20届高考数学一轮复习讲义(提高版) 专题6.3 几何概型(解析版)

合集下载

20届高考数学一轮复习讲义(提高版) 专题10.3 直线与圆的综合运用(解析版)

20届高考数学一轮复习讲义(提高版) 专题10.3 直线与圆的综合运用(解析版)

第三讲 直线与圆的综合运用(1)几何法:把圆心到直线的距离d 和半径r 的大小加以比较:d <r 相交;d =r 相切;d >r 相离. (2)代数法:将圆的方程和直线的方程联立起来组成方程组,利用判别式Δ来讨论位置关系:Δ>0相交;Δ=0相切;Δ<0相离.考向一 直线与圆的位置关系【例1】(1)4.圆(x −1)2+(y +2)2=6与直线2x +y −5=0的位置关系是( ) A .相切 B .相交但直线不过圆心 C .相交过圆心 D .相离(2)在△ABC 中,若a sin A +b sin B -c sin C =0,则圆C :x 2+y 2=1与直线l :ax +by +c =0的位置关系是________.(3)若直线3x +4y -m =0与圆x 2+y 2+2x -4y +4=0始终有公共点,则实数m 的取值范围是________.【答案】(1)B (2)相切 (3)[0,10]【解析】(1)由题意知圆心(1,−2)到直线2x +y −5=0的距离d =|2×1−2−5|√22+12=√5<√6且2×1+(−2)−5≠0,所以直线与圆相交但不过圆心.(2) 因为a sin A +b sin B -c sin C =0,所以由正弦定理,得a 2+b 2-c 2=0. 故圆心C (0,0)到直线l :ax +by +c =0的距离d =|c |a 2+b 2=1=r ,故圆C :x 2+y 2=1与直线l :ax +by +c =0相切.(3)圆的方程x 2+y 2+2x -4y +4=0化为标准方程为(x +1)2+(y -2)2=1, 所以圆心为(-1,2),半径r =1,圆心到直线3x +4y -m =0的距离d =|-3+8-m |9+16=|5-m |5,∵直线3x +4y -m =0与圆x 2+y 2+2x -4y +4=0始终有公共点,∴0≤|5-m |5≤1,解得0≤m ≤10,∴实数m 的取值范围是[0,10].【套路秘籍】---千里之行始于足下【举一反三】1.若直线2x +y −2=0与圆(x -1)2+(y −a)2=1相切,则a =______. 【答案】±√5【解析】由题意,直线2x +y −2=0与圆(x −1)2+(y −a)2=1相切, 所以d =|2×1+a−2|√22+12=1,解得a =±√5.故答案为:±√5.2.若曲线y =√1−x 2与直线y =x +b 始终有公共点,则实数b 的取值范围是( ) A .[−1,√2] B .[−1,√2) C .[−√2,√2] D .[1,√2]【答案】A【解析】∵y =√1−x 2表示x 2+y 2=1在x 轴上方的部分(包括x 轴上的点), 作出函数y =√1−x 2与y =x +b 图象, 由图可知:当直线与圆相切时,d =|b |√2=1,即得b =±√2,结合图像可知b =√2,又当直线过(1,0)时,b=-1,若曲线y =√1−x 2与直线y =x +b 始终有公共点,则﹣1≤b ≤√2.故选:A .3.已知圆C 过点P (2,1),圆心为C (5,−3). (1)求圆C 的标准方程;(2)如果过点A (0,1)且斜率为k 的直线l 与圆C 没有公共点,求实数k 的取值范围. 【答案】(1)(x −5)2+(y +3)2=25(2)(940,+∞)【解析】(1)由已知可得圆的半径为|PC |=√(5−2)2+(−3−1)2=5. ∴圆C 的标准方程(x −5)2+(y +3)2=25;【套路总结】直线与圆位置关系(或交点个数)的解题思路(1)把圆化成圆的标准方程22200()()x x y y r -+-=找出圆心()00,x y 和半径r(2)利用点到直线到距离公式求圆心到直线的距离0022Ax By Cd A B++=+(3)d 与r 比较大小d r d r d r >⎧⎪=⎨⎪<⎩相离,没有交点相切,一个交点相交,两个交点(2)由题意可知,直线方程为y=kx+1,即kx−y+1=0.由|5k+3+1|√k2+1>5,解得k>940.∴实数k的取值范围是(940,+∞).考向二直线与圆的弦长【例2】(1)直线x+3y-2=0与圆x2+y2=4相交于A,B两点,则弦AB的长为________.(2)已知直线mx+y−3=0与圆O:x2+y2=3交于A,B两点(O为坐标原点),且|AB|=√3,则m=。

2020版高考数学一轮复习高考大题增分课五平面解析几何中的高考热点问题教学案文含解析北师大版

2020版高考数学一轮复习高考大题增分课五平面解析几何中的高考热点问题教学案文含解析北师大版

五 平面解析几何中的高考热点问题[命题解读] 1. 圆锥曲线是平面解析几何的核心部分,也是高考必考知识,主要以一个小题一个大题的形式呈现,难度中等偏上.2.高考中的选择题或填空题主要考查圆锥曲线的基本性质,高考中的解答题,在第(1)问中常以求曲线的标准方程,在第(2)问以求作或证明位置关系、定点、定值、最值、范围、探索性问题为主. 这些试题的命制有一个共同特点,就是起点低,但在第(2)问或第(3)问中一般都伴有较为复杂的运算,对考生解决问题的能力要求较高.圆锥曲线的标准方程与性质圆锥曲线的方程与性质是高考考查的重点,求离心率、准线、双曲线的渐近线是常见题型,多以选择题或填空题的形式考查,各种难度均有可能.【例1】 (2017·全国卷Ⅲ)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y23=1有公共焦点,则C 的方程为( )A .x 28-y 210=1B .x 24-y 25=1C .x 25-y 24=1D .x 24-y 23=1B [由y =52x 可得b a =52.① 由椭圆x 212+y 23=1的焦点为(3,0),(-3,0),可得a 2+b 2=9.② 由①②可得a 2=4,b 2=5. 所以C 的方程为x 24-y 25=1.故选B.][规律方法] 解决此类问题的关键是熟练掌握各曲线的定义、性质及相关参数间的联系. 掌握一些常用的结论及变形技巧,有助于提高运算能力.(1)(2017·全国卷Ⅱ)若双曲线C:x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线被圆(x -2)2+y 2=4所截得的弦长为2,则C 的离心率为( )A .2B . 3C . 2D .233(2)(2017·全国卷Ⅰ)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,则|AB |+|DE |的最小值为( )A .16B .14C .12D .10(1)A (2)A [(1)设双曲线的一条渐近线方程为y =bax , 圆的圆心为(2,0),半径为2,由弦长为2得出圆心到渐近线的距离为22-12= 3. 根据点到直线的距离公式得|2b |a 2+b2=3,解得b 2=3a 2.所以C 的离心率e =ca=c 2a 2=1+b 2a2=2.故选A .(2)因为F 为y 2=4x 的焦点,所以F (1,0).由题意直线l 1,l 2的斜率均存在,且不为0,设l 1的斜率为k ,则l 2的斜率为-1k,故直线l 1,l 2的方程分别为y =k (x -1),y =-1k(x -1).由⎩⎪⎨⎪⎧y =k x -1,y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k 2+4k2,x 1x 2=1,所以|AB |=1+k 2·|x 1-x 2| =1+k 2·x 1+x 22-4x 1x 2=1+k 2·⎝ ⎛⎭⎪⎫2k 2+4k 22-4=41+k 2k 2.同理可得|DE |=4(1+k 2). 所以|AB |+|DE |=41+k2k2+4(1+k 2)=4⎝ ⎛⎭⎪⎫1k 2+1+1+k 2=8+4⎝⎛⎭⎪⎫k 2+1k2≥8+4×2=16,当且仅当k 2=1k2,即k =±1时,取得等号.故选A .]圆锥曲线中的定点、定值问题定点、定值问题一般涉及曲线过定点、与曲线上的动点有关的定值问题以及与圆锥曲线有关的弦长、面积、横(纵)坐标等定值问题.【例2】 (2017·全国卷Ⅰ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3⎝ ⎛⎭⎪⎫-1,32,P 4⎝⎛⎭⎪⎫1,32中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.[解] (1)由于P 3,P 4两点关于y 轴对称,故由题设知椭圆C 经过P 3,P 4两点. 又由1a 2+1b 2>1a 2+34b 2知,椭圆C 不经过点P 1,所以点P 2在椭圆C 上.因此⎩⎪⎨⎪⎧1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.故椭圆C 的方程为x 24+y 2=1.(2)证明:设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.如果l 与x 轴垂直,设l :x =t ,由题设知t ≠0,且|t |<2,可得A ,B 的坐标分别为⎝⎛⎭⎪⎫t ,4-t 22,⎝ ⎛⎭⎪⎫t ,-4-t 22,则k 1+k 2=4-t 2-22t -4-t 2+22t =-1,得t =2,不符合题设.从而可设l :y =kx +m (m ≠1).将y =kx +m 代入x 24+y 2=1得(4k 2+1)x 2+8kmx +4m 2-4=0.由题设可知Δ=16(4k 2-m 2+1)>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.而k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2=2kx 1x 2+m -1x 1+x 2x 1x 2.由题设k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0.即(2k +1)·4m 2-44k 2+1+(m -1)·-8km 4k 2+1=0,解得k =-m +12.当且仅当m >-1时,Δ>0,于是l :y =-m +12x +m ,即y +1=-m +12(x -2),所以l 过定点(2,-1).[规律方法] 1.证明直线过定点,应根据已知条件建立直线方程中斜率k 或截距b 的关系式,此类问题中的定点多在坐标轴上.2.解决定值问题应以坐标运算为主,需建立相应的目标函数,然后代入相应的坐标运算,结果即可得到.3.无论定点或定值问题,都可先用特殊值法求出,然后再验证即可,这样可确定方向和目标.已知椭圆E :x 2+y 2=1(a >b >0)过点(0,1),且离心率为3.(1)求椭圆E 的方程;(2)设直线l :y =12x +m 与椭圆E 交于A ,C 两点,以AC 为对角线作正方形ABCD ,记直线l 与x 轴的交点为N ,问B ,N 两点间的距离是否为定值?如果是,求出定值;如果不是,请说明理由.[解] (1)由题意可知,椭圆的焦点在x 轴上,椭圆过点(0,1),则b =1.由椭圆的离心率e =ca =1-b 2a 2=32,解得a =2,所以椭圆E 的标准方程为x 24+y 2=1. (2)设A (x 1,y 1),C (x 2,y 2),线段AC 的中点为M (x 0,y 0).由⎩⎪⎨⎪⎧y =12x +m ,x 24+y 2=1,整理得x 2+2mx +2m 2-2=0.由Δ=(2m )2-4(2m 2-2)=8-4m 2>0,解得-2<m <2,所以x 1+x 2=-2m ,x 1x 2=2m 2-2,y 1+y 2=12(x 1+x 2)+2m =m ,所以线段AC 的中点为M ⎝⎛⎭⎪⎫-m ,12m .则|AC |=1+⎝ ⎛⎭⎪⎫122×x 1+x 22-4x 1x 2=1+14×4m 2-4×2m 2-2=10-5m 2.l 与x 轴的交点为N (-2m,0),所以|MN |=-m +2m2+⎝ ⎛⎭⎪⎫12m 2=54m 2, 所以|BN |2=|BM |2+|MN |2=14|AC |2+|MN |2=52.故B ,N 两点间的距离为定值102.圆锥曲线中的范围、最值问题圆锥曲线中的最值问题大致分为两类:一类是涉及距离、面积的最值以及与之相关的一些问题;二类是求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题.【例3】 平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b2=1(a >b >0)右焦点的直线x +y -3=0交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值. [解] (1)设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,y 2-y 1x 2-x 1=-1, 由此可得b 2x 2+x 1a 2y 2+y 1=-y 2-y 1x 2-x 1=1.因为x 1+x 2=2x 0,y 1+y 2=2y 0,y 0x 0=12,所以a 2=2b 2.又由题意知,M 的右焦点为(3,0),故a 2-b 2=3. 因此a 2=6,b 2=3. 所以M 的方程为x 26+y 23=1.(2)由⎩⎪⎨⎪⎧x +y -3=0,x 26+y 23=1,解得⎩⎪⎨⎪⎧x =433,y =-33或⎩⎨⎧x =0,y = 3.因此|AB |=463.由题意可设直线CD 的方程为y =x +n -533<n <3,设C (x 3,y 3),D (x 4,y 4).由⎩⎪⎨⎪⎧y =x +n ,x 26+y23=1得3x 2+4nx +2n 2-6=0.于是x 3,4=-2n ±29-n 23.因为直线CD 的斜率为1,所以|CD |=2|x 4-x 3|=439-n 2.由已知,四边形ACBD 的面积S =12|CD |·|AB |=869 9-n 2,当n =0时,S 取得最大值,最大值为863.所以四边形ACBD 面积的最大值为863.[规律方法] 圆锥曲线中的最值问题解决方法一般分两种:一种是代数法,从代数的角度考虑,通过建立函数、不等式等模型,利用二次函数法和基本不等式法、换元法、导数法等方法求最值;二种是几何法,从圆锥曲线的几何性质的角度考虑,根据圆锥曲线几何意义求最值.如图所示,已知直线l :y =kx -2与抛物线C :x 2=-2py (p >0)交于A ,B 两点,O 为坐标原点,OA →+OB →=(-4,-12).(1)求直线l 和抛物线C 的方程;(2)抛物线上一动点P 从A 到B 运动时,求△ABP 面积的最大值.[解] (1)由⎩⎪⎨⎪⎧y =kx -2,x 2=-2py ,得x 2+2pkx -4p =0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4.因为OA →+OB →=(x 1+x 2,y 1+y 2)=(-2pk ,-2pk 2-4)=(-4,-12),所以⎩⎪⎨⎪⎧-2pk =-4,-2pk 2-4=-12,解得⎩⎪⎨⎪⎧p =1,k =2.所以直线l 的方程为y =2x -2,抛物线C 的方程为x 2=-2y .(2)设P (x 0,y 0),依题意,知抛物线过点P 的切线与l 平行时,△ABP 的面积最大, 又y ′=-x ,所以-x 0=2,故x 0=-2,y 0=-12x 20=-2,所以P (-2,-2).此时点P 到直线l 的距离d =|2×-2--2-2|22+-12=45=455. 由⎩⎪⎨⎪⎧y =2x -2,x 2=-2y ,得x 2+4x -4=0,故x 1+x 2=-4,x 1x 2=-4,所以|AB |=1+k2×x 1+x 22-4x 1x 2=1+22×-42-4×-4=410.所以△ABP 面积的最大值为410×4552=8 2.圆锥曲线中的证明与探索性问题圆锥曲线中的证明问题是高考的常考热点,其命题切入点较多,既可以考查位置关系,也可以与定点、定值、存在性问题综合命题,有时也涉及一些否定质命题,证明时一般常用直接法或反证法.难度一般较大.【例4】 (本小题满分12分)(2018·全国卷Ⅰ)设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠OMA =∠OMB .[信息提取] 看到求直线方程,想到利用先求斜率再利用点斜式求直线方程; 看到证明两角相等,想到利用两直线的斜率之和为0可证明两角相等. [规范解答] (1)由已知得F (1,0),l 的方程为x =1. 1分 由已知可得,点A 的坐标为⎝ ⎛⎭⎪⎫1,22或⎝ ⎛⎭⎪⎫1,-22. 2分又M (2,0),所以AM 的方程为y =-22x +2或y =22x - 2.3分(2)证明:当l 与x 轴重合时,∠OMA =∠OMB =0°. 4分当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以∠OMA =∠OMB . 5分当l 与x 轴不重合也不垂直时,设l 的方程为y =k (x -1)(k ≠0),A (x 1,y 1),B (x 2,y 2),6分则x 1<2,x 2<2,直线MA ,MB 的斜率之和为k MA +k MB =y 1x 1-2+y 2x 2-2. 7分由y 1=kx 1-k ,y 2=kx 2-k 得k MA +k MB =2kx 1x 2-3k x 1+x 2+4kx 1-2x 2-2.8分将y =k (x -1)代入x 22+y 2=1得(2k 2+1)x 2-4k 2x +2k 2-2=0. 所以x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1.9分则2kx 1x 2-3k (x 1+x 2)+4k =4k 3-4k -12k 3+8k 3+4k2k 2+1=0. 11分 从而k MA +k MB =0,故MA ,MB 的倾斜角互补.所以∠OMA =∠OMB . 综上,∠OMA =∠OMB .12分[易错与防范] 解答本题(2)时易漏掉对特殊情况的讨论,即直线与x 轴重合及直线与x 轴垂直,想当然认为斜率一定存在而致错,解答此类问题时应特别注意直线斜率存在与否.[通性通法] 圆锥曲线中的证明问题多涉及证明定值、点在定直线上等,有时也涉及一些否定性命题,证明方法一般是采用直接法或反证法.在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N两点.(1)当k =0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由. [解] (1)由题设可得M (2a ,a ),N (-2a ,a ),或M (-2a ,a ),N (2a ,a ). 又y ′=x 2,故y =x 24在x =2a 处的导数值为a ,所以C 在点(2a ,a )处的切线方程为y-a =a (x -2a ),即ax -y -a =0.y =x 24在x =-2a 处的导数值为-a ,C 在点(-2a ,a )处的切线方程为y -a =-a (x+2a ),即ax +y +a =0.故所求切线方程为ax -y -a =0和ax +y +a =0. (2)存在符合题意的点.证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为k 1,k 2. 将y =kx +a 代入C 的方程,得x 2-4kx -4a =0. 故x 1+x 2=4k ,x 1x 2=-4a . 从而k 1+k 2=y 1-b x 1+y 2-bx 2=2kx 1x 2+a -b x 1+x 2x 1x 2=k a +ba. 当b =-a 时,有k 1+k 2=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM =∠OPN ,所以点P (0,-a )符合题意.[大题增分专训]1.(2019·衡水联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点(-2,1),离心率为22,直线l :kx -y +2=0与椭圆C 交于A ,B 两点.(1)求椭圆C 的标准方程;(2)是否存在实数k ,使得|OA →+OB →|=|OA →-OB →|(其中O 为坐标原点)成立?若存在,求出实数k 的值;若不存在,请说明理由.[解] (1)依题意,得⎩⎪⎨⎪⎧2a 2+1b2=1,c a =22,a 2=b 2+c 2,解得a 2=4,b 2=2,c 2=2,故椭圆C 的标准方程为x 24+y 22=1.(2)假设存在符合条件的实数k .依题意,联立方程⎩⎪⎨⎪⎧y =kx +2,x 2+2y 2=4,消去y 并整理,得(1+2k 2)x 2+8kx +4=0. 则Δ=64k 2-16(1+2k 2)>0,即k >22或k <-22.(*) 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8k 1+2k 2,x 1x 2=41+2k2. 由|OA →+OB →|=|OA →-OB →|,得OA →·OB →=0,∴x 1x 2+y 1y 2=0,即x 1x 2+(kx 1+2)(kx 2+2)=0,即(1+k 2)x 1x 2+2k (x 1+x 2)+4=0. ∴41+k 21+2k 2-16k 21+2k 2+4=0,即8-4k21+2k2=0,∴k 2=2,即k =±2,满足(*)式.故存在实数k =±2,使得|OA →+OB →|=|OA →-OB →|成立.2.(2018·全国卷Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0).(1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+FA →+FB →=0.证明:2|FP →|=|FA →|+|FB →|. [证明] (1)设A (x 1,y 1),B (x 2,y 2),则x 214+y 213=1,x 224+y 223=1.两式相减,并由y 1-y 2x 1-x 2=k 得x 1+x 24+y 1+y 23·k =0. 由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m.由题设得0<m <32,故k <-12.(2)由题意得F (1,0).设P (x 3,y 3),则(x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0).由(1)及题设得x 3=3-(x 1+x 2)=1,y 3=-(y 1+y 2)=-2m <0.又点P 在C 上,所以m =34,从而P 1,-32,|FP →|=32. 于是|FA →|=x 1-12+y 21=x 1-12+31-x 214=2-x 12.同理|FB →|=2-x 22. 所以|FA →|+|FB →|=4-12(x 1+x 2)=3. 故2|FP →|=|FA →|+|FB →|.3.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为F 2(1,0),且该椭圆过定点M ⎝⎛⎭⎪⎫1,22. (1)求椭圆E 的标准方程;(2)设点Q (2,0),过点F 2作直线l 与椭圆E 交于A ,B 两点,且F 2A →=λF 2B →,λ∈[-2,-1],以QA ,QB 为邻边作平行四边形QACB ,求对角线QC 长度的最小值.[解] (1)由题易知c =1,1a 2+12b2=1, 又a 2=b 2+c 2,解得b 2=1,a 2=2,故椭圆E 的标准方程为x 22+y 2=1. (2)设直线l :x =ky +1,由⎩⎪⎨⎪⎧ x =ky +1,x 22+y 2=1 得(k 2+2)y 2+2ky -1=0,Δ=4k 2+4(k 2+2)=8(k 2+1)>0.设A (x 1,y 1),B (x 2,y 2),则可得y 1+y 2=-2k k 2+2,y 1y 2=-1k 2+2. QC →=QA →+QB →=(x 1+x 2-4,y 1+y 2)=-4k 2+1k 2+2,-2k k 2+2,∴|QC →|2=|QA →+QB →|2=16-28k 2+2+8k 2+22,由此可知,|QC →|2的大小与k 2的取值有关.由F 2A →=λF 2B →可得y 1=λy 2,λ=y 1y 2,1λ=y 2y 1(y 1y 2≠0).从而λ+1λ=y 1y 2+y 2y 1=y 1+y 22-2y 1y 2y 1y 2=-6k 2-4k 2+2, 由λ∈[-2,-1]得⎝ ⎛⎭⎪⎫λ+1λ∈⎣⎢⎡⎦⎥⎤-52,-2, 从而-52≤-6k 2-4k 2+2≤-2,解得0≤k 2≤27. 令t =1k 2+2,则t ∈⎣⎢⎡⎦⎥⎤716,12, ∴|QC →|2=8t 2-28t +16=8⎝ ⎛⎭⎪⎫t -742-172,∴当t =12时,|QC →|min =2.。

2020届高三数学一轮复习导学案教师讲义第10章第3讲 几何概型

2020届高三数学一轮复习导学案教师讲义第10章第3讲 几何概型

第3讲 几何概型[学生用书P182]1.几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的概率公式P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)判断正误(正确的打“√”,错误的打“×”) (1)在一个正方形区域内任取一点的概率是零.( )(2)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.( )(3)在几何概型定义中的区域可以是线段、平面图形、立体图形.( ) (4)随机模拟方法是以事件发生的频率估计概率.( ) (5)与面积有关的几何概型的概率与几何图形的形状有关.( ) 答案:(1)√ (2)√ (3)√ (4)√ (5)×(教材习题改编)如图,转盘的指针落在A 区域的概率为( ) A .16 B.19 C .112 D .118答案:C(教材习题改编)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )解析:选A .如题干选项中图,各种情况的概率都是其面积比,中奖的概率依次为P (A )=38,P (B )=28,P (C )=26,P (D )=13,所以P (A )>P (C )=P (D )>P (B ).(教材习题改编)一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒,则某人到达路口时看见的是红灯的概率是( )A .15 B.25 C .35D .45解析:选B .P =3030+5+40=25,故选B .(教材习题改编)如图,在一边长为2的正方形ABCD 内有一曲线L 围成的不规则图形.往正方形内随机撒一把豆子(共m 颗).落在曲线L 围成的区域内的豆子有n 颗(n <m ),则L 围成的区域面积(阴影部分)为( )A .2n m B.4n m C .n 2mD .n 4m解析:选B .S 阴影S 正方形=落在L 围成的区域的豆子数n落在正方形中的豆子数m ,所以S 阴影=n m ×22=4nm.与长度、角度有关的几何概型 [学生用书P182][典例引领](1)(2016·高考全国卷Ⅰ)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A .13 B.12 C .23D .34(2)在区间⎣⎡⎦⎤-π2,π2上随机取一个数x ,则cos x 的值介于0到12之间的概率为________. (3)如图所示,在△ABC 中,∠B =60°,∠C =45°,高AD =3,在∠BAC 内作射线AM 交BC 于点M ,则BM <1的概率为________.【解析】 (1)由题意得图:由图得等车时间不超过10分钟的概率为12.(2)当-π2≤x ≤π2时,由0≤cos x ≤12,得-π2≤x ≤-π3或π3≤x ≤π2,根据几何概型概率公式得所求概率为13.(3)因为∠B =60°,∠C =45°, 所以∠BAC =75°.在Rt △ABD 中,AD =3,∠B =60°, 所以BD =ADtan 60°=1,∠BAD =30°.记事件N 为“在∠BAC 内作射线AM 交BC 于点M ,使BM <1”,则可得∠BAM <∠BAD 时事件N 发生.由几何概型的概率公式,得: P (N )=30°75°=25.【答案】 (1)B (2)13 (3)251.在本例(2)中,若将“cos x 的值介于0到12”改为“cos x 的值介于0到32”,则概率如何?解:当-π2≤x ≤π2时,由0≤cos x ≤32, 得-π2≤x ≤-π6或π6≤x ≤π2,根据几何概型概率公式得所求概率为23.2.在本例(3)中,若将“在∠BAC 内作射线AM 交BC 于点M ”改为“在线段BC 上找一点M ”,则BM <1的概率是多少?解:依题意知BC =BD +DC =1+3,P (BM <1)=11+3=3-12.与长度、角度有关的几何概型的求法解答关于长度、角度的几何概型问题,只要将所有基本事件及事件A 包含的基本事件转化为相应长度或角度,即可利用几何概型的概率计算公式求解.要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度或角度).[通关练习]1.(2017·高考江苏卷)记函数f (x )=6+x -x 2的定义域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是________.解析:由6+x -x 2≥0,解得-2≤x ≤3,则D =[-2,3],则所求概率为3-(-2)5-(-4)=59. 答案:592.如图所示,在直角坐标系内,射线OT 落在30°角的终边上,任作一条射线OA ,则射线OA 落在∠yOT 内的概率为________.解析:如题图,因为射线OA 在坐标系内是等可能分布的,则OA 落在∠yOT 内的概率为60°360°=16. 答案:16与面积有关的几何概型(高频考点) [学生用书P183]与面积有关的几何概型是高考命题的热点,多以选择题或填空题的形式呈现,多为容易题或中档题.主要命题角度有:(1)与平面图形面积有关的几何概型; (2)与线性规划交汇命题的几何概型.[典例引领]角度一 与平面图形面积有关的几何概型(1)(2017·高考全国卷Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A .14 B.π8 C .12D .π4(2)(2016·高考全国卷Ⅱ)从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( )A .4n m B.2n m C .4m nD .2m n(3)一只受伤的丹顶鹤在如图所示(直角梯形)的草原上空飞过,其中AD =2,DC =2,BC =1,它可能随机落在草原上任何一处(点).若落在扇形沼泽区域ADE 以外丹顶鹤能生还,则该丹顶鹤生还的概率是()A .12-π15 B.1-π10C .1-π6D .1-3π10【解析】 (1)设正方形的边长为2,则正方形的面积为4,正方形内切圆的面积为π,根据对称性可知,黑色部分的面积是正方形内切圆的面积的一半,所以黑色部分的面积为π2.根据几何概型的概率公式,得所求概率P =π24=π8.故选B .(2)设由⎩⎪⎨⎪⎧0≤x n ≤10≤y n ≤1构成的正方形的面积为S ,x 2n +y 2n <1构成的图形的面积为S ′,所以S ′S =14π1=m n ,所以π=4mn,故选C .(3)过点D 作DF ⊥AB 于点F ,在Rt △AFD 中,易知AF =1,∠A =45°.梯形的面积S 1=12×(2+2+1)×1=52,扇形ADE 的面积S 2=12×(2)2×π4=π4,则丹顶鹤生还的概率P =S 1-S 2S 1=52-π452=1-π10,故选B . 【答案】 (1)B (2)C(3)B角度二 与线性规划交汇命题的几何概型(2018·广州综合测试)在平面区域{(x ,y )|0≤x ≤1,1≤y ≤2}内随机投入一点P ,则点P 的坐标(x ,y )满足y ≤2x 的概率为( )A .14 B.12 C .23D .34【解析】 依题意作出图象如图,则P (y ≤2x )=S 阴影S 正方形=12×12×112=14.【答案】A与面积有关的几何概型的求法求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到试验全部结果构成的平面图形,以便求解.[通关练习]1.(2018·石家庄市教学质量检测)如图,圆C 内切于扇形AOB ,∠AOB =π3,若向扇形AOB 内随机投掷600个点,则落入圆内的点的个数估计值为()A .100 B.200 C .400 D .450解析:选C .如图所示,作CD ⊥OA 于点D ,连接OC 并延长交扇形于点E ,设扇形半径为R ,圆C 半径为r ,所以R =r +2r =3r ,所以落入圆内的点的个数估计值为600·πr 216π(3r )2=400.2.在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≤12”的概率,p 2为事件“xy ≤12”的概率,则( )A .p 1<p 2<12B.p 2<12<p 1C .12<p 2<p 1 D .p 1<12<p 2解析:选D .如图,满足条件的x ,y 构成的点(x ,y )在正方形OBCA 内,其面积为1.事件“x +y ≤12”对应的图形为阴影△ODE ,其面积为12×12×12=18,故p 1=18<12,事件“xy ≤12”对应的图形为斜线表示部分,其面积显然大于12,故p 2>12,则p 1<12<p 2,故选D .与体积有关的几何概型 [学生用书P184][典例引领](1)在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为________.(2)在体积为V 的三棱锥S -ABC 的棱AB 上任取一点P ,则三棱锥S -APC 的体积大于V3的概率是________. 【解析】 (1)正方体的体积为2×2×2=8,以O 为球心,1为半径且在正方体内部的半球的体积为12×43πr 3=12×43π×13=23π,则点P 到点O 的距离大于1的概率为1-23π8=1-π12.(2)由题意可知V S -APC V S -ABC >13,三棱锥S -ABC 的高与三棱锥S -APC 的高相同.作PM ⊥AC 于M ,BN ⊥AC 于N ,则PM ,BN 分别为△APC 与△ABC 的高,所以V S -APC V S -ABC =S △APC S △ABC =PM BN >13,又PM BN =AP AB ,所以AP AB >13, 故所求的概率为23(即为长度之比).【答案】 (1)1-π12 (2)23与体积有关的几何概型求法的关键对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.[通关练习]一个多面体的直观图和三视图如图所示,点M 是AB 的中点,一只蝴蝶在几何体ADF -BCE 内自由飞翔,则它飞入几何体F -AMCD 内的概率为()A .34 B.23 C .13D .12解析:选D .由题图可知V F ­AMCD =13×S AMCD ×DF =14a 3,V ADF ­BCE =12a 3,所以它飞入几何体F -AMCD 内的概率为14a 312a 3=12.判断几何概型中的几何度量形式的方法 (1)当题干是双重变量问题时,一般与面积有关系.(2)当题干是单变量问题时,要看变量可以等可能到达的区域;若变量在线段上移动,则几何度量是长度;若变量在平面区域(空间区域)内移动,则几何度量是面积(体积),即一个几何度量的形式取决于该度量可以等可能变化的区域.解决几何概型问题时,有两点容易造成失分 (1)不能正确判断事件是古典概型还是几何概型;(2)利用几何概型的概率公式时,忽视基本事件是否等可能.[学生用书P331(单独成册)]1.在区间[0,2]上随机地取出一个数x ,则事件“-1≤log 12⎝⎛⎭⎫x +12≤1”发生的概率为( )A .34 B.23 C .13D .14解析:选A .不等式-1≤log 12⎝⎛⎭⎫x +12≤1可化为log 122≤log 12⎝⎛⎭⎫x +12≤log 1212,即12≤x +12≤2,解得0≤x ≤32,故由几何概型的概率公式得P =32-02-0=34.2.在长为12 cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32 cm 2的概率为( )A .16 B.13 C .23D .45解析:选C .设AC =x (0<x <12),则CB =12-x ,所以x (12-x )<32,解得0<x <4或8<x <12. 所以P =4+412=23.3.在如图所示的圆形图案中有12片树叶,构成树叶的圆弧均相同且所对的圆心角为π3,若在圆内随机取一点,则此点取自树叶(即图中阴影部分)的概率是( )A .2-33πB.4-63πC .13-32πD .23解析:选B .设圆的半径为r ,根据扇形面积公式和三角形面积公式得阴影部分的面积S =24⎝⎛⎭⎫16πr 2-34r 2=4πr 2-63r 2,圆的面积S ′=πr 2,所以此点取自树叶(即图中阴影部分)的概率为S S ′=4-63π,故选B .4.已知平面区域D ={(x ,y )|-1≤x ≤1,-1≤y ≤1},在区域D 内任取一点,则取到的点位于直线y =kx (k ∈R )下方的概率为( )A .12 B.13 C .23D .34解析:选A .由题设知,区域D 是以原点为中心的正方形,直线y =kx 将其面积平分,如图,所求概率为12.5.如图所示,A 是圆上一定点,在圆上其他位置任取一点A ′,连接AA ′,得到一条弦,则此弦的长度小于或等于半径的概率为( )A .12B.32C .13D .14解析:选C .当AA ′的长度等于半径长度时,∠AOA ′=π3,A ′点在A 点左右都可取得,故由几何概型的概率计算公式得P =2π32π=13,故选C .6.某人随机地在如图所示的正三角形及其外接圆区域内部投针(不包括三角形边界及圆的外界),则针扎到阴影区域(不包括边界)的概率为________.解析:设正三角形的边长为a ,圆的半径为R ,则正三角形的面积为34a 2. 由正弦定理得2R =a sin 60°,即R =33a , 所以圆的面积S =πR 2=13πa 2.由几何概型的概率计算公式得概率P =34a 213πa 2=334π.答案:334π7.如图所示,OA =1,在以O 为圆心,OA 为半径的半圆弧上随机取一点B ,则△AOB 的面积小于14的概率为________.解析:因为OA =1,若△AOB 的面积小于14,则12×1×1×sin ∠AOB <14,所以sin ∠AOB <12,所以0<∠AOB <π6或5π6<∠AOB <π,所以△AOB 的面积小于14的概率为13.答案:138.一只昆虫在边长分别为5,12,13的三角形区域内随机爬行,则其到三角形顶点的距离小于2的概率为________.解析:如图,△ABC 为直角三角形,且BC =5,AC =12.图中阴影部分是三个分别以A ,B ,C 为圆心,2为半径的扇形,所以S 阴=12π×22=2π.所以昆虫到三角形顶点的距离小于2的概率P=S 阴S △ABC =2π12×12×5=π15.答案:π159.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,在正方体内随机取点M . (1)求四棱锥M -ABCD 的体积小于16的概率;(2)求M 落在三棱柱ABC -A 1B 1C 1内的概率.解:(1)正方体ABCD -A 1B 1C 1D 1中,设M -ABCD 的高为h ,令13×S 四边形ABCD ×h =16.因为S 四边形ABCD =1, 所以h =12.若体积小于16,则h <12,即点M 在正方体的下半部分, 所以P =12V正方体V 正方体=12.(2)因为V 三棱柱ABC -A 1B 1C 1=12×12×1=12, 所以所求概率P 1=V 三棱柱ABC -A 1B 1C 1V 正方体=12.10.已知集合A =[-2,2],B =[-1,1],设M ={(x ,y )|x ∈A ,y ∈B },在集合M 内随机取出一个元素(x ,y ).(1)求以(x ,y )为坐标的点落在圆x 2+y 2=1内的概率; (2)求以(x ,y )为坐标的点到直线x +y =0的距离不大于22的概率. 解:(1)集合M 内的点形成的区域面积S =8.因为x 2+y 2=1的面积S 1=π, 故所求概率为P 1=S 1S =π8.(2)由题意|x +y |2≤22,即-1≤x +y ≤1,形成的区域如图中阴影部分所示,面积S 2=4,故所求概率为P 2=S 2S =12.1.已知P 是△ABC 所在平面内一点,PB →+PC →+2P A →=0,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是( )A .14 B.13 C .12D .23解析:选C .如图所示,设点M 是BC 边的中点,因为PB →+PC →+2PA →=0,所以点P 是中线AM 的中点,所以黄豆落在△PBC 内的概率P =S △PBC S △ABC =12,故选C .2.任取实数a 、b ∈[-1,1],则a 、b 满足|a -2b |≤2的概率为( ) A .18 B.14 C .34 D .78解析:选D .建立如图所示的坐标系,因为|a -2b |≤2,所以-2≤a -2b ≤2表示的平面区域为图中阴影部分,所以|a -2b |≤2的概率为S 阴影S 正方形=78.3.在区间⎣⎡⎦⎤-π6,π2上随机取一个数x ,则sin x +cos x ∈[1,2]的概率是( ) A .12 B.34 C .38D .58解析:选B .因为x ∈⎣⎡⎦⎤-π6,π2, 所以x +π4∈⎣⎡⎦⎤π12,3π4, 由sin x +cos x =2sin ⎝⎛⎭⎫x +π4∈[1,2], 得22≤sin ⎝⎛⎭⎫x +π4≤1, 所以x ∈⎣⎡⎦⎤0,π2, 故要求的概率为π2-0π2-⎝⎛⎭⎫-π6=34.4.我国古代数学家赵爽在《周髀算经》一书中给出了勾股定理的绝妙证明.如图是赵爽的弦图.弦图是一个以勾股形(即直角三角形)之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成朱(红)色及黄色,其面积称为朱实、黄实,利用2×勾×股+(股-勾)2=4×朱实+黄实=弦实=弦2,化简得:勾2+股2=弦2.设勾股形中勾股比为1∶3,若向弦图内随机抛掷1 000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )A .866 B.500 C .300D .134解析:选D .设勾为a ,则股为3a ,所以弦为2a ,小正方形的边长为3a -a ,所以题图中大正方形的面积为4a 2,小正方形的面积为(3-1)2a 2,所以小正方形与大正方形的面积比为(3-1)24=1-32,所以落在黄色图形(小正方形)内的图钉数大约为⎝⎛⎭⎫1-32×1000≈134.5.已知袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n 个.若从袋子中随机抽取1个小球,取到标号为2的小球的概率是12.(1)求n 的值;(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a ,第二次取出的小球标号为b .①记“a +b =2”为事件A ,求事件A 的概率;②在区间[0,2]内任取2个实数x ,y ,求事件“x 2+y 2>(a -b )2恒成立”的概率. 解:(1)依题意n n +2=12,得n =2.(2)①记标号为0的小球为s ,标号为1的小球为t ,标号为2的小球为k ,h ,则取出2个小球的可能情况有:(s ,t ),(s ,k ),(s ,h ),(t ,s ),(t ,k ),(t ,h ),(k ,s ),(k ,t ),(k ,h ),(h ,s ),(h ,t ),(h ,k ),共12种,其中满足“a +b =2”的有4种:(s ,k ),(s ,h ),(k ,s ),(h ,s ).所以所求概率为P (A )=412=13.②记“x 2+y 2>(a -b )2恒成立”为事件B ,则事件B 等价于“x 2+y 2>4恒成立”,(x ,y )可以看成平面中的点的坐标,则全部结果所构成的区域为Ω={(x ,y )|0≤x ≤2,0≤y ≤2,x ,y ∈R },而事件B 构成的区域为B ={(x ,y )|x 2+y 2>4,(x ,y )∈Ω}.所以所求的概率为P (B )=1-π4.6.已知关于x 的二次函数f (x )=b 2x 2-(a +1)x +1.(1)若a ,b 分别表示将一质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求y =f (x )恰有一个零点的概率;(2)若a ,b ∈[1,6],求满足y =f (x )有零点的概率.解:(1)设(a ,b )表示一个基本事件,则抛掷两次骰子的所有基本事件有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),…,(6,5),(6,6),共36个.用A 表示事件“y =f (x )恰有一个零点”,即Δ=[-(a +1)]2-4b 2=0,则a +1=2b .则A 包含的基本事件有(1,1),(3,2),(5,3),共3个,所以P (A )=336=112.即事件“y =f (x )恰有一个零点”的概率为112.(2)用B 表示事件“y =f (x )有零点”,即a +1≥2b .试验的全部结果所构成的区域为{(a ,b )|1≤a ≤6,1≤b ≤6}, 构成事件B 的区域为{(a ,b )|1≤a ≤6,1≤b ≤6,a -2b +1≥0}, 如图所示:所以所求的概率为P (B )=12×5×525×5=14.即事件“y =f (x )有零点”的概率为14.。

2020届高考数学一轮复习讲义(提高版) 专题6.3 几何概型(解析版)

2020届高考数学一轮复习讲义(提高版) 专题6.3 几何概型(解析版)

6.3 几何概型1.几何概型设D 是一个可度量的区域(例如线段、平面图形、立体图形等),每个基本事件可以视为从区域D 内随机地取一点,区域D 内的每一点被取到的机会都一样;随机事件A 的发生可以视为恰好取到区域D 内的某个指定区域d 中的点.这时,事件A 发生的概率与d 的测度(长度、面积、体积等)成正比,与d 的形状和位置无关.我们把满足这样条件的概率模型称为几何概型. 2.几何概型的概率计算公式一般地,在几何区域D 中随机地取一点,记事件“该点落在其内部一个区域d 内”为事件A ,则事件A 发生的概率P (A )=d 的测度D 的测度.3.要切实理解并掌握几何概型试验的两个基本特点 (1)无限性:在一次试验中,可能出现的结果有无限多个; (2)等可能性:每个结果的发生具有等可能性. 4.随机模拟方法(1)使用计算机或者其他方式进行的模拟试验,以便通过这个试验求出随机事件的概率的近似值的方法就是模拟方法.(2)用计算器或计算机模拟试验的方法为随机模拟方法.这个方法的基本步骤是①用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;②统计代表某意义的随机数的个数M 和总的随机数个数N ;③计算频率f n (A )=M N作为所求概率的近似值.考向一 长度【例1】某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是________. 【答案】12【解析】如图所示,画出时间轴.小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或DB 上时,才能保证他等车的时间不超过10分钟,根据几何概型,得所求概率P =10+1040=12.【举一反三】1.在区间[0,5]上随机地选择一个数p ,则方程x 2+2px +3p -2=0有两个负根的概率为________. 【答案】 23【解析】 方程x 2+2px +3p -2=0有两个负根,则有⎩⎪⎨⎪⎧Δ≥0,x 1+x 2<0,x 1x 2>0,即⎩⎪⎨⎪⎧4p 2-4(3p -2)≥0,-2p <0,3p -2>0,解得p ≥2或23<p ≤1,又p ∈[0,5],则所求概率为P =3+135=1035=23.2.在区间[0,2]上随机地取一个数x ,则事件“-1≤121log ()2x +≤1”发生的概率为_______.【答案】 34【解析】 由-1≤121log ()2x +≤1,得12≤x +12≤2,得0≤x ≤32.由几何概型的概率计算公式,得所求概率P =32-02-0=34.考向二 面积【例2】(1)一只蚂蚁在边长分别为6,8,10的△ABC 区域内随机爬行,则其恰在到顶点A 或顶点B 或顶点C 的距离小于1的地方的概率为________.(2)设不等式组⎩⎪⎨⎪⎧y ≤x ,y ≥-x ,2x -y -4≤0所表示的平面区域为M ,x 2+y 2≤1所表示的平面区域为N ,现随机向区域M 内抛一粒豆子,则豆子落在区域N 内的概率为________.【答案】(1)π48 (2)3π64【解析】(1)蚂蚁活动的范围是在三角形的内部,三角形的边长为6,8,10,是直角三角形,∴面积为12×6×8=24,而“恰在离三个顶点距离都小于1”正好是一个半径为1的半圆,面积为12π×12=π2,∴根据几何概型的概率公式可知其到三角形顶点的距离小于1的地方的概率为π224=π48. (2)画出两不等式组表示的平面区域,则图中阴影部分为两不等式组的公共部分,易知A (4,4),B ⎝ ⎛⎭⎪⎫43,-43,OA ⊥OB ,平面区域M 的面积S △AOB =12×423×42=163,阴影部分的面积S =14×π×12=π4.由几何概型的概率计算公式,得P =S S △AOB =π4163=3π64【举一反三】1.已知P 是△ABC 所在平面内一点,PB →+PC →+2PA →=0,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是________. 【答案】 12【解析】 以PB ,PC 为邻边作平行四边形PBDC ,则PB →+PC →=PD →,因为PB →+PC →+2PA →=0,所以PB →+PC →=-2PA →,得PD →=-2PA →,由此可得,P 是△ABC 边BC 上的中线AO 的中点,点P 到BC 的距离等于A 到BC 距离的12,所以S △PBC =12S △ABC ,所以将一粒黄豆随机撒在△ABC 内,黄豆落在△PBC 内的概率为S △PBC S △ABC=12. 2.在区间[1,5]和[2,4]上分别各取一个数,记为m 和n ,则方程x 2m 2+y 2n2=1表示焦点在x 轴上的椭圆的概率是________. 【答案】 12【解析】 ∵方程x 2m 2+y 2n2=1表示焦点在x 轴上的椭圆,∴m >n .如图,由题意知,在矩形ABCD 内任取一点Q (m ,n ),点Q 落在阴影部分的概率即为所求的概率,易知直线m =n 恰好将矩形平分,∴所求的概率为P =12.考向三 体积【例3】(1)在棱长为2的正方体ABCD —A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD —A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为________.(2)如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的底面圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是________.【答案】(1)1-π12 (2)1-π4【解析】(1)记“点P 到点O 的距离大于1”为A ,P (A )=23-12×43π×1323=1-π12.(2)鱼缸底面正方形的面积为22=4,圆锥底面圆的面积为π.所以“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是1-π4.【举一反三】1.如图,在长方体ABCD —A 1B 1C 1D 1中,有一动点在此长方体内随机运动,则此动点在三棱锥A —A 1BD 内的概率为______.【答案】 16【解析】 因为1A A BD V -=1A ABD V -=13AA 1×S △ABD =16×AA 1×S 矩形ABCD =16V 长方体,故所求概率为1A A BD V V-长方体=16.考向四 角度【例4】如图,四边形ABCD 为矩形,AB =3,BC =1,在∠DAB 内任作射线AP ,则射线AP 与线段BC 有公共点的概率为________.【答案 13【解析】 因为在∠DAB 内任作射线AP ,所以它的所有等可能事件所在的区域H 是∠DAB ,当射线AP 与线段BC 有公共点时,射线AP 落在∠CAB 内,则区域H 为∠CAB ,所以射线AP 与线段BC 有公共点的概率为∠CAB∠DAB =30°90°=13. 【举一反三】1.在Rt △ABC 中,∠A =30°,过直角顶点C 作射线CM 交线段AB 于点M ,则AM >AC 的概率为________. 【答案】 16【解析】 设事件D 为“作射线CM ,使AM >AC ”.在AB 上取点C ′使AC ′=AC , 因为△ACC ′是等腰三角形,所以∠ACC ′=180°-30°2=75°,事件D 发生的区域μD =90°-75°=15°,构成事件总的区域μΩ=90°,所以P (D )=μD μΩ=15°90°=16.1.如图所示的长方形内,两个半圆均以长方形的一边为直径且与对边相切,在长方形内随机取一点,则此点取自阴影部分的概率是( )A B .32π-C .34π-D .3π【答案】C【解析】如下图所示:设长方形的长为4,宽为2,则120AOB ∠=o∴阴影部分的面积2118221323S ππ⎛⎫=⨯⨯-⨯=- ⎪⎝⎭∴所求概率为:83423p ππ-==⨯本题正确选项:C2.最近各大城市美食街火爆热开,某美食店特定在2017年元旦期间举行特大优惠活动,凡消费达到88元以上者,可获得一次抽奖机会.已知抽奖工具是一个圆面转盘,被分为6个扇形块,分别记为1,2,3,4,5,6,其面积成公比为3的等比数列(即扇形块2是扇形块1面积的3倍),指针箭头指在最小的1区域内时,就中“一等奖”,则一次抽奖抽中一等奖的概率是( )A .140B .1121C .1364D .11093【答案】C 【解析】由题意,可设1,2,3,4,5,6 扇形区域的面积分别为,3,9,27,81,243x x x x x x ,则由几何概型得,消费88 元以上者抽中一等奖的概率1392781243364x P x x x x x x ==+++++ ,故选C.3.已知在椭圆方程22221x y a b+=中,参数,a b 都通过随机程序在区间()0,t 上随机选取,其中0t >,则椭圆的离心率在2⎛⎫⎪ ⎪⎝⎭之内的概率为( )。

2020版高考数学新增分大一轮新高考(鲁京津琼)专用精练:第6讲 几何概型 Word版含解析

2020版高考数学新增分大一轮新高考(鲁京津琼)专用精练:第6讲 几何概型 Word版含解析

第6讲 几何概型一、选择题1.在区间[-2,3]上随机选取一个数x ,即x ≤1,故所求的概率为( ) A.45B.35C.25D.15解析 在区间[-2,3]上随机选取一个数x ,且x ≤1,即-2≤x ≤1,故所求的概率为P =35. 答案 B2.如图所示,半径为3的圆中有一封闭曲线围成的阴影区域,在圆中随机扔一粒豆子,它落在阴影区域内的概率是13,则阴影部分的面积是( ) A.π3B.πC.2πD.3π解析 设阴影部分的面积为S ,且圆的面积S ′=π·32=9π.由几何概型的概率,得S S ′=13,则S =3π. 答案 D3.(2015·山东卷)在区间[0,2]上随机地取一个数x ,则事件“-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1”发生的概率为( ) A.34B.23C.13D.14解析 由-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1,得12≤x +12≤2, 解得0≤x ≤32,所以事件“-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1”发生的概率为322=34,故选A.答案 A4.(2017·东北师大附中检测)若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是( )A.π2B.π4C.π6D.π8解析 设质点落在以AB 为直径的半圆内为事件A ,则P (A )=阴影面积长方形面积=12π×121×2=π4. 答案 B5.在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1 内随机取一点P ,则点P 到点O 的距离大于1的概率为( ) A.π12B.1-π12C.π6D.1-π6解析 设“点P 到点O 的距离大于1”为事件A .则事件A 发生时,点P 位于以点O 为球心,以1为半径的半球的外部. ∴V 正方体=23=8,V 半球=43π·13×12=23π.∴P (A )=23-23π23=1-π12.答案 B6.已知△ABC 中,∠ABC =60°,AB =2,BC =6,在BC 上任取一点D ,则使△ABD 为钝角三角形的概率为( ) A.16B.13C.12D.23解析 如图,当BE =1时,∠AEB 为直角,则点D 在线段BE (不包含B ,E 点)上时,△ABD 为钝角三角形;当BF =4时,∠BAF 为直角,则点D 在线段CF (不包含C ,F 点)上时,△ABD 为钝角三角形.所以△ABD 为钝角三角形的概率为1+26=12. 答案 C7.设不等式组⎩⎨⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ) A.π4B.π-22C.π6D.4-π4解析 如图所示,正方形OABC 及其内部为不等式组表示的区域D ,且区域D 的面积为4,而阴影部分表示的是区域D 内到原点距离大于2的区域,易知该阴影部分的面积为4-π,因此满足条件的概率是4-π4.故选D. 答案 D8.(2017·华师附中联考)在区间[0,4]上随机取两个实数x ,y ,使得x +2y ≤8的概率为( ) A.14B.316C.916D.34解析 由x ,y ∈[0,4]知(x ,y )构成的区域是边长为4的正方形及其内部,其中满足x +2y ≤8的区域为如图所示的阴影部分.易知A (4,2),S 正方形=16,S 阴影=(2+4)×42=12.故“使得x +2y ≤8”的概率P =S 阴影S 正方形=34.答案 D9.已知正三棱锥S -ABC 的底面边长为4,高为3,在正三棱锥内任取一点P ,使得V P -ABC <12V S -ABC 的概率是( ) A.78B.34C.12D.14解析 当点P 到底面ABC 的距离小于32时, V P -ABC <12V S -ABC .由几何概型知,所求概率为P =1-⎝ ⎛⎭⎪⎫123=78.答案 A10.设复数z =(x -1)+y i(x ,y ∈R ),若|z |≤1,则y ≥x 的概率为( ) A.34+12πB.12+1πC.12-1πD.14-12π解析 因为复数z =(x -1)+y i(x ,y ∈R )且|z |≤1,所以|z |=(x -1)2+y 2≤1,即(x -1)2+y 2≤1,即点(x ,y )在以(1,0)为圆心、1为半径的圆及其内部,而y ≥x表示直线y =x 左上方的部分(图中阴影弓形),所以所求概率为弓形的面积与圆的面积之比,即P =14·π·12-12×1×1π·12=14-12π.答案 D 二、填空题11.在区间[-2,4]上随机地取一个数x ,若x 满足|x |≤m 的概率为56,则m =________.解析 由|x |≤m ,得-m ≤x ≤m .当m ≤2时,由题意得2m 6=56,解得m =2.5,矛盾,舍去.当2<m <4时,由题意得m -(-2)6=56,解得m =3.答案 312.如图,在长方体ABCD -A 1B 1C 1D 1中,有一动点在此长方体内随机运动,则此动点在三棱锥A -A 1BD 内的概率为________.解析 因为VA -A 1BD =VA 1-ABD =13AA 1×S △ABD =16×AA 1×S 矩形ABCD =16V 长方体,故所求概率为VA -A 1BD V 长方体=16. 答案 1613.(2016·山东卷)在[-1,1]上随机地取一个数k ,则事件“直线y =kx 与圆(x -5)2+y 2=9相交”发生的概率为________.解析 直线y =kx 与圆(x -5)2+y 2=9相交的充要条件是圆心(5,0)到直线y =kx 的距离小于3. 则|5k -0|k 2+1<3,解之得-34<k <34,故所求事件的概率P =34-⎝ ⎛⎭⎪⎫-341-(-1)=34.答案 3414.(2017·唐山模拟)如图,将半径为1的圆分成相等的四段弧,再将四段弧围成星形放在圆内(阴影部分).现在往圆内任投一点,此点落在星形区域内的概率为________.解析 顺次连接星形的四个顶点,则星形区域的面积等于(2)2-4⎝ ⎛⎭⎪⎫14×π×12-12×12=4-π,又因为圆的面积等于π×12=π,因此所求的概率等于4-ππ=4π-1.答案4π-115.在区间[-1,4]内取一个数x,则2x-x2≥14的概率是()A.12 B.13 C.25 D.35解析由2x-x2≥14,得-1≤x≤2.又-1≤x≤4.∴所求事件的概率P=2-(-1)4-(-1)=35.答案 D16.如图,“天宫一号”运行的轨迹是如图的两个类同心圆,小圆的半径为2 km,大圆的半径为4 km,卫星P在圆环内无规则地自由运动,运行过程中,则点P与点O的距离小于3 km的概率为()A.112 B.512 C.13 D.15解析根据几何概型公式,小于3 km的圆环面积为π(32-22)=5π;圆环总面积为π(42-22)=12π,所以点P与点O的距离小于3 km的概率为P(A)=5π12π=512.答案 B17.已知平面区域D={(x,y)|-1≤x≤1,-1≤y≤1},在区域D内任取一点,则取到的点位于直线y=kx(k∈R)下方的概率为()A.12 B.13 C.23 D.34解析由题设知,区域D是以原点为中心的正方形,根据图形的对称性知,直线y=kx将其面积平分,如图,故所求概率为12.答案 A18.(2017·长春质检)在区间[0,π]上随机取一个实数x ,使得sin x ∈⎣⎢⎡⎦⎥⎤0,12的概率为( ) A.1πB.2πC.13D.23解析 由0≤sin x ≤12,且x ∈[0,π], 解之得x ∈⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎦⎥⎤56π,π.故所求事件的概率P =⎝ ⎛⎭⎪⎫π-56π+⎝ ⎛⎭⎪⎫π6-0π-0=13.答案 C19.(2017·成都诊断)如图,大正方形的面积是34,四个全等直角三角形围成一个小正方形,直角三角形的较短边长为3,向大正方形内抛撒一枚幸运小花朵,则小花朵落在小正方形内的概率为( ) A.117B.217C.317D.417解析 ∵大正方形的面积是34,∴大正方形的边长是34,由直角三角形的较短边长为3,得四个全等直角三角形的直角边分别是5和3,则小正方形边长为2,面积为4,∴小花朵落在小正方形内的概率为P =434=217. 答案 B20.有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为( ) A.23B.13C.89D.π4解析V 圆柱=2π,V 半球=12×43π×13=23π,V 半球V 圆柱=13,故点P 到O 的距离大于1的概率为23. 答案 A21.(2015·湖北卷)在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≤12”的概率,p 2为事件“xy ≤12”的概率,则( ) A.p 1<p 2<12 B.p 2<12<p 1 C.12<p 2<p 1D.p 1<12<p 2解析 (x ,y )构成的区域是边长为1的正方形及其内部,其中满足x +y ≤12的区域如图1中阴影部分所示,所以p 1=12×12×121×1=18,满足xy ≤12的区域如图2中阴影部分所示,所以p 2=S 1+S 21×1=12+S 21>12,所以p 1<12<p 2,故选D.答案 D22.在区间[-π,π]内随机取出两个数分别记为a ,b ,则函数f (x )=x 2+2ax -b 2+π2有零点的概率为( )A.1-π8B.1-π4C.1-π2D.1-3π4解析 由函数f (x )=x 2+2ax -b 2+π2有零点,可得Δ=(2a 2)-4(-b 2+π2)≥0,整理得a 2+b 2≥π2,如图所示,(a ,b )可看成坐标平面上的点,试验的全部结果构成的区域为Ω={(a ,b )|-π≤a ≤π,-π≤b ≤π},其面积S Ω=(2π)2=4π2. 事件A 表示函数f (x )有零点,所构成的区域为M ={(a ,b )|a 2+b 2≥π2},即图中阴影部分,其面积为S M =4π2-π3,故P (A )=S M S Ω=4π2-π34π2=1-π4. 答案 B23.(2017·安徽江南名校联考)AB 是半径为1的圆的直径,M 为直径AB 上任意一点,过点M 作垂直于直径AB 的弦,则弦长大于3的概率是________. 解析 依题意知,当相应的弦长大于3时,圆心到弦的距离小于12-⎝ ⎛⎭⎪⎫322=12,因此相应的点M 应位于线段AB 上与圆心的距离小于12的地方,所求的概率等于12. 答案 1224.一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为________.解析 由已知条件,可知蜜蜂只能在一个棱长为1的小正方体内飞行,结合几何概型,可得蜜蜂“安全飞行”的概率为P =1333=127.答案 12725.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为________.解析 ∵去看电影的概率P 1=π×12-π×(12)2π×12=34,去打篮球的概率P 2=π×(14)2π×12=116, ∴不在家看书的概率为P =34+116=1316. 答案 131626.随机地向半圆0<y <2ax -x 2(a 为正常数)内掷一点,点落在圆内任何区域的概率与区域的面积成正比,则原点与该点的连线与x 轴的夹角小于π4的概率为________. 解析 由0<y <2ax -x 2(a >0).得(x -a )2+y 2<a 2. 因此半圆域如图所示.设A 表示事件“原点与该点的连线与x 轴的夹角小于π4”,由几何概型的概率计算公式得P (A )=A 的面积半圆的面积=14πa 2+12a 212πa2=12+1π.答案 12+1π。

2020高考数学复习纲要(附例题与解析)

2020高考数学复习纲要(附例题与解析)
二零二零高考数学复习纲要 ( 附例题与解析 共557页)
内容要点: 每个章节内容包括:高考知识点、知识点解读、备考策略、知识整合、命题方向、规律 总结、答题示例。各要点内容都附有例题与解析。 第一部分 专题强化突破 专题一 集合、逻辑用语、向量、复数、算法、 推理与证明、不等式及线性规划 第一讲 集合与常用逻辑用语 第二讲 向量运算与复数运算、算法、推理与证明 第三讲 不等式及线性规划 专题二 函数与导数 第一讲 函数的图象与性质 第二讲 函数与方程及函数的应用 第三讲 导数的简单应用(文理) +定积分(理) 第四讲 导数的综合应用 专题二 规范答题示例 专题三 三角函数及解三角形 第一讲 三角函数的图象与性质 第二讲 三角恒等变换与解三角形 专题三 规范答题示例 专题四 数 列 第一讲 等差数列、等比数列 第二讲 数列求和及综合应用 专题四 规范答题示例 专题五 立 体 几 何 第一讲 空间几何体的三视图、表面积及体积 第二讲 点、直线、平面之间的位置关系 第三讲 用空间向量的方法解立体几何问题(理) 专题五 规范答题示例 专题六 解析几何 第一讲 直线与圆 第二讲 圆锥曲线的概念与性质、与弦有关的计算问题 第三讲 定点、定值、存在性问题 专题六 规范答题示例 专题七 概率与统计 第一讲 统计与统计案例 第二讲 概率及其应用(文) 第二讲 计数原理与二项式定理(理) 第三讲 概率、随机变量及其分布列(理) 专题七 规范答题示例 专题八 选修系列 4 第一讲 坐标系与参数方程 第二讲 不等式选讲
易混易错的概念、性质相结合考查 2.利用充要性求参数值或取值范围 备考策略 本部分内容在备考时应注意以下几个方面: (1)紧紧抓住集合的代表元素的实际意义,掌握集合问题的常见解法,活用数学思想解决 问题. (2)明确命题的条件和结论之间的关系,关注逻辑联结词和命题,明确命题的否定和否命 题的区别. (3)掌握必要条件、充分条件与充要条件的概念及应用. 预测 2019 年命题热点为: (1)集合的基本性质以及集合之间的基本关系与运算,与不等式的解集、函数的定义域、 值域、方程的解集等知识结合在一起考查. (2)与函数、数列、三角函数、不等式、立体几何、解析几何、概率统计等知识结合在一 起考查.

2020高考数学理科大一轮复习导学案《几何概型》

2020高考数学理科大一轮复习导学案《几何概型》

第六节几何概型知识点一几何概型1.定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.2.几何概型的特点(1)无限性:试验中所有可能出现的结果(基本事件)有无限多个.(2)等可能性:每个基本事件出现的可能性相等.1.判断正误(1)几何概型中,每一个基本事件都是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.(√)(2)在几何概型定义中的区域可以是线段、平面图形或空间几何体.(√)(3)与面积有关的几何概型的概率与几何图形的形状有关.(×)(4)几何概型与古典概型中的基本事件发生的可能性都是相等的,其基本事件个数都有限.(×)解析:(1)正确.根据几何概型的概念可知正确.(2)正确.几何概型中的测度可为长度、面积、体积、角度等. (3)错误.与面积有关的几何概型的概率只与几何图形的面积有关,而与几何图形的形状无关.(4)错误.几何概型与古典概型中的基本事件发生的可能性都是相等的,但古典概型的基本事件有有限个,而几何概型的基本事件有无限个. 知识点二 几何概型的概率公式P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).2.(2019·安徽质量检测)某单位试行上班刷卡制度,规定每天8:30上班,有15分钟的有效刷卡时间(即8:15~8:30),一名职工在7:50到8:30之间到达单位且到达单位的时刻是随机的,则他能有效刷卡上班的概率是( D )A.23B.58C.13D.38解析:该职工在7:50到8:30之间到达单位且到达单位的时刻是随机的,设其构成的区域为线段AB ,且AB =40,职工的有效刷卡时间是8:15到8:30之间,设其构成的区域为线段CB ,且CB =15,如图,所以该职工有效刷卡上班的概率P =1540=38,故选D.3.(2019·重庆六校联考)《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆径几何.”其大意:“已知直角三角形两直角边长分别为8步和15步,问其内切圆的直径为多少步.”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是( D )A.3π10B.3π20 C .1-3π10 D .1-3π20解析:如图,直角三角形的斜边长为82+152=17,设其内切圆的半径为r ,则8-r +15-r =17,解得r =3,∴内切圆的面积为πr 2=9π,∴豆子落在内切圆外的概率P =1-9π12×8×15=1-3π20.选D.4.在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1内随机取一点P ,则点P 与点O 的距离大于1的概率为1-π12.解析:如图,在正方体ABCD -A 1B 1C 1D 1中,与点O 的距离等于1的点的轨迹是一个半球面,其体积V 1=12×43π×13=2π3.事件“点P 与点O 的距离大于1的概率”对应的区域体积为23-2π3.根据几何概型概率公式,得点P 与点O 的距离大于1的概率P =23-2π323=1-π12.1.几何概型的基本事件的个数是无限的,古典概型中基本事件的个数是有限的,前者概率的计算与基本事件的区域长度(面积或体积)的大小有关,而与形状和位置无关.2.几何概型中,线段的端点、图形的边框是否包含在事件之内不影响所求结果.考向一 与长度、角度有关的几何概型【例1】 (1)(2018·贵阳市监测考试)某公交车站每隔10分钟有一辆公交车到站,乘客到达该车站的时刻是任意的,则一个乘客候车时间大于等于7分钟的概率为( )A.15B.710C.12D.310(2)如图,四边形ABCD 为矩形,AB =3,BC =1,以点A 为圆心,1为半径作弧,交线段AB 于点E ,在DE 上任取一点P ,则射线AP 与线段BC 有公共点的概率为________.【解析】 (1)由几何概型的概率计算公式可知所求概率P =10-710=310,故选D.(2)如图,连接AC ,交圆弧DE 于点P ,则tan ∠CAB =13=33,∴∠CAB =30°,∵射线AP 与线段BC 有公共点的条件是射线AP 在∠CAB 内,∴所求概率为30°90°=13.【答案】 (1)D (2)13(1)如果试验的结果构成的区域的几何度量可用长度表示,则把题中所表示的几何模型转化为长度,然后求解.解题的关键是构建事件的区域(长度).(2)当涉及射线的转动、扇形中有关落点区域问题时,应以角度的大小作为区域度量来计算概率,且不可用线段的长度代替,这是两种不同的度量手段.(1)记函数f (x )=6+x -x 2的定义域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是59.(2)如图,A 是圆上固定的一点,在圆上其他位置任取一点A ′,连接AA ′,得到一条弦,它的长度小于或等于半径长的概率为13.解析:(1)由6+x -x 2≥0解得-2≤x ≤3,则D =[-2,3],故所求概率为3-(-2)5-(-4)=59. (2)当AA ′的长度等于半径的长度时,∠AOA ′=π3,由圆的对称性及几何概型得所求概率P =2π32π=13. 考向二 与面积有关的几何概型方向1 与平面几何有关的几何概型【例2】 (2018·全国卷Ⅰ)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则( )A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 3【解析】 解法1:设直角三角形ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,则区域Ⅰ的面积即△ABC 的面积,为S 1=12bc ,区域Ⅱ的面积S 2=12π×(c 2)2+12π×(b 2)2-[π×(a 2)22-12bc ]=18π(c 2+b 2-a 2)+12bc =12bc ,所以S 1=S 2,由几何概型的知识知p 1=p 2,故选A.解法2:不妨设△ABC 为等腰直角三角形,AB =AC =2,则BC =22,所以区域Ⅰ的面积即△ABC 的面积,为S 1=12×2×2=2,区域Ⅱ的面积S 2=π×12-[π×(2)22-2]=2,区域Ⅲ的面积S 3=π×(2)22-2=π-2.根据几何概型的概率计算公式,得p 1=p 2=2π+2,p 3=π-2π+2,所以p 1≠p 3,p 2≠p 3,p 1≠p 2+p 3,故选A.【答案】 A方向2 与线性规划有关的几何概型【例3】 两位同学约定下午5:30~6:00在图书馆见面,且他们在5:30~6:00之间到达的时刻是等可能的,先到的同学须等待,15分钟后还未见面便离开,则两位同学能够见面的概率是( )A.1136B.14C.12D.34【解析】因涉及两人见面时间,故考虑到是几何概型,建立坐标系列出满足条件的式子,计算出最终的概率.因为两人谁也没有讲好确切的时间,故样本点由两个数(甲、乙各自到达的时刻)组成,以5:30作为时间的起点建立如图所示的平面直角坐标系.设甲、乙各在第x 分钟和第y 分钟到达,则样本空间为Ω={(x ,y )|0≤x ≤30,0≤y ≤30},画成图为一正方形,见面的充要条件为|x -y |≤15,即事件A 可以见面所对应的区域是图中的阴影部分,故由几何概型概率公式知所求概率为面积之比,即P (A )=302-152302=34.故选D.【答案】 D方向3 与随机模拟有关的几何概型【例4】 从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( )A.4nm B.2n m C.4m nD.2m n【解析】 设由⎩⎪⎨⎪⎧0≤x n ≤1,0≤y n≤1构成的正方形的面积为S ,x 2n +y 2n <1构成的图形的面积为S ′,所以S ′S =14π1=m n ,所以π=4mn .故选C.【答案】 C求解与面积有关的几何概型的关键点求解与面积有关的几何概型时,关键是弄清某事件对应的面积,以求面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到试验全部结果构成的平面图形,以便求解.1.(方向1)(2019·湖南郴州质量检测)如图是一边长为8的正方形苗圃图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍.若在正方形图案上随机取一点,则该点取自黑色区域的概率为( C )A.π8B.π16 C .1-π8D .1-π16解析:如题图,设黑色小圆的半径为r ,则黑色大圆的半径为2r ,由题意可知,8r =8,即r =1.∴图中黑色区域的面积为:S 1=8×8-π×42+4×π×12+π×22=64-8π,又正方形的面积S =64.∴在正方形图案上随机取一点,则该点取自黑色区域的概率P =S 1S =64-8π64=1-π8.故选C.2.(方向2)设点(a ,b )在不等式组⎩⎪⎨⎪⎧a +b -4≤0,a >0,b >0表示的平面区域内,则函数f (x )=ax 2-2bx +3在区间⎣⎢⎡⎭⎪⎫12,+∞上是增函数的概率为( A )A.13 B.23 C.12D.14解析:作出不等式组对应的平面区域,如图中阴影部分所示.若函数f (x )=ax 2-2bx +3在区间⎣⎢⎡⎭⎪⎫12,+∞上是增函数,则⎩⎨⎧a >0,--2b 2a =b a ≤12,即⎩⎪⎨⎪⎧a >0,a -2b ≥0,可得满足条件的平面区域为△OBC .由⎩⎪⎨⎪⎧a +b -4=0,a -2b =0,得⎩⎪⎨⎪⎧a =83,b =43,即C 83,43,则S △OBC =12×4×43=83,又S △OAB=12×4×4=8,故所求概率P =S △OBC S △OAB =838=13,故选A.3.(方向3)(2019·河南濮阳一模)如图所示的长方形的长为2、宽为1,在长方形内撒一把豆子(豆子大小忽略不计),然后统计知豆子的总数为m 粒,其中落在飞鸟图案中的豆子有n 粒,据此请你估计图中飞鸟图案的面积约为( B )A.n mB.2n mC.m nD.m 2n解析:长方形的面积为2,图中飞鸟图案的面积与长方形的面积之比约为n m ,故图中飞鸟图案的面积约为2nm .故选B. 考向三 体积型几何概型【例5】 一个多面体的直观图和三视图如图所示,点M 是AB 的中点,一只蝴蝶在几何体ADF -BCE 内自由飞翔,则它飞入几何体F -AMCD 内的概率为()A.34B.23C.13D.12【解析】 由题图可知V F -AMCD =13×S AMCD ×DF =14a 3,V ADF -BCE=12a 3,所以它飞入几何体F -AMCD 内的概率为14a 312a 3=12.【答案】 D与体积有关的几何概型求法的关键点对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.如图是某个四面体的三视图,若在该四面体的外接球内任取一点,则点落在四面体内的概率为( C )A.913πB.113πC.913169πD.13169π解析:由三视图可知该立体图形为三棱锥,其底面是一个直角边长为32的等腰直角三角形,高为4,所以该三棱锥的体积为12,又外接球的直径2r 为三棱锥的三个两两垂直的棱为长方体的体对角线,即2r =42+(32)2+(32)2=213,所以球的体积为5213π3,所以点落在四面体内的概率为125213π3=913169π.。

文档:20届高考数学一轮复习讲义(提高版) 专题8

文档:20届高考数学一轮复习讲义(提高版) 专题8

8.1 线性规划一.二元一次不等式(组)表示的平面区域二.线性规划中的基本概念最优解必定是可行解,但可行解不一定是最优解.最优解有时唯一,有时有多个.三.可行域的判断方法1.直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线;特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.2.利用“同号上,异号下”判断二元一次不等式表示的平面区域:对于Ax+By+C>0或Ax+By+C<0,则有①当B(Ax+By+C)>0时,区域为直线Ax+By+C=0的上方;②当B(Ax+By+C)<0时,区域为直线Ax+By+C=0的下方.考向一截距型【例1】已知变量x,y满足约束条件{x+y−1≤03x−y+1≥0x−y−1≤0,则z=2x+y的最大值为__________.【举一反三】1.若变量x,y 满足约束条件{x ≤1x +y ≥03x −2y +5≥0 ,z =2x −y ,则z 的最小值为_______.2.已知实数x,y 满足{2x +3y −6≥0x −y +2≤0x ≤4,则z =x −3y +2的最大值为_______.考向二 斜率型【例2】(1)已知不等式组⎩⎪⎨⎪⎧2x -y -2≥0,3x +y -8≤0,x +2y -1≥0,则z =yx +1的最大值与最小值的比值为 。

(2)已知实数x ,y 满足{x −2y −4≤0y +1≥0y −lnx ≤0,则z =x+y+1x 的最大值是 。

(3)在平面直角坐标系中,不等式组⎩⎪⎨⎪⎧x +y ≤0,x -y ≤0,x 2+y 2≤r 2(r 为常数)表示的平面区域的面积为π,若x ,y 满足上述约束条件,则z =x +y +1x +3的最小值为 。

【举一反三】1.已知变量x ,y 满足{x −2y +4≥0x ≤2x +y −2≥0,则y+1x+2的取值范围是( )A. [14,1] B. [14,32] C. (−∞,14]∪[1,+∞) D. [1,32]2.已知(x ,y )满足⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1,则k =yx +1的最大值为________.考向三 距离型【例3】(1)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≥0,x -2y +6≥0,x ≤2,则z =(x -1)2+y 2的最大值为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.3 几何概型1.几何概型设D 是一个可度量的区域(例如线段、平面图形、立体图形等),每个基本事件可以视为从区域D 内随机地取一点,区域D 内的每一点被取到的机会都一样;随机事件A 的发生可以视为恰好取到区域D 内的某个指定区域d 中的点.这时,事件A 发生的概率与d 的测度(长度、面积、体积等)成正比,与d 的形状和位置无关.我们把满足这样条件的概率模型称为几何概型. 2.几何概型的概率计算公式一般地,在几何区域D 中随机地取一点,记事件“该点落在其内部一个区域d 内”为事件A ,则事件A 发生的概率P (A )=d 的测度D 的测度.3.要切实理解并掌握几何概型试验的两个基本特点 (1)无限性:在一次试验中,可能出现的结果有无限多个; (2)等可能性:每个结果的发生具有等可能性. 4.随机模拟方法(1)使用计算机或者其他方式进行的模拟试验,以便通过这个试验求出随机事件的概率的近似值的方法就是模拟方法.(2)用计算器或计算机模拟试验的方法为随机模拟方法.这个方法的基本步骤是①用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;②统计代表某意义的随机数的个数M 和总的随机数个数N ;③计算频率f n (A )=M N作为所求概率的近似值.考向一 长度【例1】某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是________. 【答案】12【解析】如图所示,画出时间轴.小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或DB 上时,才能保证他等车的时间不超过10分钟,根据几何概型,得所求概率P =10+1040=12.【举一反三】1.在区间[0,5]上随机地选择一个数p ,则方程x 2+2px +3p -2=0有两个负根的概率为________. 【答案】 23【解析】 方程x 2+2px +3p -2=0有两个负根,则有⎩⎪⎨⎪⎧Δ≥0,x 1+x 2<0,x 1x 2>0,即⎩⎪⎨⎪⎧4p 2-4(3p -2)≥0,-2p <0,3p -2>0,解得p ≥2或23<p ≤1,又p ∈[0,5],则所求概率为P =3+135=1035=23.2.在区间[0,2]上随机地取一个数x ,则事件“-1≤121log ()2x +≤1”发生的概率为_______.【答案】 34【解析】 由-1≤121log ()2x +≤1,得12≤x +12≤2,得0≤x ≤32.由几何概型的概率计算公式,得所求概率P =32-02-0=34.考向二 面积【例2】(1)一只蚂蚁在边长分别为6,8,10的△ABC 区域内随机爬行,则其恰在到顶点A 或顶点B 或顶点C 的距离小于1的地方的概率为________.(2)设不等式组⎩⎪⎨⎪⎧y ≤x ,y ≥-x ,2x -y -4≤0所表示的平面区域为M ,x 2+y 2≤1所表示的平面区域为N ,现随机向区域M 内抛一粒豆子,则豆子落在区域N 内的概率为________.【答案】(1)π48 (2)3π64【解析】(1)蚂蚁活动的范围是在三角形的内部,三角形的边长为6,8,10,是直角三角形,∴面积为12×6×8=24,而“恰在离三个顶点距离都小于1”正好是一个半径为1的半圆,面积为12π×12=π2,∴根据几何概型的概率公式可知其到三角形顶点的距离小于1的地方的概率为π224=π48. (2)画出两不等式组表示的平面区域,则图中阴影部分为两不等式组的公共部分,易知A (4,4),B ⎝ ⎛⎭⎪⎫43,-43,OA ⊥OB ,平面区域M 的面积S △AOB =12×423×42=163,阴影部分的面积S =14×π×12=π4.由几何概型的概率计算公式,得P =S S △AOB =π4163=3π64【举一反三】1.已知P 是△ABC 所在平面内一点,PB →+PC →+2PA →=0,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是________. 【答案】 12【解析】 以PB ,PC 为邻边作平行四边形PBDC ,则PB →+PC →=PD →,因为PB →+PC →+2PA →=0,所以PB →+PC →=-2PA →,得PD →=-2PA →,由此可得,P 是△ABC 边BC 上的中线AO 的中点,点P 到BC 的距离等于A 到BC 距离的12,所以S △PBC =12S △ABC ,所以将一粒黄豆随机撒在△ABC 内,黄豆落在△PBC 内的概率为S △PBC S △ABC=12. 2.在区间[1,5]和[2,4]上分别各取一个数,记为m 和n ,则方程x 2m 2+y 2n2=1表示焦点在x 轴上的椭圆的概率是________. 【答案】 12【解析】 ∵方程x 2m 2+y 2n2=1表示焦点在x 轴上的椭圆,∴m >n .如图,由题意知,在矩形ABCD 内任取一点Q (m ,n ),点Q 落在阴影部分的概率即为所求的概率,易知直线m =n 恰好将矩形平分,∴所求的概率为P =12.考向三 体积【例3】(1)在棱长为2的正方体ABCD —A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD —A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为________.(2)如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的底面圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是________.【答案】(1)1-π12 (2)1-π4【解析】(1)记“点P 到点O 的距离大于1”为A ,P (A )=23-12×43π×1323=1-π12.(2)鱼缸底面正方形的面积为22=4,圆锥底面圆的面积为π.所以“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是1-π4.【举一反三】1.如图,在长方体ABCD —A 1B 1C 1D 1中,有一动点在此长方体内随机运动,则此动点在三棱锥A —A 1BD 内的概率为______.【答案】 16【解析】 因为1A A BD V -=1A ABD V -=13AA 1×S △ABD =16×AA 1×S 矩形ABCD =16V 长方体,故所求概率为1A A BD V V-长方体=16.考向四 角度【例4】如图,四边形ABCD 为矩形,AB =3,BC =1,在∠DAB 内任作射线AP ,则射线AP 与线段BC 有公共点的概率为________.【答案 13【解析】 因为在∠DAB 内任作射线AP ,所以它的所有等可能事件所在的区域H 是∠DAB ,当射线AP 与线段BC 有公共点时,射线AP 落在∠CAB 内,则区域H 为∠CAB ,所以射线AP 与线段BC 有公共点的概率为∠CAB∠DAB =30°90°=13. 【举一反三】1.在Rt △ABC 中,∠A =30°,过直角顶点C 作射线CM 交线段AB 于点M ,则AM >AC 的概率为________. 【答案】 16【解析】 设事件D 为“作射线CM ,使AM >AC ”.在AB 上取点C ′使AC ′=AC , 因为△ACC ′是等腰三角形,所以∠ACC ′=180°-30°2=75°,事件D 发生的区域μD =90°-75°=15°,构成事件总的区域μΩ=90°,所以P (D )=μD μΩ=15°90°=16.1.如图所示的长方形内,两个半圆均以长方形的一边为直径且与对边相切,在长方形内随机取一点,则此点取自阴影部分的概率是( )A B .32π-C .34π-D .3π【答案】C【解析】如下图所示:设长方形的长为4,宽为2,则120AOB ∠=∴阴影部分的面积2118221323S ππ⎛⎫=⨯⨯-⨯=- ⎪⎝⎭∴所求概率为:83423p ππ-==⨯本题正确选项:C2.最近各大城市美食街火爆热开,某美食店特定在2017年元旦期间举行特大优惠活动,凡消费达到88元以上者,可获得一次抽奖机会.已知抽奖工具是一个圆面转盘,被分为6个扇形块,分别记为1,2,3,4,5,6,其面积成公比为3的等比数列(即扇形块2是扇形块1面积的3倍),指针箭头指在最小的1区域内时,就中“一等奖”,则一次抽奖抽中一等奖的概率是( )A .140B .1121C .1364D .11093【答案】C 【解析】由题意,可设1,2,3,4,5,6 扇形区域的面积分别为,3,9,27,81,243x x x x x x ,则由几何概型得,消费88 元以上者抽中一等奖的概率1392781243364x P x x x x x x ==+++++ ,故选C.3.已知在椭圆方程22221x y a b+=中,参数,a b 都通过随机程序在区间()0,t 上随机选取,其中0t >,则椭圆的离心率在⎫⎪⎪⎝⎭之内的概率为( )A .12 B .13 C .14 D .23【答案】A【解析】当a b > 时2223142a b a b a -<<⇒< ,当a b< 时,同理可得2b a <,则由下图可得所求的概率21121222t tP t ⨯⨯== ,故选A.4.在区间[]1,4-上随机选取一个数x ,则1x ≤的概率为( )A .25 B .35 C .15 D .23【答案】A【解析】因为()5,112D d ==--=,所以由几何概型的计算公式可得25d P D ==,应选答案A 。

5.三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用2⨯勾⨯股(+股-勾2)4=⨯朱实+黄实=弦实,化简,得勾2+股2=弦2.设勾股形中勾股比为若向弦图内随机抛掷1000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )A .866B .500C .300D .134 【答案】D【解析】由题意,大正方形的边长为21-,则所求黄色图形内的图钉数大约为21000134⨯≈⎝⎭,故选D.6.1876年4月1日,加菲尔德在《新英格兰教育日志》上发表了勾股定理的一种证明方法,即在如图的直角梯形ABCD 中,利用“两个全等的直角三角形和一个等腰直角三角形的面积之和等于直角梯形面积”,可以简洁明了地推证出勾股定理.1881年加菲尔德就任美国第二十任总统.后来,人们为了纪念他对勾股定理直观、易懂的证明,就把这一证明方法称为“总统证法”.如图,设∠BEC =15°,在梯形ABCD 中随机取一点,则此点取自等腰直角ΔCDE 中(阴影部分)的概率是()A .√32B .34C .23D .√22【答案】C【解析】在直角ΔBCE 中,a =ccos15°,b =csin15°, 则P =S ΔCDES梯形ABCD=12c 212(a+b )2=c 2c 2(cos 15°+sin 15°)2=11+sin30°=23,故选C.7.函数()()22846f x x x x =-++-≤≤,在其定义域内任取一点0x ,使()00f x ≥的概率是( )A .310B .23C .35D .45【答案】C【解析】由题意,知()00f x ≥,即200280x x -++≥,解得{}0024x x -≤≤,所以由长度的几何概型可得概率为4(2)36(4)5P --==--,故选C.8.阳马,中国古代算数中的一种几何形体,是底面长方形,两个三角面与底面垂直的四棱锥体,在阳马P ABCD -中,PC 为阳马P ABCD -中最长的棱,1,2,3AB AD PC ===,若在阳马P ABCD -的外接球内部随机取一点,则该点位阳马内的概率为( )A .127πB .427πC .827πD .49π【答案】C【解析】根据题意,PC 的长等于其外接球的直径,因为PC =,∴3=∴2PA =,又PA ⊥平面ABCD ,所以314431223332P ABCDV V π-⎛⎫=⨯⨯⨯==⨯ ⎪⎝⎭球,, ∴3483274332P ππ==⎛⎫⨯ ⎪⎝⎭. 9.在区间[0,2]π上随机取一个数x ,则事件“1sin 2x ≤”发生的概率为( ) A .13B .12C .23D ..34【答案】C【解析】当[0,2]x π时,由1sin 2x ≤得06x π≤≤或526x ππ≤≤, 因此所求概率为5266123P πππ-=-=.故选C 10.在长为10cm 的线段AB 上任取一点C ,作一矩形,邻边长分別等于线段AC 、CB 的长,则该矩形面积小于216cm 的概率为( )A .23B .34C .25D .13【答案】C【解析】设线段AC 的长为xcm ,则线段CB 长为(10)cm x -,那么矩形面积为(10)16x x -<,2x <或8x >,又010x <<,所以该矩形面积小于216cm 的概率为42105=.故选:C 11.若即时起10分钟内,305路公交车和202路公交车由南往北等可能进入二里半公交站,则这两路公交车进站时间的间隔不超过2分钟的概率为( ) A .0.18 B .0.32C .0.36D .0.64【答案】C【解析】设305路车和202路车的进站时间分别为x 、y ,设所有基本事件为: 010010x y ≤≤⎧⎨≤≤⎩,“进站时间的间隔不超过2分钟”为事件A ,则{(,)|010,010,||2}A x y x y x y =≤≤≤≤-≤,画出不等式表示的区域如图中阴影区域,则10108836S =⨯-⨯=,则36()0.36100A S P A S Ω===.选C .12.如图在圆O 中,AB ,CD 是圆O 互相垂直的两条直径,现分别以OA ,OB ,OC ,OD 为直径作四个圆,在圆O 内随机取一点,则此点取自阴影部分的概率是( )A .1πB .12πC .1142π-D .112π- 【答案】D【解析】设圆O 的半径为2,阴影部分为8个全等的弓形组成,设每个小弓形的面积为S ,则2112111424S ππ-=⋅-⨯⨯=,圆O 的面积为224ππ⋅=,在圆O 内随机取一点,则此点取自阴影部分的概率是P ,则82411442S P ππππ-===-,故本题选D. 13.《九章算术》中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边分别为5步和12步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是( ).A .215πB .320π C .2115π-D .3120π-【答案】C【解析】13=, 设内切圆的半径为r ,则51213r r -+-=,解得2r.所以内切圆的面积为24r ππ=,所以豆子落在内切圆外部的概率42P 111155122ππ=-=-⨯⨯,故选C 。

相关文档
最新文档