20届高考数学一轮复习讲义(提高版) 专题6.3 几何概型(解析版)

20届高考数学一轮复习讲义(提高版) 专题6.3 几何概型(解析版)
20届高考数学一轮复习讲义(提高版) 专题6.3 几何概型(解析版)

6.3 几何概型

1.几何概型

设D 是一个可度量的区域(例如线段、平面图形、立体图形等),每个基本事件可以视为从区域D 内随机地取一点,区域D 内的每一点被取到的机会都一样;随机事件A 的发生可以视为恰好取到区域D 内的某个指定区域d 中的点.这时,事件A 发生的概率与d 的测度(长度、面积、体积等)成正比,与d 的形状和位置无关.我们把满足这样条件的概率模型称为几何概型. 2.几何概型的概率计算公式

一般地,在几何区域D 中随机地取一点,记事件“该点落在其内部一个区域d 内”为事件A ,则事件A 发生的概率P (A )=

d 的测度

D 的测度

.

3.要切实理解并掌握几何概型试验的两个基本特点 (1)无限性:在一次试验中,可能出现的结果有无限多个; (2)等可能性:每个结果的发生具有等可能性. 4.随机模拟方法

(1)使用计算机或者其他方式进行的模拟试验,以便通过这个试验求出随机事件的概率的近似值的方法就是模拟方法.

(2)用计算器或计算机模拟试验的方法为随机模拟方法.这个方法的基本步骤是①用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;②统计代表某意义的随机数的个数M 和总的随机数个数N ;③计算频率f n (A )=M N

作为所求概率的近似值.

考向一 长度

【例1】某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且

到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是________. 【答案】1

2

【解析】如图所示,画出时间轴.

小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或DB 上时,才能保证他等车的时间不超过10分钟,根据几何概型,得所求概率P =10+1040=1

2.

【举一反三】

1.在区间[0,5]上随机地选择一个数p ,则方程x 2

+2px +3p -2=0有两个负根的概率为________. 【答案】 2

3

【解析】 方程x 2

+2px +3p -2=0有两个负根,

则有????

?

Δ≥0,x 1+x 2<0,

x 1x 2>0,

即????

?

4p 2

-4(3p -2)≥0,-2p <0,3p -2>0,

解得p ≥2或2

3

则所求概率为P =3+

135=1035=2

3

.

2.在区间[0,2]上随机地取一个数x ,则事件“-1≤12

1

log ()2

x +≤1”发生的概率为_______.

【答案】 3

4

【解析】 由-1≤12

1log ()2

x +≤1,得12≤x +12≤2,得0≤x ≤3

2.

由几何概型的概率计算公式,得所求概率P =3

2-02-0=3

4

.

考向二 面积

【例2】(1)一只蚂蚁在边长分别为6,8,10的△ABC 区域内随机爬行,则其恰在到顶点A 或顶点B 或顶点C 的距离小于1的地方的概率为________.

(2)设不等式组????

?

y ≤x ,y ≥-x ,

2x -y -4≤0

所表示的平面区域为M ,x 2+y 2

≤1所表示的平面区域为N ,现随机向区

域M 内抛一粒豆子,则豆子落在区域N 内的概率为________.

【答案】(1)

π48 (2)3π64

【解析】(1)蚂蚁活动的范围是在三角形的内部,三角形的边长为6,8,10,是直角三角形,

∴面积为12×6×8=24,而“恰在离三个顶点距离都小于1”正好是一个半径为1的半圆,面积为12π×12

π

2,∴根据几何概型的概率公式可知其到三角形顶点的距离小于1的地方的概率为π

224=π48. (2)画出两不等式组表示的平面区域,

则图中阴影部分为两不等式组的公共部分,易知A (4,4),B ? ????4

3,-43,OA ⊥OB ,平面区域M 的面积S △AOB =12×

423×42=163,阴影部分的面积S =14×π×12

=π4.由几何概型的概率计算公式,得P =S S △AOB =π

4163

=3π64

【举一反三】

1.已知P 是△ABC 所在平面内一点,PB →+PC →+2PA →

=0,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是________. 【答案】 1

2

【解析】 以PB ,PC 为邻边作平行四边形PBDC ,则PB →+PC →=PD →,因为PB →+PC →+2PA →

=0,

所以PB →+PC →=-2PA →,得PD →=-2PA →

,由此可得,P 是△ABC 边BC 上的中线AO 的中点,点P 到BC 的距离等

于A 到BC 距离的12,所以S △PBC =1

2

S △ABC ,所以将一粒黄豆随机撒在△ABC 内,黄豆落在△PBC 内的概率为

S △PBC S △ABC

=1

2

. 2.在区间[1,5]和[2,4]上分别各取一个数,记为m 和n ,则方程x 2m 2+y 2

n

2=1表示焦点在x 轴上的椭圆的概率

是________. 【答案】 1

2

【解析】 ∵方程x 2m 2+y 2

n

2=1表示焦点在x 轴上的椭圆,∴m >n .

如图,

由题意知,在矩形ABCD 内任取一点Q (m ,n ),点Q 落在阴影部分的概率即为所求的概率,易知直线m =n 恰好将矩形平分,∴所求的概率为P =1

2.

考向三 体积

【例3】(1)在棱长为2的正方体ABCD —A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD —A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为________.

(2)如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的底面圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是________.

【答案】(1)1-π12 (2)1-π4

【解析】(1)记“点P 到点O 的距离大于1”为A ,P (A )=23-12×43π×1

3

23

=1-π

12

.

(2)鱼缸底面正方形的面积为22

=4,圆锥底面圆的面积为π.所以“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是1-π4.

【举一反三】

1.如图,在长方体ABCD —A 1B 1C 1D 1中,有一动点在此长方体内随机运动,则此动点在三棱锥A —A 1BD 内的概率为______.

【答案】 16

【解析】 因为1A A BD V -=1A ABD V -=13AA 1×S △ABD =16×AA 1×S 矩形ABCD =1

6V 长方体,故所求概率为1A A BD V V

-长方体

=16.

考向四 角度

【例4】如图,四边形ABCD 为矩形,AB =3,BC =1,在∠DAB 内任作射线AP ,则射线AP 与线段BC 有公共点的概率为________.

【答案 1

3

【解析】 因为在∠DAB 内任作射线AP ,所以它的所有等可能事件所在的区域H 是∠DAB ,当射线AP 与线

段BC 有公共点时,射线AP 落在∠CAB 内,则区域H 为∠CAB ,所以射线AP 与线段BC 有公共点的概率为

∠CAB

∠DAB =

30°90°=1

3

. 【举一反三】

1.在Rt △ABC 中,∠A =30°,过直角顶点C 作射线CM 交线段AB 于点M ,则AM >AC 的概率为________. 【答案】 1

6

【解析】 设事件D 为“作射线CM ,使AM >AC ”.

在AB 上取点C ′使AC ′=AC , 因为△ACC ′是等腰三角形,

所以∠ACC ′=180°-30°2

=75°,事件D 发生的区域μD =90°-75°=15°,

构成事件总的区域μΩ=90°,所以P (D )=

μD μΩ=15°90°=16

.

1.如图所示的长方形内,两个半圆均以长方形的一边为直径且与对边相切,在长方形内随机取一点,则此点取自阴影部分的概率是( )

A B .

3

2

π

-

C .

3

4

π

-

D .

3

π

【答案】C

【解析】如下图所示:

设长方形的长为4,宽为2,则120AOB ∠=

阴影部分的面积2118221323S π

π??=??-?=

- ???

所求概率为:83423p π

π-==?本题正确选项:C

2.最近各大城市美食街火爆热开,某美食店特定在2017年元旦期间举行特大优惠活动,凡消费达到88元以上者,可获得一次抽奖机会.已知抽奖工具是一个圆面转盘,被分为6个扇形块,分别记为1,2,3,4,5,6,其面积成公比为3的等比数列(即扇形块2是扇形块1面积的3倍),指针箭头指在最小的1区域内时,就中“一等奖”,则一次抽奖抽中一等奖的概率是( )

A .

1

40

B .

1121

C .

1364

D .

11093

【答案】C 【解析】

由题意,可设1,2,3,4,5,6 扇形区域的面积分别为,3,9,27,81,243x x x x x x ,则由几何概型得,消费88 元以上者抽中一等奖的概率1

392781243364

x P x x x x x x =

=+++++ ,故选C.

3.已知在椭圆方程22

221x y a b

+=中,参数,a b 都通过随机程序在区间()0,t 上随机选取,其中0t >,则椭圆

的离心率在?

????

之内的概率为( )

A .

12 B .13 C .14 D .23

【答案】A

【解析】当a b > 时2223142a b a b a -<

< 时,同理可得2

b a <,则由下图可得所求的概率211

21222

t t

P t ??=

= ,故选A.

4.在区间[]1,4-上随机选取一个数x ,则1x ≤的概率为( )

A .

25 B .35 C .15 D .23

【答案】A

【解析】因为()5,112D d ==--=,所以由几何概型的计算公式可得2

5

d P D =

=,应选答案A 。 5.三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用2?勾?股(+股-勾2

)4=?朱实+黄实=弦实,

化简,得勾2+股2=弦2.

设勾股形中勾股比为若向弦图内随机抛掷1000颗图钉(大小忽略不计),

则落在黄色图形内的图钉数大约为( )

A .866

B .500

C .300

D .134 【答案】

D

【解析】由题意,大正方形的边长为21-,则所求黄色图形内的图钉数大约为

2

1000134?≈??

,故选D.

6.1876年4月1日,加菲尔德在《新英格兰教育日志》上发表了勾股定理的一种证明方法,即在如图的直角梯形ABCD 中,利用“两个全等的直角三角形和一个等腰直角三角形的面积之和等于直角梯形面积”,可以简洁明了地推证出勾股定理.1881年加菲尔德就任美国第二十任总统.后来,人们为了纪念他对勾股定理直观、易懂的证明,就把这一证明方法称为“总统证法”.如图,设∠BEC =15°,在梯形ABCD 中随机取一点,则此点取自等腰直角ΔCDE 中(阴影部分)的概率是()

A .√3

2

B .3

4

C .2

3

D .√2

2

【答案】C

【解析】在直角ΔBCE 中,a =ccos15°,b =csin15°, 则P =S ΔCDE

S

梯形ABCD

=12

c 2

1

2

(a+b )

2

=c 2

c 2(cos 15°+sin 15°)

2

=

11+sin

30°

=2

3,故选C.

7.函数()()2

2846f x x x x =-++-≤≤,在其定义域内任取一点0x ,使()00f x ≥的概率是( )

A .

3

10

B .

23

C .

35

D .

45

【答案】C

【解析】由题意,知()00f x ≥,即2

00280x x -++≥,解得{}

0024x x -≤≤,

所以由长度的几何概型可得概率为4(2)3

6(4)5

P --=

=--,故选C.

8.阳马,中国古代算数中的一种几何形体,是底面长方形,两个三角面与底面垂直的四棱锥体,在阳马P ABCD -中,PC 为阳马P ABCD -中最长的棱,1,2,3AB AD PC ===,若在阳马P ABCD -的外接球内部随机取一点,则该点位阳马内的概率为( )

A .

1

27π

B .

427π

C .

827π

D .

49π

【答案】C

【解析】根据题意,PC 的长等于其外接球的直径,

因为PC =,

∴3=∴2PA =,又PA ⊥平面ABCD ,所以3

14431223332P ABCD

V V π-??

=???==? ???

球,, ∴3

4

83274332P ππ==??

? ???

. 9.在区间[0,2]π上随机取一个数x ,则事件“1

sin 2

x ≤

”发生的概率为( ) A .

13

B .

12

C .

23

D ..

3

4

【答案】C

【解析】当[0,2]x π时,由1sin 2x ≤

得06x π≤≤或

526

x π

π≤≤, 因此所求概率为5266123

P ππ

π-

=-

=.故选C 10.在长为10cm 的线段AB 上任取一点C ,作一矩形,邻边长分別等于线段AC 、CB 的长,则该矩形面积小于216cm 的概率为( )

A .2

3

B .34

C .

25

D .

13

【答案】C

【解析】设线段AC 的长为xcm ,则线段CB 长为(10)cm x -,

那么矩形面积为(10)16x x -<,2x <或8x >,又010x <<,

所以该矩形面积小于2

16cm 的概率为

42

105

=.故选:C 11.若即时起10分钟内,305路公交车和202路公交车由南往北等可能进入二里半公交站,则这两路公交车进站时间的间隔不超过2分钟的概率为( ) A .0.18 B .0.32

C .0.36

D .0.64

【答案】C

【解析】设305路车和202路车的进站时间分别为x 、y ,设所有基本事件为: 010

010x y ≤≤??

≤≤?

,“进站时间

的间隔不超过2分钟”为事件A ,则{(,)|010,010,||2}A x y x y x y =≤≤≤≤-≤,画出不等式表示的区域如图中阴影区域,则10108836S =?-?=,则36

()0.36100

A S P A S Ω=

==.选C .

12.如图在圆O 中,AB ,CD 是圆O 互相垂直的两条直径,现分别以OA ,OB ,OC ,OD 为直径作四个圆,在圆O 内随机取一点,则此点取自阴影部分的概率是( )

A .

B .

12π

C .

11

42π

-

D .

11

- 【答案】D

【解析】设圆O 的半径为2,阴影部分为8个全等的弓形组成,设每个小弓形的面积为S ,则

2112111424

S ππ-=?-??=,圆O 的面积为224ππ?=,在圆O 内随机取一点,则此点取自阴影部分的

概率是P ,则82411442S P ππππ

-===-,故本题选D. 13.《九章算术》中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边分别为5步和12步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是( ).

A .

215

π

B .

320

π C .2115

π-

D .3120

π-

【答案】C

【解析】

13=, 设内切圆的半径为r ,则51213r r -+-=,解得2r

.

所以内切圆的面积为24r ππ=,

所以豆子落在内切圆外部的概率

42P 111

155122

ππ

=-

=-

??,故选C 。

14.勒洛三角形是具有类似圆的“定宽性”的面积最小的曲线,它由德国机械工程专家,机构运动学家勒洛首先发现, 其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形.现在勒洛三角形中随机取一点,则此点取自正三角形内的概率为( )

A

B

C

D

【答案】B

【解析】

如图:设2BC =,以B 为圆心的扇形面积是

2

226

3

ππ?=

ABC ?的面积是1222??=

所以勒洛三角形的面积为3个扇形面积减去2个正三角形面积,即

2323

π

π?-=-

=,故选B.

15.在区间[1,1]-上随机取一个数k ,使直线(3)y k x =+与圆2

2

1x y +=相交的概率为( )

A .

12

B .

13

C .

4

D .

3

【答案】C

【解析】因为圆心(0,0),半径1r =,直线与圆相交,所以

1d =

≤,解得k ≤≤

所以相交的概率

224

P ==

,故选C. 16.如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设

33DF AF ==,若在大等边三角形中随机取一点,则此点取自小等边角形的概率是( )

A .

3

7

B .

7

C .

413

D .

13

【答案】A

【解析】由题,33DF AF ==,可得1AF BD ==,AD=4,且120ADB ?∠=

所以在三角形ADB 中,222

cos 2AD BD AB ADB AD BD

+-∠=? 解得

所以概率为2

93217DF P =

== 故选:A 17.关于圆周率,数学发展史上出现过多很有创意的求法,如著名的蒲丰试验,受其启发,我们也可以通过设计下面的试验来估计π的值,试验步骤如下:①先请高二年级n 名同学每人在小卡片上随机写下一个实数对()(),y 01,01x x y <<<<;②若卡片上的x ,y 能与1构成锐角三角形,则将此卡片上交;③统计上交的卡片数,记为m ;④根据统计数n ,m 估计π的值.那么可以估计π的值约为( )

A .

m n

B .

n m

n

- C .

()

4n m n

- D .

4m

n

【答案】C

【解析】由题意,实数对()(),01,01x y x y <<<<,即面积为1

且卡片上的x ,y 能与1构成锐角三角形,即满足2

2

1x y +>,且0101

x y <

<

-

所以x ,y 能与1构成锐角三角形的概率为:14

π

-

由题,n 张卡片上交m 张,即

4()14m n m n n

ππ-=-?= 故选C 18.如图,矩形ABCD 满足2BC AB =,E 为BC 的中点,其中曲线为过,,A D E 三点的抛物线.随机向矩形内投一点,则该点落在阴影部分的概率为( )

A .

16

B .

13

C .

14

D .

2

4

π-

【答案】A

【解析】以BC 所在的直线为x 轴,以E 为原点建立如图所示的平面直角坐标系,不妨设1,2AB BC ==, 则()()1,01,0B C -,,()()1,11,1A -,D ,过,,A D E 三点抛物线方程为2

y x =,

阴影部分面积为1

2

31

1

1

111

211233

S x dx x

--=??-='-=?,又矩形ABCD 得面积为122ABCD S =?=, 故点落在阴影部分的概率为1

1

326

ABCD

S P S '===

.故选:A

19.如图所示的程序框图,满足2x y +≤的输出有序实数对(),x y 的概率为( )

A .

13

B .

12

C .

23

D .

34

【答案】B

【解析】由题知框图的意义是在x y 2+≤内取点(x,y ),满足3

y x ≤的概率

因为x y 2+=与3

y x =均关于原点中心对称,故概率为

1

2

故选:B 20.剪纸艺术是中国最古老的民间艺术之一,作为一种镂空艺术,它能给人以视觉上的艺术享受.在如图所示的圆形图案中有12个树叶状图形(即图中阴影部分),构成树叶状图形的圆弧均相同.若在圆内随机取一点,则此点取自阴影部分的概率是( )

A

.2π

-

B

.4π

-

C

π

D

π

【答案】B

【解析】设圆的半径为r ,如图所示,

12片树叶是由24个相同的弓形组成,且弓形AmB 的面积为

2222111sin 62364

S r r r r π=

π-??=π-弓形. ∴所求的概率为P=24S S 弓形

圆222

12464r r πππ

??

?

??==- .选:B . 21.如图,将半径为1的圆分成相等的四段弧,再将四段弧围成星形(阴影部分)放在圆内,现在向圆内任投一点,此点落在星形区域内的概率为( )

A .1

-

B .

C .

π

D .

4

-

【答案】D

【解析】如图所示,

2S r ππ==圆,111=811824442COD S S S ππ?????

-?=?-???=- ? ?????

圆空白

所以()==244S S S πππ---=-星形圆空白

故点落在星形区域内的概率为44

1P π

π

π

-=

=

- 故选D.

22.“割圆术”是刘徽最突出的数学成就之一,他在《九章算术注》中提出割圆术,并作为计算圆的周长、面积以及圆周率的基础.刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.1415和3.1416这两个近似数值,这个结果是当时世界上圆周率计算的最精确数据.如图,当分割到圆内

接正六边形时,某同学利用计算机随机模拟法向圆内随机投掷点,计算得出该点落在正六边形内的频率为

0.8269,那么通过该实验计算出来的圆周率近似值为(参考数据:

2.09460.8269

≈)

( )

A .3.1419

B .3.1417

C .3.1415

D .3.1413

【答案】A

【解析】设圆的半径为r ,则圆的面积为2r π

,正六边形的面积为2162r ?

?=,因而所求该

实验的概率为2

220.82692r ππ

==

,则 3.141920.8269π=≈?.故选A

23.在区间[]4,4-上任取一个实数a ,使得方程22

123

x y

a a +=+-表示双曲线的概率为( )

A .

18

B .

14

C .38

D .

58

【答案】D

【解析】若方程22

123

x y a a +=+-表示双曲线,则()()230a a +-<,解得23a -<<.

在区间[]4,4-上任取一个实数a ,当()2,3a ∈-时,题中方程表示双曲线,

由几何概型,可得所求概率为()()325

448

p --=

=--.故选D.

24.P 为圆1C :22

9x y +=上任意一点,Q 为圆2C :2225x y +=上任意一点,PQ 中点组成的区域为M ,

在2C 内部任取一点,则该点落在区域M 上的概率为( )

A .

1325

B .

35

C .

12

25π

D .

35π

【答案】

B

高三数学解析几何专题

专题四 解析几何专题 【命题趋向】解析几何是高中数学的一个重要内容,其核心内容是直线和圆以及圆锥曲线.由于平面向量可以用坐标表示,因此以坐标为桥梁,可以使向量的有关运算与解析几何中的坐标运算产生联系,平面向量的引入为高考中解析几何试题的命制开拓了新的思路,为实现在知识网络交汇处设计试题提供了良好的素材.解析几何问题着重考查解析几何的基本思想,利用代数的方法研究几何问题的基本特点和性质.解析几何试题对运算求解能力有较高的要求.解析几何试题的基本特点是淡化对图形性质的技巧性处理,关注解题方向的选择及计算方法的合理性,适当关注与向量、解三角形、函数等知识的交汇,关注对数形结合、函数与方程、化归与转化、特殊与一般思想的考查,关注对整体处理问题的策略以及待定系数法、换元法等的考查.在高考试卷中该部分一般有1至2道小题有针对性地考查直线与圆、圆锥曲线中的重要知识和方法;一道综合解答题,以圆或圆锥曲线为依托,综合平面向量、解三角形、函数等综合考查解析几何的基础知识、基本方法和基本的数学思想方法在解题中的应用,这道解答题往往是试卷的把关题之一. 【考点透析】解析几何的主要考点是:(1)直线与方程,重点是直线的斜率、直线方程的各种形式、两直线的交点坐标、两点间的距离公式、点到直线的距离公式等;(2)圆与方程,重点是确定圆的几何要素、圆的标准方程与一般方程、直线与圆和圆与圆的位置关系,以及坐标法思想的初步应用;(3)圆锥曲线与方程,重点是椭圆、双曲线、抛物线的定义、标准方程和简单几何性质,圆锥曲线的简单应用,曲线与方程的关系,以及数形结合的思想方法等. 【例题解析】 题型1 直线与方程 例1 (2008高考安徽理8)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( ) A .[ B .( C .[33 D .(33 - 分析:利用圆心到直线的距离不大于其半径布列关于直线的斜率k 的不等式,通过解不等式解决. 解析:C 设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1 x y -+= 有公共点,圆心到直线的距离小于等于半径 1d =≤,得222141,3 k k k ≤+≤,选择C 点评:本题利用直线和圆的位置关系考查运算能力和数形结合的思想意识.高考试卷中一般不单独考查直线与方程,而是把直线与方程与圆、圆锥曲线或其他知识交汇考查. 例2.(2009江苏泰州期末第10题)已知04,k <<直线1:2280l kx y k --+=和直线

高三数学解析几何训练试题(含答案)

高三数学解析几何训练试题(含答案) 2013届高三数学章末综合测试题(15)平面解析几何(1)一、选 择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知圆x2+y2+Dx+Ey =0的圆心在直线x+y=1上,则D与E的关系是( ) A.D+E=2 B.D+E=1 C.D+E=-1 D.D+E=-2[来X k b 1 . c o m 解析 D 依题意得,圆心-D2,-E2在直线x+y=1上,因此有-D2-E2=1,即D+E=-2. 2.以线段AB:x+y-2=0(0≤x≤2)为直径的圆的方程为( ) A.(x+1)2+(y+1)2=2 B.(x-1)2+(y-1)2=2 C.(x+1)2+(y+1)2=8 D.(x-1)2+(y-1)2=8 解析 B 直径的两端点为(0,2),(2,0),∴圆心为(1,1),半径为2,圆的方程为(x-1)2+(y-1)2=2. 3.已知F1、F2是椭圆x24+y2 =1的两个焦点,P为椭圆上一动点,则使|PF1|?|PF2|取最大值的点P为( ) A.(-2,0) B.(0,1) C.(2,0) D.(0,1)和(0,-1) 解析 D 由椭圆定义,|PF1|+|PF2|=2a=4,∴|PF1|?|PF2|≤|PF1|+|PF2|22=4,当且仅当|PF1|=|PF2|,即P(0,-1)或(0,1)时,取“=”. 4.已知椭圆x216 +y225=1的焦点分别是F1、F2,P 是椭圆上一点,若连接F1、F2、P三点恰好能构成直角三角形,则点P到y轴的距离是( ) A.165 B.3 C.163 D.253 解析 A 椭 圆x216+y225=1的焦点分别为F1(0,-3)、F2(0,3),易得 ∠F1PF2<π2,∴∠PF1F2=π2或∠PF2F1=π2,点P到y轴的距离d= |xp|,又|yp|=3,x2p16+y2p25=1,解得|xP|=165,故选A. 5.若曲线y=x2的一条切线l与直线x+4y-8=0垂直,则l的方程为( ) A.4x+y+4=0 B.x-4y-4=0 C.4x-y-12=0 D.4x -y-4=0 解析 D 设切点为(x0,y0),则y′|x=x0=2x0, ∴2x0=4,即x0=2,∴切点为(2,4),方程为y-4=4(x-2),即4x-y-4=0. 6.“m>n>0”是“方程mx2+ny2=1表示焦点在y轴上的椭圆”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件解析 C 方程可化为x21m+ y21n=1,若焦点在y轴上,则1n>1m>0,即m>n>0. 7.设双曲线x2a2-y2b2=1的一条渐近线与抛物线y=x2+1只有一个公共点,则双

2020高考数学专题复习-解析几何专题

《曲线的方程和性质》专题 一、《考试大纲》要求 ⒈直线和圆的方程 (1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式.掌握直线方 程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程. (2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系. (3)了解二元一次不等式表示平面区域. (4)了解线性规划的意义,并会简单的应用. (5)了解解析几何的基本思想,了解坐标法. (6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程. ⒉圆锥曲线方程 (1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程. (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质. (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质. (4)了解圆锥曲线的初步应用. 二、高考试题回放 1.(福建)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直 的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是 ( ) A . 33 B .32 C .2 2 D .23

2.(福建)直线x +2y=0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于 . 3.(福建)如图,P 是抛物线C :y=2 1x 2上一点,直线l 过点P 且与抛物线C 交于另一点Q.(Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程; (Ⅱ)若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求 | || |||||SQ ST SP ST +的取值范围. 4.(湖北)已知点M (6,2)和M 2(1,7).直线y=mx —7与线段M 1M 2的交点M 分有向线段M 1M 2的比为3:2,则m 的值为 ( ) A .2 3 - B .3 2- C .4 1 D .4 5.(湖北)两个圆0124:0222:222221=+--+=-+++y x y x C y x y x C 与的 公切线有且仅有 ( ) A .1条 B .2条 C .3条 D .4条 6.(湖北)直线12:1:22=-+=y x C kx y l 与双曲线的右支交于不同的两 点A 、B. (Ⅰ)求实数k 的取值范围; (Ⅱ)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由. 7.(湖南)如果双曲线112 132 2 =-y x 上一点P 到右焦点的距离为13, 那么 点 P 到右准线 的 距 离 是 ( )

高考数学解析几何专题练习及答案解析版

高考数学解析几何专题练习解析版82页 1.一个顶点的坐标()2,0 ,焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 14132 2=+y x 2.已知双曲线的方程为22 221(0,0)x y a b a b -=>>,过左焦点F 1的直线交 双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3 B .32+ C . 31+ D . 32 3.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点, 且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( ) A .1 B . 2 C .3 D .4 4.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o 5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有 ( ) (A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65, 2(π B .)6 ,2(π C .)611,2(π D .)67,2(π 7.曲线的参数方程为???-=+=1 232 2t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A . 54 B .4 5 C . 254 D .4 25 9. 圆0642 2 =+-+y x y x 的圆心坐标和半径分别为( ) A.)3,2(-、13 B.)3,2(-、13 C.)3,2(--、13 D.)3,2(-、13 10.椭圆 122 2 2=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )

高二数学几何概型知识与常见题型梳理

几何概型知识与常见题型梳理 几何概型和古典概型是随机概率中两类主要模型,是概率考查中的重点,下面就几何概型的知识与常见题型做一梳理,以期能使读者对于这一知识点做到脉络清晰,条理分明。 一 基本知识剖析 1.几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。 2.几何概型的概率公式: P (A )= 积) 的区域长度(面积或体试验的全部结果所构成积) 的区域长度(面积或体构成事件A ; 3.几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等. 4.几何概型与古典概型的比较:一方面,古典概型具有有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事件的区域长度(或面积、体积等)有关,即试验结果具有无限性,是不可数的。这是二者的不同之处;另一方面,古典概型与几何概型的试验结果都具有等可能性,这是二者的共性。 通过以上对于几何概型的基本知识点的梳理,我们不难看出其要核是:要抓住几何概型具有无限性和等可能性两个特点,无限性是指在一次试验中,基本事件的个数可以是无限的,这是区分几何概型与古典概型的关键所在;等可能性是指每一个基本事件发生的可能性是均等的,这是解题的基本前提。因此,用几何概型求解的概率问题和古典概型的基本思路是相同的,同属于“比例法”,即随机事件A 的概率可以用“事件A 包含的基本事件所占的图形的长度、面积(体积)和角度等”与“试验的基本事件所占总长度、面积(体积)和角度等”之比来表示。下面就几何概型常见类型题作一归纳梳理。 二 常见题型梳理 1.长度之比类型 例1. 小赵欲在国庆六十周年之后从某车站乘车外出考察,已知该站发往各站的客车均每小时一班,求小赵等车时间不多于10分钟的概率. 例2 在长为12cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,求这个正方形的面 积介于36cm 2 与81cm 2 之间的概率. 2.面积、体积之比类型 例3. (08江苏高考6).在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随意投一点,则落入E 中的概率为 。

全国高考数学试题汇编——解析几何

7. 2004年全国高考数学试题汇编一一解析几何(一) 1. [2004年全国高考(山东山西河南河北江西安徽) ?理科数学第7题,文科数学第7题] 2 椭圆—? y 2 =1的两个焦点为F i 、F 2,过F i 作垂直于x 轴的直线与椭圆相交,一个交 4 点为P ,则| PF 2 | = ,3 A . 2 2. [2004年全国高考(山东山西河南河北江西安徽) I 的斜率的取值范围是 的轨迹方程为 [2004年全国高考(四川云南吉林黑龙江)? 已知点A (1, 2)、B( 3, 1),则线段AB 的垂直平分线的方程是 A . 4x 2y=5 B . 4x-2y=5 C . x 2y=5 别是O '和A ',则O A "=囂£,其中?= B . .3 ?理科数学第8题,文科数学第8题] 设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点 Q 的直线I 与抛物线有公共点,则直线 3. 1 1 A . [ — 2, 2] B . [—2, 2] C . [-1, 1] D . [ — 4, 4] [2004年全国高考(山东山西河南河北江西安徽) ?理科数学第14题,文科数学第15题] 由动点P 向圆x 2+y 2=1引两条切线PA 、PB , 切点分别为A 、 B ,Z APB=60 ° , 则动点 4. [2004年全国高考(四川云南吉林黑龙江)? 理科数学第4题, 文科数学第 已知圆C 与圆(x -1)2 y 2 =1关于直线 y = -x 对称,则圆 C 的方程为 A . (x 1)2 y 2 =1 B . x 2 - y 2 =1 2 2 C . x (y 1) =1 2亠/ 八2 D . x (y -1) =1 5. 文科数学第8题] 6. [2004年全国高考(四川云南吉林黑龙江)?理科数学第8题] 在坐标平面内,与点A (1,2)距离为1 ,且与点B (3, 1)距离为2 A . 1条 [2004年全国高考 的直线共有 ( D . 4条 已知平面上直线 B . 2条 C . 3条 (四川云南吉林黑龙江)?理科数学第9题] 4 3 l 的方向向量e =(,—),点0(0, 0)和A (1, — 2)在I 上的射影分 5 5

会面问题 利用概率论及MATLAB来求解

会面问题 甲乙两人相约某天9:00-10:00在某地会面商谈生意,双方约定先到者必须等候另一人20分钟,过时如果另一人仍未到则可离去,试求两人能够会面的概率。 1用所学概率论知识建模并求解; 2用Matlab 软件编程模拟实现这个过程,并与理论结果相比较。 解:用所学概率论知识建模并求解 将9点到10点看成是0到60分钟,则甲乙两人到达的时间概率分布可看做是分布,此时不妨设甲到达的时间为t1,乙到达的时间为t2,(0<=t1,t2<=60) 当t1,t2满足|t1-t2|<=20时,两人则可碰面。 下面画出图形便于形象理解。 如图红线与黄线所围中间部分即为两人会面的情况,根据均匀分布的概率分布,可知两人会面概率为S 围/S 总=5/9=0.5556. 用Matlab 软件编程模拟实现这个过程,并与理论结果相比较。 >>syms l; l=0; fori=1:100 a=60*rand(1,2); if (abs(a(1,1)-a(1,2))<=20) l=l+1; end end >>l/100 l 表示两者相遇的次数,经过计算,当实验次数为100次时,会面概率为0.4600; 0102030405060 010 20 30 40 50 60

下面我们增大实验次数, 实验次数为1000时,会面概率为0.5590; 实验次数为10000时,会面概率为0.5525; 实验次数为100000时,会面概率为0.5546; 实验次数为1000000时,会面概率为0.5552; … 从随机实验可以发现,当实验次数越来越大时,随机事件发生的概率就越来越稳定于一个值,而这个值与我们理论计算出来的值是一致的,因此从实验角度证明了概率论概率计算理论的正确性。

高中数学解析几何常考题型整理归纳

高中数学解析几何常考题型整理归纳 题型一 :圆锥曲线的标准方程与几何性质 圆锥曲线的标准方程是高考的必考题型,圆锥曲线的几何性质是高考考查的重点,求离心率、准线、 双曲线的渐近线是常考题型 . 22 【例 1】(1)已知双曲线 a x 2- y b 2=1(a >0,b >0)的一个焦点为 F (2, 0),且双曲线的渐近线与圆 (x - 2)2 +y 2=3 相切,则双曲线的方程为 ( 22 A.x2-y2=1 A. 9 -13= 2 C.x 3-y 2=1 22 (2)若点 M (2,1),点 C 是椭圆 1x 6+y 7 22 (3)已知椭圆 x 2+y 2=1(a >b >0)与抛物线 y 2=2px (p >0)有相同的焦点 F ,P ,Q 是椭圆与抛物线的交点, ab 22 若直线 PQ 经过焦点 F ,则椭圆 a x 2+ y b 2=1(a >b >0)的离心率为 ___ . 答案 (1)D (2)8- 26 (3) 2- 1 22 解析 (1)双曲线 x a 2-y b 2=1 的一个焦点为 F (2,0), 则 a 2+ b 2= 4,① 双曲线的渐近线方程为 y =±b a x , a 由题意得 22b 2= 3,② a 2+b 2 联立①② 解得 b = 3,a =1, 2 所求双曲线的方程为 x 2-y 3 =1,选 D. (2)设点 B 为椭圆的左焦点,点 M (2,1)在椭圆内,那么 |BM|+|AM|+|AC|≥|AB|+|AC|=2a ,所以 |AM| +|AC|≥2a -|BM|,而 a =4,|BM|= (2+3)2+1= 26,所以 (|AM|+ |AC|)最小=8- 26. ) 22 B.x - y =1 B.13- 9 =1 2 D.x 2 -y 3=1 1 的右焦点,点 A 是椭圆的动点,则 |AM|+ |AC|的最小值为

人教版高考数学专题复习:解析几何专题

高考数学专题复习:解析几何专题 【命题趋向】 1.注意考查直线的基本概念,求在不同条件下的直线方程,直线的位置关系,此类题大多都属中、低档题,以选择、填空题的形式出现,每年必考 2.考查直线与二次曲线的普通方程,属低档题,对称问题常以选择题、填空题出现 3.考查圆锥曲线的基础知识和基本方法的题多以选择题和填空题的形式出现,与求轨迹有关、与向量结合、与求最值结合的往往是一个灵活性、综合性较强的大题,属中、高档题, 4.解析几何的才查,分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题. 【考题解析与考点分析】 考点1.求参数的值 求参数的值是高考题中的常见题型之一,其解法为从曲线的性质入手,构造方程解之. 例1.若抛物线22y px =的焦点与椭圆22162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 考查意图: 本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质. 解答过程:椭圆22162 x y +=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =,故选D. 考点2. 求线段的长 求线段的长也是高考题中的常见题型之一,其解法为从曲线的性质入手,找出点的坐标,利用距离公式解之. 例2.已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于 A.3 B.4 C.32 D.42 考查意图: 本题主要考查直线与圆锥曲线的位置关系和距离公式的应用. 解:设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b ?=-+?++-=?+=-?=+?,进而可求出AB 的中点1 1(,)22M b --+,又由11(,)22 M b --+在直线0x y +=上可求出1b =, ∴220x x +-=,由弦长公式可求出AB ==. 故选C 例3.如图,把椭圆2212516x y +=的长轴 AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部 分于1234567 ,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点, 则1234567PF P F P F P F P F P F P F ++++++= ____________. 考查意图: 本题主要考查椭圆的性质和距离公式的灵活应用.

概率论与数理统计§1.3古典概型与几何概型.

§ 13古典概型与几何概型 13.1 古典概型 1.定义 ⑴试验的样本空间只包含有限个元素; (2)试验中每个基本事件发主的可能性相同具有以上两个特点的邂称为等可能概型或古典概型.

2.古典概型中事件概率的计算公式 设试验£的样本空间由《个样本点构成,A 为E 的任意一个事件,且包含&个样本点,则事件M发生的概率为: 厶4所包含样本点的个数 '■ n■样本空间中样本点总数? 称此为概率的古典定义. 例1将一枚硬币抛掷三次(1)设事件合为“恰有一次出现正面”,求P(4J?(2)设事件%为“至少有一次出 P(A,). Q 现正 解(1)设H为出现正面M为出现反面电多则S = [HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}. 而A 严{HTT,THT,TTH}?得PG4J = 3 8? (2) A 2 = {HHH, HHr, HTH, THH, HTT, THT‘TTH }?因此P(/4 2)= 7 8. 见尸11例7

说明: 对于比较简单的试验,可以直接写出样本空间和审件,然后数出各自所含样本点的个数即可. 对于较复杂的试验,-般不再将样本空间中的元素——列出,而只需利用排列.组合及乘法原理、加法原理的知识分别求出样本空间中与与事件中包含的基本事件的个数,再由公式即可求出的概率. [#列.fe令基机公式 排列.姐合基本公式 乘法公式:设完成一件事需分两步, 第一步有心种方法,第二步有兀2种方法, 则完成这件事共有心心种方法

加法公式:设完成一件事可有两种途径,第一种途径有心种方法,第二种途径有宛2种方法,则完成这件事共有勺+Z/2种方法? 共有汹种排列方式. 有重复排列: 抽取次, 后放 回, 从含有畀个元素的集合中随机每次 取一个,记录其结果将记录结果排 成一列,

高考数学分类汇编 解析几何

2011高考数学分类汇编-解析几何 1、(湖北文)将两个顶点在抛物线()022>=p px y 上,另一个顶点是此抛物线焦点的正三角形的个数记为n ,则( ) A. 0=n B. 1=n C. 2=n D. 3≥n 2、(江西理) 若曲线1C :0222=-+x y x 与曲线2C :0)(=--m mx y y 有4个不同的交点,则实数m 的取值范围是( ) A. )3 3 ,33(- B. )33,0()0,33(Y - C. ]33,33[- D. ),3 3()33,(+∞--∞Y 3、(江西理)若椭圆12222=+b y a x 的焦点在x 轴上,过点)21 ,1(作圆122=+y x 的 切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭 圆方程是 . 4、(湖南文)在直角坐标系xOy 中,曲线1C 的参数方程为 2cos (x y α αα =??? =??为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线2C 的方程为 (cos sin )10,ρθθ-+=则1C 与2C 的交点个数为 . 5、(湖南理)在直角坐标系xoy 中,曲线C 1的参数方程为cos ,1sin x y αα=??=+?(α为参 数)在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线2C 的方程为()cos sin 10ρθθ-+=,则1C 与2C 的交点个数为 。 6、(湖南文)已知圆22:12,C x y +=直线:4325.l x y += (1)圆C 的圆心到直线l 的距离为 . (2) 圆C 上任意一点A 到直线l 的距离小于2的概率为 . 7、(江苏)设集合},,)2(2 |),{(222R y x m y x m y x A ∈≤+-≤=, },,122|),{(R y x m y x m y x B ∈+≤+≤=, 若,φ≠?B A 则实数m 的取值范围___.

高考数学复习点拨:约会型几何概型问题

高考数学复习总结归纳点拨 1 谈“约会型”概率问题的求解 由两个量决定的概率问题,求解时通过坐标系,借助于纵、横两轴产生公共区域的面积,结合面积产生问题的结论,我们称此类问题为“约会型”概率问题;“约会型”概率问题的求解,关键在于合理、恰当引入变量,再将具体问题“数学化”,透过数学模型,产生结论。请看以下几例: 例1、甲、乙两人约定在晚上7时到8时之间在公园门口会面,并约定先到者应等候另一个人一刻钟,这时即可离去,那么两人见面的概率是多少? 解:以x 轴和y 轴分别表示甲、乙两人到达约会地点的时间,那么两人能见面的充要条件是15||≤-y x ,如图 由于),(y x 的所有可能结果是边长为60的正方形,可能会 面的时间由图中阴影部分所表示,记“两人能见面”为事件A 因此,两人见面的概率167604560)(2 22=-=A P 点评:显然,“以x 轴和y 轴分别表示甲、乙两人到达约会地点的时间”很关键,由这一句,将一个实际问题引入了数学之门,进一步分析会发现:要见面y x ,必须满足15||≤-y x ,于是,结论也就顺其自然的产生了。 例2、A 、B 两列火车都要在同一车站的同一停车位停车10分钟,假设它们在下午一时与下午二时随机到达,求这两列火车必须等待的概率; 解:以x 轴和y 轴分别表示A 、B 两列火车到达的时间 两列火车必须等待,则10||≤-y x ,如图 由于),(y x 的所有可能结果是边长为60的正方形,可能 等待的时间由图中阴影部分所表示,记“两列火车必须等待” 为事件A 因此,这两列火车必须等待的概率是361160 5060)(222=-=A P 点评:本题与例1相同,“火车必须等待”,那么它们的到达时间差必须不大于10分钟,于是,将A 、B 两列火车到达车站的时间分别用y x ,表示,结论很快产生。 例3、小明每天早上在六点半至七点半之间离开家去学校上学,小强每天早上六点到七点之间到达小明家,约小明一同前往学校,问小强能见到小明的概率是多少? 解:如图,方形区域内任何一点的横坐标表示小强的到达时间,纵坐标表示小明离开家的时间,由于区域内任意一点的出现是等可能的,因此,符合几何概型的条件;由题意,只要点落在阴影部分内,就表示小强能见到小明,即事件A 发生,

公开课几何概型教案

几何概型 一、教学目标: 1、知识与技能: (1)正确理解几何概型的概念; (2)掌握几何概型的概率公式: (3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型; 2、过程与方法: (1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力; ' (2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。 3、情感态度与价值观: 本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯。 二、重点与难点: 1、几何概型的概念、公式及应用; 2、几何概率模型中基本事件的确定,几何“度量”的选择;将实际问题转化为几何概型. 三、教学过程 复习回顾 、 同学们,咱们前面学习了古典概型,现在回顾一下古典概型的特点及求概率的公式 特点:(1)试验中所有可能出现的基本事件只有有限个(有限性); (2)每个基本事件出现的可能性相等(等可能性). (一)问题引入 (1)若x的取值是区间[1,4]中的整数,任取一个x的值,求“取得值不小于2”的概率。 (古典概型) ~ (2)若x的取值是区间[1,4]中的实数,任取一个x的值,求“取得值不小于2”的概率。 (几何概型) 自主探究 试验1、取一根长度为3米的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不小于1米的概率有多大 试验2、取一个长为2a的正方形及其内切圆,随机向正方形内丢一粒豆子,那么豆子落入圆内的概率有多大 试验3、一只蜜蜂在一个棱长为60cm的正方体笼子里飞,那么蜜蜂距笼边大

于10cm的概率有多大 . 试验1试验2试验3提炼概括 一个基本 事件… 取到线段AB上 某一点 豆子落在正方形(2a ×2a)内某一点 取正方体笼子内某 一点 在对应的整个图形上取一点 (随机地) 所有基本 事件形成的集合线段AB(除两端 外) 正方形(2 4a)面 正方体笼子(棱长 60)体积 《 对应的所有点形成一个可度 量的区域D 随机事件 A对应的集合线段CD内切圆(2a π)面 正方体笼子内小正 方体(棱长40)体 积 区域D内的某个指定区域d 随机事件A发生的 概率?() P A= 圆的面积 正方形的面积 2 2 44 a a ππ == 3 3 408 () 6027 P A()A P A 构成事件的区域 全部结果构成的区域 1、几何概型的概念: ] 如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型. 古典概型几何概型 所有的试验结果有限个(n个)无限个 ` 每个试验结果的发生 等可能等可能 概率的计算P(A)=m/n 3、几何概型的概率计算公式:

几何概型的五类重要题型

剖析几何概型的五类重要题型 解决几何概型问题首先要明确几何概型的定义,掌握几何概型中事件A 的概率计算公 式:积等) 的区域长度(面积或体试验的全部结果所构成积等)的区域长度(面积或体构成事件)(A A P = .其次要学会构造随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率. 1.几何概型的两个特征: (1)试验结果有无限多; (2)每个结果的出现是等可能的. 事件A 可以理解为区域Ω的某一子区域,事件A 的概率只与区域A 的度量(长度、面积或体积)成正比,而与A 的位置和形状无关. 2..解决几何概型的求概率问题 关键是要构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率. 3.用几何概型解简单试验问题的方法 (1)适当选择观察角度,把问题转化为几何概型求解. (2)把基本事件转化为与之对应的总体区域D. (3)把随机事件A 转化为与之对应的子区域d. (4)利用几何概型概率公式计算. 4.均匀随机数 在一定范围内随机产生的数,其中每一个数产生的机会是一样的,通过模拟一些试验,可以代替我们进行大量的重复试验,从而求得几何概型的概率.一般地.利用计算机或计算器的rand ()函数可以产生0~1之间的均匀随机数.a ~b 之间的均匀随机数的产生:利用计算机或计算器产生0~1之间的均匀随机数x= rand( ),然后利用伸缩和平移变换x= rand( )*(b-a)+a,就可以产生[a ,b]上的均匀随机数,试验的结果是产生a ~b 之间的任何一个实数,每一个实数都是等可能的. 5.均匀随机数的应用 (1)用随机模拟法估计几何概率; (2)用随机模拟法计算不规则图形的面积. 下面举几个常见的几何概型问题. 一.与长度有关的几何概型 例1 如图,A,B 两盏路灯之间长度是30米,由于光线较暗,想在其间再随意安装两盏路灯C,D,问A 与C,B 与D 之间的距离都不小于10米的概率是多少? 思路点拨 从每一个位置安装都是一个基本事件,基本事件有无限多个,但在每一处安装的可能性相等,故是几何概型. 解 记 E :“A 与C,B 与D 之间的距离都不小于10米”,把AB 三等分,由于中间长度为30× 31=10米, ∴3 13010)(==E P . 方法技巧 我们将每个事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型就可以用几何概型来求解. 二.与面积有关的几何概型 例2 如图,射箭比赛的箭靶涂有五个彩色的分环.从外向内依次为白色、黑色、蓝色、红色,靶心为金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm,靶心直径为12.2 cm.运动员在70 m 外射箭.假设运动员射的箭都能中靶,且射中靶面内任一点都是等可能的,那么射中黄心的概率为多少? 思路点拨 此为几何概型,只与面积有关.

2020高考数学(理)专项复习《解析几何》含答案解析

解析几何 平面解析几何主要介绍用代数知识研究平面几何的方法.为此,我们要关注:将几何问题代数化,用代数语言描述几何要素及其关系,将几何问题转化为代数问题,处理代数问题,分析代数结果的几何含义,最终解决几何问题. 在此之中,要不断地体会数形结合、函数与方程及分类讨论等数学思想与方法.要善于应用初中平面几何、高中三角函数和平面向量等知识来解决直线、圆和圆锥曲线的综合问题. §8-1 直角坐标系 【知识要点】 1.数轴上的基本公式 设数轴的原点为O ,A ,B 为数轴上任意两点,OB =x 2,OA =x 1,称x 2-x 1叫做向量AB 的坐标或数量,即数量AB =x 2-x 1;数轴上两点A ,B 的距离公式是 d (A ,B )=|AB |=|x 2-x 1|. 2.平面直角坐标系中的基本公式 设A ,B 为直角坐标平面上任意两点,A (x 1,y 1),B (x 2,y 2),则A ,B 两点之间的距离公式是.)()(||),.(212212y y x x AB B A d -+-== A , B 两点的中点M (x ,y )的坐标公式是?+=+=2 ,22121y y y x x x 3.空间直角坐标系 在空间直角坐标系O -xyz 中,若A (x 1,y 1,z 1),B (x 2,y 2,z 2),A ,B 两点之间的距离公式是 .)()()(||),(212212212z z y y x x AB B A d -+-+-== 【复习要求】 1.掌握两点间的距离公式,中点坐标公式;会建立平面直角坐标系,用坐标法(也称为解析法)解决简单的几何问题. 2.了解空间直角坐标系,会用空间直角坐标系刻画点的位置,并掌握两点间的距离公式. 【例题分析】 例1 解下列方程或不等式: (1)|x -3|=1;(2)|x -3|≤4;(3)1<|x -3|≤4. 略解:(1)设直线坐标系上点A ,B 的坐标分别为x ,3, 则|x -3|=1表示点A 到点B 的距离等于1,如图8-1-1所示, 图8-1-1 所以,原方程的解为x =4或x =2. (2)与(1)类似,如图8-1-2,

高考数学专题训练解析几何

解析几何(4) 23.(本大题满分18分,第1小题满分4分,第二小题满分6分,第3小题满分8分) 已知平面上的线段l 及点P ,任取l 上一点Q ,线段PQ 长度的最小值称为点P 到线段 l 的距离,记作(,)d P l (1)求点(1,1)P 到线段:30(35)l x y x --=≤≤的距离(,)d P l ; (2)设l 是长为2的线段,求点的集合{(,)1}D P d P l =≤所表示的图形面积; (3)写出到两条线段12,l l 距离相等的点的集合12{(,)(,)}P d P l d P l Ω==,其中 12,l AB l CD ==,,,,A B C D 是下列三组点中的一组. 对于下列三种情形,只需选做一种,满分分别是①2分,②6分,③8分;若选择了多于一种情形,则按照序号较小的解答计分. ①(1,3),(1,0),(1,3),(1,0)A B C D --. ②(1,3),(1,0),(1,3),(1,2)A B C D ---. ③(0,1),(0,0),(0,0),(2,0)A B C D . 23、解:⑴ 设(,3)Q x x -是线段:30(35)l x y x --=≤≤上一点,则 ||5) PQ x ==≤≤,当 3 x =时 , min (,)||d P l PQ == ⑵ 设线段l 的端点分别为,A B ,以直线AB 为x 轴,AB 的中点为原点建立直角坐标系, 则(1,0),(1,0)A B -,点集D 由如下曲线围成 12:1(||1),:1(||1) l y x l y x =≤=-≤, 222212:(1)1(1),:(1)1(1)C x y x C x y x ++=≤--+=≥ 其面积为4S π=+。 ⑶① 选择(1,3),(1,0),(1,3),(1,0)A B C D --,{(,)|0}x y x Ω== ② 选择(1,3),(1,0),(1,3),(1,2)A B C D ---。 2{(,)|0,0}{(,)|4,20}{(,)|10,1}x y x y x y y x y x y x y x Ω==≥=-≤<++=> ③ 选择(0,1),(0,0),(0,0),(2,0)A B C D 。

古典概型与几何概型

古典概型与几何概型 古典概型与几何概型 【知识网络】 1. 理解古典概型,掌握古典概型的概率计算公式;会用枚举法计算一些随机事件所含的基 本事件数及事件发生的概率。 2. 了解随机数的概念和意义,了解用模拟方法估计概率的思想;了解几何概型的基本概念、 特点和意义;了解测度的简单含义;理解几何概型的概率计算公式,并能运用其解决一些简单的几何概型的概率计算问题。 【典型例题】 [例1](1)如图所示,在两个圆盘中,指针在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是 ( ) A . 4 9 B .2 9 C .23 D .13 (2)先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6), 骰子朝上的面的点数分别为X 、Y ,则1log 2 Y X 的概率为 ( ) A . 6 1 B . 36 5 C . 12 1 D . 2 1 (3)在长为18cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形 的面积介于36cm 2与81cm 2之间的概率为 ( ) A . 56 B . 12 C .13 D . 16 (4)向面积为S 的△ABC 内任投一点P ,则随机事件“△PBC 的面积小于3 S ”的概率为 . (5)任意投掷两枚骰子,出现点数相同的概率为 . [例2]考虑一元二次方程x 2+mx+n=0,其中m ,n 的取值分别等于将一枚骰子连掷两次先后出现的点数,试求方程有实根的概率。 [例3]甲、乙两人约定于6时到7时之间在某地会面,并约定先到者应等候另一个人一刻钟, 过时即可离去.求两人能会面的概率.

几何概型 会面问题

《送报纸问题》教学设计 一、教学背景 送报纸问题是普通高中课程标准试验教科书必修3.3.1例2中的问题,在先前的教学过程中,学生普遍反映理解有困难。具体体现为如何把有实际背景的应用题转化为数学问题,即数学建模。本节微课按几何概型问题求解步骤为主线,分散难点,引导学生学习。 二、教学目标 (1)掌握几何概型问题的求解步骤; (2)会处理以送报纸为典型的几何概型的会面问题; (3)掌握数学建模的一般步骤。 三、教学方法 本节微课以教师讲授为主,配合PPT的使用,适当引导 四、教学过程 (1)复习回顾 ①几何概型的特点 几何概型的特点有两个, 无限性:即基本事件有无限多个; 等可能性:即每个基本事件发生都是等可能的 ②几何概型的概率公式 若事件A是一个几何概型问题,那么事件A的概率为:

③几何概型问题的求解步骤 判定:判断事件是否是几何概型 转化:分别把基本事件、事件A转化成对应的区域 求解:代入概率计算公式计算出结果 【设计意图】复习几何概型的主干知识,重点是几何概型问题的求解步骤,为后续的例题讲解作铺垫,同时为把建模进行分解。 (2)例题讲解 问题:假设小明家订了一份报纸,送报人可能在早上6:30-7:30之间把报纸送到他家,他离开家去工作的时间在早上7:00-8:00之间,问他在离开家前能得到报纸(称为事件A)的概率是多少? ①我们先来判定一下该问题是不是几何概型问题 引入变量: 记送报人到达小明家的时间,记为x,x在6:30-7:30之间, 记小明离开家去上班的时间,记为y,y在7:00-8:00之间, 是几何概型问题: 无限性满足,因为x,y的取值都有无穷个。 等可能性也满足,因为x,y在各自的范围内都是是任意取值的。 ②求解步骤二:转化,把基本事件、事件A转化成对应的区域 转化基本事件对应的区域 将时间的范围转化成对应实数的区间。 基本事件对应的区域是边长为1的正方形。 找事件A对应的区域

2020年高考数学(理)大题分解专题05--解析几何(含答案)

(2019年全国卷I )已知抛物线C :x y 32=的焦点为F ,斜率为 32 的直线l 与 C 的交点为A ,B ,与x 轴的交点为P . (1)若4||||=+BF AF ,求l 的方程; (2)若3AP PB =,求||AB . 【肢解1】若4||||=+BF AF ,求l 的方程; 【肢解2】若3AP PB =,求||AB . 【肢解1】若4||||=+BF AF ,求l 的方程; 【解析】设直线l 方程为 m x y += 23 ,()11,A x y ,()22,B x y , 由抛物线焦半径公式可知 12342AF BF x x +=++ =,所以125 2 x x +=, 大题肢解一 直线与抛物线

联立2323y x m y x ? =+???=?得0 4)12(12922=+-+m x m x , 由0144)1212(22>--=?m m 得1 2 m <, 所以12121259 2 m x x -+=-=,解得78 m =-, 所以直线l 的方程为372 8 y x =-,即12870x y --=. 【肢解2】若3AP PB =,求||AB . 【解析】设直线l 方程为23 x y t =+, 联立2233x y t y x ? =+???=? 得0322=--t y y ,由4120t ?=+>得31->t , 由韦达定理知221=+y y , 因为PB AP 3=,所以213y y -=,所以12-=y ,31=y ,所以1=t ,321-=y y . 则=-+?+=212214)(9 4 1||y y y y AB = -?-?+)3(429 4123 13 4. 设抛物线)0(22>=p px y 的焦点为F ,过点F 的而直线交抛物线于A (x 1,y 1), B (x 2,y 2),则|AB |=x 1+x 2+p.

相关文档
最新文档