“且”,“非”的命题的真假,先要把结构弄清楚,确定命题构成的形式以及构成它们的命题p,q的真假然后根据真值表判断构成新命题的真假.例3.写出下列命题的否定,并判断真假.(1)p:所有末位数字是0或5的整数都能被5整除;(2)p:每一个非负数的平方都是正数;(3)p:存在一个三角形,它的内角和大于180°;(4)p:有的四边形没有外接圆;(5)p:某些梯形的对角线互相平分.分析:全称命题“,()∃∈⌝”,特称命题“,()∃∈”的否定是x M p xx M p x∀∈”的否定是“,()x M p x“,()∀∈⌝” .x M p x解:(1)p⌝:存在末位数字是0或5的整数,但它不能被5整除,假命题;(2)p⌝:存在一个非负数的平方不是正数,真命题;(3)p⌝:任意一个三角形,它的内角和都不大于180°,真命题;(4)p⌝:所有四边形都有外接圆,假命题;(5)p ⌝:任一梯形的对角线都不互相平分,真命题.点评:一些常用正面叙述的词语及它的否定词语列表如下:【反馈演练】1.命题“若a M ∈,则b M ∉”的逆否命题是__________________. 2.已知命题p :1sin ,≤∈∀x R x ,则:p ⌝,sin 1x R x ∃∈>.3.若命题m 的否命题n ,命题n 的逆命题p ,则p 是m 的____逆否命题____.4.命题“若b a >,则122->b a ”的否命题为________________________. 5.分别写出下列命题的逆命题,否命题,逆否命题,并判断它们的真假. (1)设,a b R ∈,若0ab =,则0a =或0b =; (2)设,a b R ∈,若0,0a b >>,则0ab >. 解:(1)逆命题:设,a b R ∈,若0a =或0b =,则0ab =;真命题; 否命题:设,a b R ∈,若0ab ≠,则0a ≠且0b ≠;真命题; 逆否命题:设,a b R ∈,若0a ≠且0b ≠,则0ab ≠;真命题; (2)逆命题:设,a b R ∈,若0ab >,则0,0a b >>;假命题; 否命题:设,a b R ∈,若0a ≤或0b ≤,则0ab ≤;假命题; 逆否命题:设,a b R ∈,若0ab ≤,则0a ≤或0b ≤;真命题.若b M ∈,则a M ∉若a b ≤,则221ab≤-第3 课时 充分条件和必要条件【考点导读】1. 理解充分条件,必要条件和充要条件的意义;会判断充分条件,必要条件和充要条件.2. 从集合的观点理解充要条件,有以下一些结论:若集合P Q ⊆,则P 是Q 的充分条件; 若集合P Q ⊇,则P 是Q 的必要条件; 若集合P Q =,则P 是Q 的充要条件.3. 会证明简单的充要条件的命题,进一步增强逻辑思维能力. 【基础练习】1.若p q ⇒,则p 是q 的充分条件.若q p ⇒,则p 是q 的必要条件.若p q ⇔,则p 是q 的充要条件.2.用“充分不必要条件,必要不充分条件,充要条件和既不充分也不必要条件”填空. (1)已知:2p x >,:2q x ≥,那么p 是q 的_____充分不必要___条件. (2)已知:p 两直线平行,:q 内错角相等,那么p 是q 的____充要_____条件.(3)已知:p 四边形的四条边相等,:q 四边形是正方形,那么p 是q 的___必要不充分__条件. 3.若x R ∈,则1x >的一个必要不充分条件是0x >. 【范例解析】例.用“充分不必要条件,必要不充分条件,充要条件和既不充分也不必要条件”填空.(1)2,2.x y >⎧⎨>⎩是4,4.x y xy +>⎧⎨>⎩的___________________条件;(2)(4)(1)0x x -+≥是401x x -≥+的___________________条件; (3)αβ=是tan tan αβ=的___________________条件; (4)3x y +≠是1x ≠或2y ≠的___________________条件.分析:从集合观点“小范围⇒大范围”进行理解判断,注意特殊值的使用.解:(1)因为2,2.x y >⎧⎨>⎩结合不等式性质易得4,4.x y xy +>⎧⎨>⎩,反之不成立,若12x =,10y =,有4,4.x y xy +>⎧⎨>⎩,但2,2.x y >⎧⎨>⎩不成立,所以2,2.x y >⎧⎨>⎩是4,4.x y xy +>⎧⎨>⎩的充分不必要条件.(2)因为(4)(1)0x x -+≥的解集为[1,4]-,401x x -≥+的解集为(1,4]-,故(4)(1)0x x -+≥是401x x -≥+的必要不充分条件. (3)当2παβ==时,tan ,tan αβ均不存在;当tan tan αβ=时,取4πα=,54πβ=,但αβ≠,所以αβ=是tan tan αβ=的既不充分也不必要条件.(4)原问题等价其逆否形式,即判断“1x =且2y =是3x y +=的____条件”,故3x y +≠是1x ≠或2y ≠的充分不必要条件.点评:①判断p 是q 的什么条件,实际上是判断“若p 则q ”和它的逆命题“若q 则p ”的真假,若原命题为真,逆命题为假,则p 为q 的充分不必要条件;若原命题为假,逆命题为真,则p 为q 的必要不充分条件;若原命题为真,逆命题为真,则p 为q 的充要条件;若原命题,逆命题均为假,则p 为q 的既不充分也不必要条件.②在判断时注意反例法的应用.③在判断“若p 则q ”的真假困难时,则可以判断它的逆否命题“若⌝q 则⌝p ”的真假.【反馈演练】1.设集合}30|{≤<=x x M ,}20|{≤<=x x N ,则“M a ∈”是“N a ∈”的_必要不充分 条件.2.已知p :1<x <2,q :x (x -3)<0,则p 是q 的 条件.3.已知条件2:{10}p A x R x ax =∈++≤,条件2:{320}q B x R x x =∈-+≤.若q ⌝是p ⌝的充分不必要条件,求实数a 的取值范围.解::{12}q B x R x =∈≤≤,若q ⌝是p ⌝的充分不必要条件,则A B ⊆. 若A =∅,则240a -<,即22a -<<;若A ≠∅,则240,a x ⎧-≥≤≤解得522a -≤≤-. 充分不必要综上所述,522a -≤<.2012高中数学复习讲义第二章函数A【方法点拨】函数是中学数学中最重要,最基础的内容之一,是学习高等数学的基础.高中函数以具体的幂函数,指数函数,对数函数和三角函数的概念,性质和图像为主要研究对象,适当研究分段函数,含绝对值的函数和抽象函数;同时要对初中所学二次函数作深入理解.1.活用“定义法”解题.定义是一切法则与性质的基础,是解题的基本出发点.利用定义,可直接判断所给的对应是否满足函数的条件,证明或判断函数的单调性和奇偶性等.2.重视“数形结合思想”渗透.“数缺形时少直观,形缺数时难入微”.当你所研究的问题较为抽象时,当你的思维陷入困境时,当你对杂乱无章的条件感到头绪混乱时,一个很好的建议:画个图像!利用图形的直观性,可迅速地破解问题,乃至最终解决问题.3.强化“分类讨论思想”应用.分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法.进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。
高考数学复习讲义共十一章

高考数学复习讲义共十一章SANY GROUP system office room 【SANYUA16H-高考复习数学讲义(共十一章)一、集合与简易逻辑1.集合的元素具有无序性和互异性.2.对集合A B 、,A B =∅时,你是否注意到“极端”情况:A =∅或B =∅;求集合的子集时是否注意到∅是任何集合的子集、∅是任何非空集合的真子集.✍3.对于含有n 个元素的有限集合M ,其子集、真子集、非空子集、非空真子集的个数依次为,n 2,12-n .22-n ,12-n4.“交的补等于补的并,即()U U U C AB C A C B =”;“并的补等于补的交,即()U U U C A B C A C B =”. 5.判断命题的真假 关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”.6.“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”.7.四种命题中“‘逆’者‘交换’也”、“‘否’者‘否定’也”.原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.反证法分为三步:假设、推矛、得果.注意:命题的否定是“命题的非命题,也就是‘条件不变,仅否定结论’所得命题”,但否命题是“既否定原命题的条件作为条件,又否定原命题的结论作为结论的所得命题” ✍.8.充要条件二、函 数1. 指数式、对数式,mn a =1mn m na a -=,log a N a N =log (0,1,0)b a a N N b a a N =⇔=>≠>,.01a =,log 10a =,log 1a a =,lg 2lg51+=,log ln e x x =,log log log c a c b b a=,.log log m n a a n b b m =. 2.(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合A 中的元素必有像,但第二个集合B 中的元素不一定有原像(A 中元素的像有且仅有下一个,但B 中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集B 的子集”.(2)函数图像与x 轴垂线至多一个公共点,但与y 轴垂线的公共点可能没有,也可任意个.(3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像.(4)原函数与反函数有两个“交叉关系”:自变量与因变量、定义域与值域.求一个函数的反函数,分三步:逆解、交换、定域(确定原函数的值域,并作为反函数的定义域).注意:①1()()f a b f b a -=⇔=,1[()]f f x x -=,1[()]f f x x -=,但11[()][()]f f x f f x --≠. ② 函数(1)y f x =+的反函数是1()1y f x -=-,而不是1(1)y f x -=+.3.单调性和奇偶性(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.单调函数的反函数和原函数有相同的性;如果奇函数有反函数,那么其反函数一定还是奇函数.注意:(1)确定函数的奇偶性,务必先判定函数定义域是否关于原点对称 .确定函数奇偶性的常用方法有:定义法、图像法等等. 对于偶函数而言有:()()(||)f x f x f x -==.(2)若奇函数定义域中有0,则必有(0)0f =.即0()f x ∈的定义域时,(0)0f =是()f x 为奇函数的必要非充分条件.(3)确定函数的单调性或单调区间,在解答题中常用:定义法(取值、作差、鉴定)、导数法;在选择、填空题中还有:数形结合法(图像法)、特殊值法等等.(4)函数单调是函数有反函数的一个充分非必要条件.(5)定义在关于原点对称区间上的任意一个函数,都可表示成“一个奇函数与一个偶函数的和(或差)”.(6)函数单调是函数有反函数的充分非必要条件,奇函数可能反函数,但偶函数只有()0({0})f x x =∈有反函数;既奇又偶函数有无穷多个(()0f x =,定义域是关于原点对称的任意一个数集).(7)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”.复合函数的奇偶性特点是:“内偶则偶,内奇同外”.复合函数要考虑定义域的变化。
高考数学知识点总复习pppt课件

• ak+2+(a+1)2k+1
• =(a+1)2[ak+1+(a+1)2k-1]+ak+2-ak+1(a
+1)2
27
=(a+1)2[ak+1+(a+1)2k-1]-ak+1(a2+a+1)能被 a2+a+1 整除.
即当 n=k+1 时命题也成立. 根据(1)(2)可知,对于任意 n∈N+,an+1+(a+1)2n-1 能被 a2 +a+1 整除.
+
1 2k+1-1
-
1 2k+1
=k+1 1+k+1 2+…+21k+2k+1 1-2k+1 1
=k+1 2+k+1 3+…+21k+2k+1 1+k+1 1-2k+1 1
=
k+11+1+
k+11+2+…
+k+11+k+
1 k+1+k+1
=右边,
13
• 所以当n=k+1时等式也成立.
• 综合(1)(2)知对一切n∈N* ,等式都成立.
• (2)(n归=k纳+1递推)假设当n=k(k∈N*,k≥n0)时 命题成立,推出当__________时命题也成 立.
3
• 只要完成这两个步骤,就可以断定命题对n取 第一个值后面的所有正整数都成立.上述证 明方法叫做数学归纳法.
• 质疑探究:数学归纳法两个步骤有什么关系?
• 提示:数学归纳法证明中的两个步骤体现了 递推思想,第一步是递推的基础,第二步是 递推的依据,两个步骤缺一不可,否则就会 导致错误.
第十一章 复数、算法、推理与 证明
第5节 数学归纳法
1
• 1.了解数学归纳法的原理. • 2.能用数学归纳法证明一些简单的数学命
题.
2
• [要点梳理]
• 数学归纳法
• 一般地,证明一个与正整数n有关的命题,可 按下列步骤进行:
高考数学总复习全套讲义

第1课古典概型【考点导读】 1.在具体情境中,了解随机事件发生的不确定性及频率的稳定性,进一步了解概率的意义以及概率与频率的区别.2.正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等.(1)填写表中击中靶心的频率;(2)这个射手射击一次,击中靶心的概率约是什么?2.将一枚硬币向上抛掷10次,其中正面向上恰有5次是事件(必然、随机、不可能)3.下列说法正确的是 .①任一事件的概率总在(0.1)内②不可能事件的概率不一定为0③必然事件的概率一定为1 ④以上均不对4.一枚硬币连掷3次,只有一次出现正面的概率是5. 从分别写有A、B、C、D、E的5张卡片中,任取2张,这2张卡片上的字母恰好是按字母顺序相邻的概率为【范例解析】例1. 连续掷3枚硬币,观察落地后这3枚硬币出现正面还是反面.(1)写出这个试验的基本事件;(2)求这个试验的基本事件的总数;(3)“恰有两枚正面向上”这一事件包含哪几个基本事件?例2. 抛掷两颗骰子,求:(1)点数之和出现7点的概率;(2)出现两个4点的概率.【反馈演练】1.某人进行打靶练习,共射击10次,其中有2次中10环,有3次环中9环,有4次中8环,有1次未中靶,试计算此人中靶的概率,假设此人射击1次,试问中靶的概率约为,中10环的概率约为.2.一栋楼房有4个单元,甲乙两人被分配住进该楼,则他们同住一单元的概率是 .3. 在第1,3,6,8,16路公共汽车都要停靠的一个站(假定这个站只能停靠一辆汽车),有一位乘客等候第6 路或第16路汽车.假定当时各路汽车首先到站的可能性相等,则首先到站正好是这位乘客所需乘的汽车的概率等于4.把三枚硬币一起抛出,出现2枚正面向上,一枚反面向上的概率是5.有5根细木棒,长度分别为1,3 ,5 ,7 ,9,从中任取三根,能搭成三角形的概率是6. 从1,2,3,…,9这9个数字中任取2个数字,(1)2个数字都是奇数的概率为(2)2个数字之和为偶数的概率为7. 某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女生当选的概率为8. A、B、C、D、E排成一排,A在B的右边(A、B可以不相邻)的概率是9.现有一批产品共有10件,其中8件为正品,2件为次品:(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;(2)如果从中一次取3件,求3件都是正品的概率.第2课几何概型【考点导读】1.了解几何概型的基本特点.2.会进行简单的几何概率的计算.【基础练习】1.在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,则发现草履虫的概率是2. 取一根长度为3 m的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1 m的概率是3. 在1万 km2的海域中有40 km2的大陆架贮藏着石油,假如在海域中任意一点钻探,钻到油层面的概率是4. 如下图,在一个边长为3 cm的正方形内部画一个边长为2 cm的正方形,向大正方形内随机投点,则所投的点落入小正方形内的概率是.【范例解析】例1.将长为l的棒随机折成3段,求3段构成三角形的概率.【反馈演练】1. 两根相距6 m的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于2 m的概率是2.若x可以在13x+≤的条件下任意取值,则x是负数的概率是 .(2015)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为( )(A)103(B)15(C)110(D)12019.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费和年销售量(i=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值。
江苏高考数学总复习要点——知识篇(全套)课件

03
立体几何
空间几何体的结构与性质
总结词
掌握各种空间几何体的结构特点 与性质,包括多面体、旋转体等 。
详细描述
了解各种空间几何体的定义、性 质和特点,如多面体的面、棱、 顶点等数量关系,旋转体的轴、 圆面、半径等几何特征。
空间几何体的表面积与体积
总结词
掌握空间几何体的表面积和体积的计 算方法。
01
02
03
04
参数方程的基本概念:参数方 程与普通方程的互化。
极坐标系的基本概念:极坐标 与直角坐标的互化。
参数方程在解析几何中的应用 :极径、极角等。
极坐标在解析几何中的应用: 极径、极角等。
05
数列与不等式
数列的概念与性质
总结词:基础概念
详细描述:数列是按照一定顺序排列的一列数。数列的性质包括有界性、单调性 、周期性等,这些性质在解决数列问题时有着重要的应用。
江苏高考数学总复习要点——知识篇 (全套)课件
contents
目录
• 函数与导数 • 三角函数与解三角形 • 立体几何 • 解析几何 • 数列与不等式
01
函数与导数
函数性质
函数的定义域和值域
理解函数的定义域和值域的概念,掌 握如何求函数的定义域和值域的方法 。
函数的单调性
函数的奇偶性
理解函数奇偶性的概念,掌握判断函 数奇偶性的方法。
THANKS
感谢观看
理解函数单调性的概念,掌握判断函 数单调性的方法。
导数的概念与运算
数的基本性质。
导数的运算
掌握导数的四则运算法则 ,以及复合函数的求导法 则。
导数的几何意义
理解导数的几何意义,掌 握利用导数研究函数的切 线方程的方法。
(高中数学)高考复习详细讲义(汇编)

(高中数学)高考复习详细讲义(汇编)第一板块:函数、导数一、 常见的基本初等函数1、b kx x f +=)((一次函数);2、)0()(2≠++=a c bx ax x f (二次函数)3、)0()(23≠+++=a d cx bx ax x f (三次函数);4、)0()(≠=k xkx f (反比例函数);5、)0(||)(≠+=k b kx x f (V 形函数);6、xk x x f +=)((k >0)(对钩函数);7、xkx x f +=)()0(<k ;8、a a x f x ()(=>0且)1≠a (指数函数)9、a x x f a (log )(=>0且)1≠a (对数函数);10、αx x f =)((幂函数); 11、x x f sin )(=(正弦函数);12、x x f cos )(=(余弦函数);13、x x f tan )(=(正切函数)。
二、函数的性质(一)函数的单调性判定方法: 1、定义法:①I x x ∈21,且1x <2x ; ①②⇒③(证明单调性,主要用于抽象函数)②)(1x f <)(2x f 或)(1x f >)(2x f ;②③⇒①(解抽象不等式、超越不等式) ③)(x f 在I ↗或)(x f 在I ↘。
①③⇒②(利用函数单调性求值域)⎩⎨⎧=--=单调递减在负,单调递增在正,I x f I x f x x x f x f k )()()()(2121;⎩⎨⎧=∆-∆+='=→∆单调递减在负,单调递增在正,I x f I x f x x f x x f x f k x )()()()(lim)(02、复合函数单调性遵循同增异减原则。
3、子母同性法(函数在母区间的单调性与子区间的单调性相同)。
4、运算法则法(增+增=增,减+减=减)。
5、移缩依旧法(平移变换与伸缩变换不影响函数的单调性)。
6、奇函数在其对称区间单调性相同,偶函数在其对称区间单调性相反,原函数与反函数的单调性一致)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学复习讲义 第一章 集合与简易逻辑第1课时 集合的概念及运算【考点导读】 1. 了解集合的含义,体会元素与集合的属于关系;能选择自然语言,图形语言,集合语言描述不同的具体问题,感受集合语言的意义和作用. 2. 理解集合之间包含与相等的含义,能识别给定集合的子集;了解全集与空集的含义.3.理解两个集合的交集与并集的含义,会求两个集合的交集与并集;理解在给定集合中一个子集补集的含义,会求给定子集的补集;能使用文氏图表达集合的关系及运算,体会直观图示对理解抽象概念的作用. 4. 集合问题常与函数,方程,不等式有关,其中字母系数的函数,方程,不等式要复杂一些,综合性较强,往往渗透数形思想和分类讨论思想.【基础练习】 1.集合{(,)02,02,,}x y x y x y Z ≤≤≤<∈用列举法表示{(0,0),(0,1),(1,0),(1,1),(2,0),(2,1)}. 2.设集合{21,}A x x k k Z ==-∈,{2,}B x x k k Z ==∈,则A B ⋂=∅.3.已知集合{0,1,2}M =,{2,}N x x a a M ==∈,则集合M N ⋂=_______.4.设全集{1,3,5,7,9}I =,集合{1,5,9}A a =-,{5,7}I C A =,则实数a 的值为____8或2___.【范例解析】 例.已知R 为实数集,集合2{320}A x x x =-+≤.若R B C A R ⋃=,{01R B C A x x ⋂=<<或23}x <<,求集合B .分析:先化简集合A ,由RB C A R ⋃=可以得出A 与B 的关系;最后,由数形结合,利用数轴直观地解决问题.解:(1){12}A x x =≤≤,{1R C A x x ∴=<或2}x >.又R B C A R ⋃=,R A C A R ⋃=,可得A B ⊆.而{01R B C A x x ⋂=<<或23}x <<,∴{01x x <<或23}x <<.B ⊆借助数轴可得B A =⋃{01x x <<或23}x <<{03}x x =<<.【反馈演练】 1.设集合{}2,1=A ,{}3,2,1=B ,{}4,3,2=C ,则()C B A U ⋂=_________.2.设P ,Q 为两个非空实数集合,定义集合P +Q =},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P +Q 中元素的个数是____8___个.3.设集合2{60}Px x x =--<,{23}Q x a x a =≤≤+.(1)若P QP ⋃=,求实数a 的取值范围;{0,2}(2)若P Q⋂=∅,求实数a 的取值范围;(3)若{03}P Q x x ⋂=≤<,求实数a 的值.解:(1)由题意知:{23}P x x =-<<,P Q P ⋃=,Q P ∴⊆.①当Q =∅时,得23a a >+,解得3a >.②当Q≠∅时,得2233a a -<≤+<,解得10a -<<.综上,(1,0)(3,)a ∈-⋃+∞. (2)①当Q=∅时,得23a a >+,解得3a >;②当Q ≠∅时,得23,3223a a a a ≤+⎧⎨+≤-≥⎩或,解得3532a a ≤-≤≤或.综上,3(,5][,)2a ∈-∞-⋃+∞. (3)由{03}P Q x x ⋂=≤<,则0a =.第2课 命题及逻辑联结词【考点导读】 1. 了解命题的逆命题,否命题与逆否命题的意义;会分析四种命题的相互关系. 2. 了解逻辑联结词“或”,“且”,“非”的含义;能用“或”,“且”,“非”表述相关的数学内容.3.理解全称量词与存在量词的意义;能用全称量词与存在量词叙述简单的数学内容.理解对含有一个量词的命题的否定的意义;能正确地对含有一个量词的命题进行否定. 【基础练习】1.下列语句中:①230x -=;②你是高三的学生吗?③315+=;④536x ->.其中,不是命题的有____①②④_____.2.一般地若用p 和q 分别表示原命题的条件和结论,则它的逆命题可表示为若q 则p ,否命题可表示为p q⌝⌝若则,逆否命题可表示为q p ⌝⌝若则;原命题与逆否命题互为逆否命题,否命题与逆命题互为逆否命题.【范例解析】 例1. 写出下列命题的逆命题,否命题,逆否命题并判断真假. (1)平行四边形的对边相等;(2) 菱形的对角线互相垂直平分; (3)设,,,a b c dR ∈,若,a b c d ==,则a c b d +=+.分析:先将原命题改为“若p 则q ”,在写出其它三种命题. 解: (1)原命题:若一个四边形是平行四边形,则其两组对边相等;真命题;逆命题:若一个四边形的两组对边相等,则这个四边形是平行四边形;真命题; 否命题:若一个四边形不是平行四边形,则其两组对边至少一组不相等;真命题;逆否命题:若一个四边形的两组对边至少一组不相等,则这个四边形不是平行四边形;真命题. (2)原命题:若一个四边形是菱形,则其对角线互相垂直平分;真命题;逆命题:若一个四边形的对角线互相垂直平分,则这个四边形是菱形;真命题; 否命题:若一个四边形不是菱形,则其对角线不垂直或不平分;真命题;逆否命题:若一个四边形的对角线不垂直或不平分,则这个四边形不是菱形;真命题. (3)原命题:设,,,a b c d R ∈,若,a b c d ==,则a c b d +=+;真命题; 逆命题:设,,,a b c d R ∈,若a c b d +=+,则,a b c d ==;假命题; 否命题:设,,,a b c dR ∈,若a b ≠或c d ≠,则a c b d +≠+;假命题; 逆否命题:设,,,a b c d R ∈,若a c b d +≠+,则a b ≠或c d ≠;真命题.点评:已知原命题写出其它的三种命题首先应把命题写成“若p 则q ”的形式,找出其条件p 和结论q ,再根据四种命题的定义写出其它命题;对于含大前提的命题,在改写命题时大前提不要动;在写命题p 的否定即p ⌝时,要注意对p 中的关键词的否定,如“且”的否定为“或”,“或”的否定为“且”,“都是”的否定为“不都是”等.例2.写出由下列各组命题构成的“p 或q ”,“p 且q ”,“非p ”形式的命题,并判断真假. (1)p :2是4的约数,q :2是6的约数;(2)p :矩形的对角线相等,q :矩形的对角线互相平分; (3)p :方程210x x -+=的两实根的符号相同,q :方程210x x -+=的两实根的绝对值相等.分析:先写出三种形式命题,根据真值表判断真假. 解:(1)p 或q :2是4的约数或2是6的约数,真命题;p 且q :2是4的约数且2是6的约数,真命题; 非p :2不是4的约数,假命题.(2)p 或q :矩形的对角线相等或互相平分,真命题;p 且q :矩形的对角线相等且互相平分,真命题; 非p :矩形的对角线不相等,假命题. (3)p 或q :方程210xx -+=的两实根的符号相同或绝对值相等,假命题; p 且q :方程210x x -+=的两实根的符号相同且绝对值相等,假命题;非p :方程210xx -+=的两实根的符号不同,真命题.点评:判断含有逻辑联结词“或”,“且”,“非”的命题的真假,先要把结构弄清楚,确定命题构成的形式以及构成它们的命题p ,q 的真假然后根据真值表判断构成新命题的真假.例3.写出下列命题的否定,并判断真假.(1)p :所有末位数字是0或5的整数都能被5整除; (2)p :每一个非负数的平方都是正数;(3)p :存在一个三角形,它的内角和大于180°; (4)p :有的四边形没有外接圆; (5)p :某些梯形的对角线互相平分. 分析:全称命题“,()x M p x ∀∈”的否定是“,()x M p x ∃∈⌝”,特称命题“,()x M p x ∃∈”的否定是“,()x M p x ∀∈⌝” .解: (1)p ⌝:存在末位数字是0或5的整数,但它不能被5整除,假命题;(2)p ⌝:存在一个非负数的平方不是正数,真命题;(3)p ⌝:任意一个三角形,它的内角和都不大于180°,真命题;(4)p ⌝:所有四边形都有外接圆,假命题; (5)p ⌝:任一梯形的对角线都不互相平分,真命题.点评:一些常用正面叙述的词语及它的否定词语列表如下:【反馈演练】1.命题“若a M ∈,则b M ∉”的逆否命题是__________________. 2.已知命题p :1sin ,≤∈∀x R x ,则:p ⌝,sin 1x R x ∃∈>.3.若命题m 的否命题n ,命题n 的逆命题p ,则p 是m 的____逆否命题____. 4.命题“若b a >,则122->b a ”的否命题为________________________. 5.分别写出下列命题的逆命题,否命题,逆否命题,并判断它们的真假. (1)设,a b R ∈,若0ab =,则0a =或0b =;(2)设,a b R ∈,若0,0a b >>,则0ab >.解:(1)逆命题:设,a b R ∈,若0a =或0b =,则0ab =;真命题;否命题:设,a b R ∈,若0ab ≠,则0a ≠且0b ≠;真命题; 逆否命题:设,a b R ∈,若0a ≠且0b ≠,则0ab ≠;真命题; (2)逆命题:设,a b R ∈,若0ab >,则0,0a b >>;假命题; 否命题:设,a b R ∈,若0a ≤或0b ≤,则0ab ≤;假命题; 逆否命题:设,a b R ∈,若0ab ≤,则0a ≤或0b ≤;真命题.若b M ∈,则a M ∉若a b ≤,则221a b≤-第3 课时 充分条件和必要条件【考点导读】 1. 理解充分条件,必要条件和充要条件的意义;会判断充分条件,必要条件和充要条件. 2.从集合的观点理解充要条件,有以下一些结论: 若集合P Q ⊆,则P 是Q 的充分条件; 若集合P Q ⊇,则P 是Q 的必要条件; 若集合PQ =,则P 是Q 的充要条件.3. 会证明简单的充要条件的命题,进一步增强逻辑思维能力. 【基础练习】 1.若p q ⇒,则p 是q 的充分条件.若q p ⇒,则p 是q 的必要条件.若p q ⇔,则p 是q 的充要条件.2.用“充分不必要条件,必要不充分条件,充要条件和既不充分也不必要条件”填空. (1)已知:2p x >,:2q x ≥,那么p 是q 的_____充分不必要___条件.(2)已知:p 两直线平行,:q 内错角相等,那么p 是q 的____充要_____条件.(3)已知:p 四边形的四条边相等,:q 四边形是正方形,那么p 是q 的___必要不充分__条件.3.若x R ∈,则1x >的一个必要不充分条件是0x >.【范例解析】例.用“充分不必要条件,必要不充分条件,充要条件和既不充分也不必要条件”填空.(1)2,2.x y >⎧⎨>⎩是4,4.x y xy +>⎧⎨>⎩的___________________条件;(2)(4)(1)0x x -+≥是401x x -≥+的___________________条件;(3)αβ=是tan tan αβ=的___________________条件;(4)3x y +≠是1x ≠或2y ≠的___________________条件.分析:从集合观点“小范围⇒大范围”进行理解判断,注意特殊值的使用.解:(1)因为2,2.x y >⎧⎨>⎩结合不等式性质易得4,4.x y xy +>⎧⎨>⎩,反之不成立,若12x =,10y =,有4,4.x y xy +>⎧⎨>⎩,但2,2.x y >⎧⎨>⎩不成立,所以2,2.x y >⎧⎨>⎩是4,4.x y xy +>⎧⎨>⎩的充分不必要条件.(2)因为(4)(1)0x x -+≥的解集为[1,4]-,401x x -≥+的解集为(1,4]-,故(4)(1)0x x -+≥是401x x -≥+的必要不充分条件.(3)当2παβ==时,tan ,tan αβ均不存在;当tan tan αβ=时,取4πα=,54πβ=,但αβ≠,所以αβ=是tan tan αβ=的既不充分也不必要条件.(4)原问题等价其逆否形式,即判断“1x =且2y =是3x y +=的____条件”,故3x y +≠是1x ≠或2y ≠的充分不必要条件.点评:①判断p 是q 的什么条件,实际上是判断“若p 则q ”和它的逆命题“若q 则p ”的真假,若原命题为真,逆命题为假,则p 为q 的充分不必要条件;若原命题为假,逆命题为真,则p 为q 的必要不充分条件;若原命题为真,逆命题为真,则p 为q 的充要条件;若原命题,逆命题均为假,则p 为q 的既不充分也不必要条件.②在判断时注意反例法的应用.③在判断“若p 则q ”的真假困难时,则可以判断它的逆否命题“若⌝q 则⌝p ”的真假.【反馈演练】 1.设集合}30|{≤<=x x M ,}20|{≤<=x x N ,则“M a ∈”是“N a ∈”的_必要不充分条件.2.已知p :1<x <2,q :x (x -3)<0,则p 是q 的 条件. 3.已知条件2:{10}p A x R x ax =∈++≤,条件2:{320}q B x R x x =∈-+≤.若q ⌝是p ⌝的充分不必要条件,求实数a 的取值范围. 解::{12}q B x R x =∈≤≤,若q ⌝是p ⌝的充分不必要条件,则A B ⊆.若A =∅,则240a -<,即22a -<<;若A ≠∅,则240,22a a a x ⎧-≥⎪⎨--+≤≤⎪⎩解得522a -≤≤-.综上所述,522a -≤<.充分不必要2012高中数学复习讲义第二章函数A【方法点拨】函数是中学数学中最重要,最基础的内容之一,是学习高等数学的基础.高中函数以具体的幂函数,指数函数,对数函数和三角函数的概念,性质和图像为主要研究对象,适当研究分段函数,含绝对值的函数和抽象函数;同时要对初中所学二次函数作深入理解.1.活用“定义法”解题.定义是一切法则与性质的基础,是解题的基本出发点.利用定义,可直接判断所给的对应是否满足函数的条件,证明或判断函数的单调性和奇偶性等.2.重视“数形结合思想”渗透.“数缺形时少直观,形缺数时难入微”.当你所研究的问题较为抽象时,当你的思维陷入困境时,当你对杂乱无章的条件感到头绪混乱时,一个很好的建议:画个图像!利用图形的直观性,可迅速地破解问题,乃至最终解决问题.3.强化“分类讨论思想”应用.分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法.进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。