304-spec-sheet

合集下载

常用金属材料代号

常用金属材料代号

常⽤⾦属材料代号常⽤⾦属材料代号(JIS G 3313) 电解镀锌钢板料及卷料Electrolytic zine - couted steel sheets and coils 号码⽤途SECC⼀般应⽤质量。

复印机、录⾳机等内部零件。

SECD压延成形⽤品质。

电器箱、门锁、时钟外壳等。

SECE深压延拉伸质量。

摩打壳、各种深拉伸容器等。

(JIS G 3141) 冷辗压低碳钢板料及⽚料Cold rolled carbon steel sheets and strips号码⽤途SPCC⽂具⽤品,门锁,汽车⽤品,电器⽀架,家具配件,⼀般杂项等。

SPCD计算机机箱,录像机壳,⾳响喇巴,电器箱,托盘,银碟.......等。

SPCE电芯壳,⼿电筒,摩打壳,通⼼鸡眼,钮扣,油壶容器.......等。

(JIS G 4305) 冷辗压不锈钢板料及⽚料Cold rolled stainless steel plates, sheets and strips 号码⽤途SUS 302炊具,⾷物处理器具,建筑材料。

SUS 304厨房⽤具,⾷品机器,时计,建筑材料。

SUS 405锌合器⽫,厨房⽤具,建筑材料。

SUS 430装饰物,化学容器,炉具器⽫SUS 403各种⼑具,蒸汽锅炉,涡轮叶⽚。

SUS 410切⼑较剪,外科仪器,轴承钢珠。

(JIS G 4313) 供制造弹簧⽤的冷辗压不锈钢⽚料Cold rolled stainloss steel strips for springs号码⽤途SUS 301- CSP 冷作硬化快,适⽤于造订书机压钉⽚,⽂件夹弹⼸⽚,门锁弹⽚等。

SUS 304- CSP⼀般应⽤性质,适⽤于造压⼒⽚,⾷物加⼯器材,化学及染⾊仪器等。

SUS 420J2- CSP淬⽕后有⾼硬度,适⽤于造切⼑,剪⼑,外科及⽛科仪器,量具等。

(JIS G 3311) 冷辗压特别钢⽚Cold rolled special steel strips号码⽤途SK2刮须⼑⽚,切⼑,铁⼯锯⽚SK3弹⼸⽚,螺旋发条,界⼑⽚SK4钢笔咀,量具,纺织钩针SK5离合器压盘,⽊⼯锯⽚,圆盘锯⽚SK6齿轮,弹⼸介⼦,⽌逆轮,⼩⼑(JIS H 3110) 铜合⾦?镍银板料及⽚料Nicket silver plates & strips号码⽤途C7351具优雅光泽,良好加⼯性,抗疲劳性及抗腐蚀性。

304不锈钢及其衍生牌号的标准化学成分

304不锈钢及其衍生牌号的标准化学成分

304不锈钢及其衍生牌号的标准化学成分不锈钢牌号“304'’(S30400)是美国不锈钢标准(如ASTM标准)中的牌号名称,它是18―8型Cr-Ni 奥式体不锈钢的典型牌号,由于其具有优良的综合性能,用途十分广泛,其产销量占到奥式体不锈钢的80%左右。

对304及其衍生牌号,美国材料和试验协会不锈钢牌号标准ASTMA959-04和日本JIS、我国GB、国际ISO、欧洲EN等不锈钢标准中都有明确的规定。

但是,近期我国国内市场上出现了没有列入国内外标准的304衍生牌号(如304J5,含镍量只有4.3%),或者与日本JIS 中的304J1、304J2名称相同但成分有出入的产品。

对此,我们专门约请冶金材料标准专家伍千思写了这篇“不锈钢‘304’及其衍生牌号的标准化学成分”文章,详细介绍了国内外关于304及其衍生牌号的标准化学成分。

我们希望,企业如果生产日本JIS板材标准中的304J1、304J2,成分、性能必须符合其标准要求;生产者和经销商必须向用户指明这些产品的特定用途(如适用于作一般耐蚀条件下用的通过冷加工成型的部件或制品),我们不主张生产和销售没有列入国内外标准的304衍生牌号产品,以避免给消费者带来误解和损失。

不锈钢牌号“304”(S30400)是美国不锈钢标准(如ASTM标准)中的牌号名称。

在我国新制定的不锈钢牌号标准GB/T20878―2007中,与之对应的牌号是06Crl9Nil0(旧牌号为OCrl8Ni9)。

这个牌号是著名的18―8型Cr-Ni奥氏体不锈钢的典型牌号。

由于它具有优良的综合性能,用途十分广泛,因而其产量和消费量约占到了奥氏体不锈钢总量的80%左右。

304(06Crl9Nil0)钢的主要特性是:具有优良的不锈耐腐蚀性能和较好的抗晶间腐蚀性能。

对氧化性酸,如在浓度≤65%的沸腾温度以下的硝酸中,具有很强的抗腐蚀性。

对碱溶液及大部分有机酸和无机酸亦具有良好的耐腐蚀能力。

具有优良的冷热加工和成型性能。

304材质ROHS报告-中文

304材质ROHS报告-中文

深圳 市南山区创业路中兴 工业城 6 栋 1 层 (0755) 26050909
Add:天津市南开区红旗路赢寰 大厦 10 层
Tel:(022)27360730
宁波市高新区新晖路 150 号二期 4 号楼 4 层 (0574)87736499
广州市海珠区敦和路 189 号海珠科技园 3 号楼 7 层 (020)89224310
Tel:(022)27360730
宁波市高新区新晖路 150 号二期 4 号楼 4 层 (0574)87736499
广州市海珠区敦和路 189 号海珠科技园 3 号楼 7 层 (020)89224310
青岛市崂山区株洲路 190 号6层 (0532) 88706866
测试报告 报告编号:I05122084704D
阴性
——
备注: (1) mg/kg = ppm (2) “—”= 未规定
(3) 最大允许极限值引用 RoHS 指令 2011/65/EU 附录Ⅱ的限值要求
(4) 未检出(<方法检出限)
(5) 点测试:
阴性=表层中不存在六价铬,阳性=表层中存在六价铬;
(如果点测试的测试结果为阴性或不确定,应进一步用沸水萃取法验证)
青岛市崂山区株洲路 190 号6层 (0532) 88706866
测试人员:赵婷 审核人员:曹佳 实验室负责人:张代琴 样品按照下述流程被完全消解(六价铬除外)。
日期:2014.05.16 测试流程图
预处理
称量
第 3 页, 共 3 页
铅/镉/汞
微波消解仪/电热板酸消解 过滤
溶解
残渣 完全溶解
AAS/ICP-OES 数据
六价铬
非金属
金属
加入萃取液

工艺管道英文代号及缩写

工艺管道英文代号及缩写

石油天然气工艺管道安装常用英语缩写1、SWAGED NIPPLE CONC SMLS.:大小头同心无缝2、BLE/PSE:Beveled Large End/Plain Small End 大端开破口/小端平端3、PE/PE、PBE、BLE/PSE、BSE/PLE:平端/平端、两端平端、大端开破口/小端平端、小端开破口/大端平端4、ELBOW 90 DEG LR BW SMLS.:弯头 90度长半径(R=1.5DN)对焊无缝5、PIPE SMLS PE/BE:无缝管平口/坡口6、GASKET FLAT RING:垫圈平面环形7、compressed asbestos fiber jointing sheet:石棉胶板8、SPECTACLE BLIND:8字盲板9、STUDBOLT ALLOY STEEL:双头螺栓合金钢10、SR :短半径(R=1.0DN)11、Mild Steel 软钢; 低碳钢软钢丝12、Mild Steel Arc Welding Electrode 低碳钢焊条13、Mild Steel Channel 槽钢14、Mild Steel Checkered Plate 花纹钢板15、Mild Steel Equal Angle 等边角钢16、Mild Steel Expanded Sheets 钢板网17、Mild Steel Fire Box 软钢板火箱18、Mild Steel Hexagonal Bolts 六角螺丝梗19、Mild Steel Hexagonal Bolts And Nuts 六角螺丝闩20、Mild Steel I-Beam 低碳工字钢21、Mild Steel Ingot 低碳钢锭22、Mild Steel Plate 软钢板23、Mild Steel Reinforcement (含钢量0.12--0.25%) 软钢钢筋24、Mild Steel Shank 软钢手柄25、Mild Steel Sheet 软钢皮26、TS:螺母(nut的复数)27、BOLT:螺栓28、FULL BORE:与管子等径的、直通式(Valve Ball, Full Bore全通径球阀)29、REDUCED/REGULAR BORE:缩径(Valve Ball, Reduced/Regular Bore缩径球阀)30、SW ENDS / CARBON STEEL BODY / DIMS TO BS EN:承插焊/碳钢阀体/尺寸按照英国及欧洲标准31、RF FLANGED ENDS:凸面法兰连接(表示阀门连接形式)32、TEE EQUAL:等径三通33、SOCKOLET:承插支管台34、THREBOLET:螺纹支管台35、常见阀门连接面英文表示:⑴ LUGGED ------>凸耳对夹式的,法门的一种结构形式.一般用于大直径的止回阀或蝶阀,属于对夹连接的一个变种,要配对法兰.连接螺栓要加长⑵ RING TYPE JOINT------>环连接面,这是法兰密封面的类型,一般这样写要法兰的.⑶ SOCKET WELD------>承插焊连接,不需法兰⑷ THREADED---->螺纹连接,不要法兰⑸ WAFER------>对夹式连接,类似于凸耳的,也是一种阀门的结构形式,属于FLANGELESS 阀门,阀门本体没有法兰,但是要有配对法兰连接.螺栓要加长⑹ BUTTERWELD/THREADED------>对焊/罗纹.都不要法兰,一般是用于描述小阀门,两端的连接形式不同的情况⑺ SOCKET WELD /THREADED--->承插焊/螺纹,都不要法兰,一般是用于描述小阀门,两端的连接形式不同的情况36、VALVE GATE / SOLID WEDGE:闸阀/整体楔形闸板37、MANUFACTURERS STANDARD:行业标准38、union:通常指的是活接头,也就是老师傅常说的“油印”;nipple:一般是指用于软管站连接软管的接头,连接方式为多样(焊接/丝接/法兰连接);pipe:一般就指短管,其中的couple特指两头带法兰的短管连接,即俗称的“车轱辘管”。

Steel material

Steel material
Steel material
Justin Lu
Main steel material-Norsafe
• • • • • • • • Q345B Q345D Q345E 304 316L 双相钢 铝 热镀锌
基本介绍-命名方式
基本介绍-
基本介绍 -
基本介绍-
Q345比较
基本介绍-
Q235与Q345的区别及应用
我国新标准GB/T 20878-2007《不锈钢和耐热钢 牌号及化学成 分》中加入了许多双相不锈钢牌号。 如:14Cr18Ni11Si4AlTi、 022Cr19Ni5Mo3Si2N、 12Cr21Ni5Ti等。 另外:著名的2205双相钢相当于我国的 022Cr23Ni5Mo3N.

等元素。综合性能好,可耐多种介质腐蚀。奥氏体不锈钢的常用牌号有 1Cr18Ni9、0Cr19Ni9等。0Cr19Ni9钢的wC<0.08%,钢号中标记为“0”。 这类钢中含有大量的Ni和Cr,使钢在室温下呈奥氏体状态。这类钢具有良 好的塑性、韧性、焊接性和耐蚀性能,在氧化性和还原性介质中耐蚀性均 较好,用来制作耐酸设备,如耐蚀容器及设备衬里、输送管道、耐硝酸的 设备零件等。奥氏体不锈钢一般采用固溶处理,即将钢加热至1050~ 1150℃,然后水冷,以获得单相奥氏体组织。
316L-性能
316L是含钼不锈钢种,由于钢中含钼,该钢种总的性能优于 321和304不锈钢,高温条件下,当硫酸的浓度低于15%或高 于85%时,316L不锈钢具有广泛的用途。316L不锈钢还具有 良好的耐氯化物侵蚀的性能,所以通常用于海洋环境。 316L不锈钢的最大碳含量0.03,可用于焊接后不能进行退 火和需要最大耐腐蚀性的用途中
双相不锈钢性能特点
它的主要特点是屈服强度可达400-550MPa,是普通不锈钢的2倍, 因此可以节约用材,降低设备制造成本。在抗腐蚀方面,特别是介质环 境比较恶劣(如海水,氯离子含量较高)的条件下,双相不锈钢的抗点 蚀、缝隙腐蚀、应力腐蚀及腐蚀疲劳性能明显优于普通的奥氏体不锈钢 ,可以与高合金奥氏体不锈钢媲美。 双相不锈钢具有良好的焊接性能,与铁素体不锈钢及奥氏体不锈钢 相比,它既不像铁素体不锈钢的焊接热影响区,由于晶粒严重粗化而使 塑韧性大幅降低,也不像奥氏体不锈钢那样,对焊接热裂纹比较敏感。

304不锈钢MSDS英文版

304不锈钢MSDS英文版
Component-Chemical Name&Common Names
CAS NO.
Percentage(w/w%)
C
7440-44-0
0.08%
Si
7440-21-3
1.00%
Mn
7439-96-5
1.92%
P
7723-14-0
0.04%
S
7704-34-9
7704-34-9
0.03%
Cr
7440-47-3
Conditions that must be avoided:Avoid contact with its gas and dust States.
Materials to be avoided:NA.
11.Toxicological information
Acute toxic:Not applicable.
Safety Date Sheet
1.Product and supplier data
Product name:
304 stainless steel
Product number:
NA
Manufacturer and supplier name
Dongguan guxin precision hardware co. LTD
Other elements:No other hazards in solid state.
4.First aid measures
Emergency rescue method to different kinds of exposure
Inhalation :Unable to inhale.
18.72%

材质对照表

材质对照表
En43E
En45,1429
En47
SUP2,SWR7
SUP3,SWR9
SUP6
SUP10
XC65
~XC70,XC80
~45S7
55S6
50CV4
CK67
C75,MK75
60SiMn6
51Si7
55Si7
50CrV4
65
75
60Г
60CГ
65Г
50C2
55C2
50XфA
1074
1060
9260
C1065
403S17
410S21
420S37
420S45
SUS317JI
SUS321
SUS347
SUSXM15JI
SUS329JI
SUS405
SUS410L
SUS429
SUS430
SUS430LX
SUS434
SUS436L
SUS444
SUS447J1
SUSXM27
SUS403
SUS410
SUS410S
SUS420J1
En3C,4S21
En5D,En5K
En43A,En43B,En43C
En41A,S92,S514
3T35,3T45
S92,S514,3T35,3T45
~En15A


~En206
En207
En18,S117
En48
SB46








SCr21
SCr22
SCr4

XC12
XC18
XC32
XC48

304-spec-sheet

304-spec-sheet

Specs:304Chromium - NickelGeneral PropertiesAlloys 304 (S30400), 304L (S30403), and 304H (S30409) stainless steels are variations of the 18 percent chromium – 8 percent nickel austenitic alloy, the most familiar and most frequently used alloy in the stainless steel family. These alloys may be considered for a wide variety of applications where one or more of the following properties are important:•Resistance to corrosion•Prevention of product contamination•Resistance to oxidation•Ease of fabrication•Excellent formability•Beauty of appearance•Ease of cleaning•High strength with low weight•Good strength and toughness at cryogenic temperatures•Ready availability of a wide range of product formsEach alloy represents an excellent combination of corrosion resistance and fabricability. This combination of properties is the reason for the extensive use of these alloys which represent nearly one half of the total U.S. stainless steel production. The 18-8 stainless steels, principally Alloys 304, 304L, and 304H, are available in a wide range of product forms including sheet, strip, and plate. The alloys are covered by a variety of specifications and codes relating to, or regulating, construction or use of equipment manufactured from these alloys for specific conditions. Food and beverage, sanitary, cryogenic, and pressure-containing applications are examples.Alloy 304 is the standard alloy since AOD technology has made lower carbon levels more easily attainable and economical. Alloy 304L is used for welded products which might be exposed to conditions which could cause intergranular corrosion in service.Alloy 304H is a modification of Alloy 304 in which the carbon content is controlled to a range of 0.04-0.10 to provide improved high temperature strength to parts exposed to temperatures above 800°F.Chemical CompositionChemistries per ASTM A240 and ASME SA-240:Element Percentage by WeightMaximum Unless Range is Specified304304L304H Carbon0.080.0300.04 – 0.10 Manganese 2.00 2.00 2.00 Phosphorus0.0450.0450.045Sulfur0.0300.0300.030Silicon0.750.750.75Chromium18.0020.0018.0020.0018.0020.00Nickel 8.0010.50 8.0012.008.010.5Nitrogen0.100.100.10Data are typical and should not be construed as maximum or minimum values for specification or for final design. Data on any particular piece of material may vary from those shown herein.Resistance to CorrosionGeneral CorrosionThe Alloys 304, 304L, and 304H austenitic stainless steels provide useful resistance to corrosion on a wide range of moderately oxidizing to moderately reducing environments. The alloys are used widely in equipment and utensils for processing and handling of food, beverages, and dairy products. Heat exchangers, piping, tanks, and other process equipment in contact with fresh water also utilize these alloys.The 18 to 19 percent of chromium which these alloys contain provides resistance to oxidizing environments such as dilute nitric acid, as illustrated by data for Alloy 304 below.% Nitric Acid Temperature°F (°C)Corrosion Rate Mils/Yr (mm/a)10300 (149) 5.0 (0.13)20300 (149)10.1 (0.25)30300 (149)17.0 (0.43)Alloys 304, 304L, and 304H are also resistant to moderately aggressive organic acids such as acetic and reducing acids such as phosphoric. The 9 to 11 percent of nickel contained by these 18-8 alloys assists in providing resistance to moderately reducing environments. The more highly reducing environments such as boiling dilute hydrochloric and sulfuric acids are shown to be too aggressive for these materials. Boiling 50 percent caustic is likewise too aggressive.In some cases, the low carbon Alloy 304L may show a lower corrosion rate than the higher carbon Alloy 304. The data for formic acid, sulfamic acid, and sodium hydroxide illustrate this. Otherwise, the Alloys 304, 304L, and 304H may be considered to perform equally in most corrosive environments. A notable exception is in environments sufficiently corrosive to cause intergranular corrosion of welds and heat-affected zones on susceptible alloys. The Alloy 304L ispreferred for use in such media in the welded condition since the low carbon level enhances resistance to intergranular corrosion.Intergranular CorrosionExposure of the 18-8 austenitic stainless steels to temperatures in the 800°F to 1500°F(427°C to 816°C) range may cause precipitation of chromium carbides in grain boundaries. Such steels are "sensitized" and subject to intergranular corrosion when exposed to aggressive environments. The carbon content of Alloy 304 may allow sensitization to occur from thermal conditions experienced by autogenous welds and heat-affected zones of welds. For this reason, the low carbon Alloy 304L is preferred for applications in which the material is put into service in the as-welded condition. Low carbon content extends the time necessary to precipitate a harmful level of chromium carbides but does not eliminate the precipitation reaction for material held for long times in the precipitation temperature range.Intergranular Corrosion TestsCorrosion Rate, Mils/Yr (mm/a)ASTM A262Evaluation Test304304LPractice EBase Metal Welded No Fissures on BendSome Fissures on Weld (unacceptable)No fissuresNo fissuresPractice ABase Metal Welded Step StructureDitched(unacceptable)Step StructureStep StructureStress Corrosion CrackingThe Alloys 304, 304L, and 304H are the most susceptible of the austenitic stainless steels to stress corrosion cracking (SCC) in halides because of their relatively low nickel content. Conditions which cause SCC are: (1) presence of halide ions (generally chloride), (2) residual tensile stresses, and (3) temperatures in excess of about 120°F (49°C). Stresses may result from cold deformation of the alloy during forming or by roller expanding tubes into tube sheets or by welding operations which produce stresses from the thermal cycles used. Stress levels may be reduced by annealing or stress relieving heat treatments following cold deformation, thereby reducing sensitivity to halide SCC. The low carbon Alloy 304L material is the better choice for service in the stress-relieved condition in environments which might cause intergranular corrosion.Halide (Chloride Stress Corrosion Tests)U-Bend (Highly Stressed) SamplesTest30433% Lithium Chloride, Boiling Base MetalWeldedCracked, 14 to 96 hoursCracked, 18 to 90 hours26% Sodium Chloride, Boiling Base MetalWeldedCracked, 142 to 1004 hoursCracked, 300 to 500 hours40% Calcium Chloride, Boiling Base Metal Cracked, 144 hours--Ambient Temperature Seacoast Exposure Base MetalWeldedNo CrackingNo CrackingPitting/Crevice CorrosionThe 18-8 alloys have been used very successfully in fresh waters containing low levels of chloride ion. Generally, 100 ppm chloride is considered to be the limit for the 18-8 alloys, particularly if crevices are present. Higher levels of chloride might cause crevice corrosion and pitting. For the more severe conditions of higher chloride levels, lower pH, and/or higher temperatures, alloys with higher molybdenum content such as Alloy 316 should be considered. The 18-8 alloys are not recommended for exposure to marine environments.Physical PropertiesDensity: 0.285 lb/in3 (7.90 g/cm3)Modulus of Elasticity in Tension: 29 x 106 psi (200 GPa)Linear Coefficient of Thermal Expansion:Temperature Range Coefficients°F°C in/in/°F cm/cm/°C68 – 21220 – 1009.2 x 10-616.6 x 10-618 – 160020 – 87011.0 x 10-619.8 x 10-6Thermal Conductivity:Temperature RangeBtu/hr i ft i°F W/m i K °F°C2121009.416.393250012.421.4The overall heat transfer coefficient of metals is determined by factors in addition to the thermal conductivity of the metal. The ability of the 18-8 stainless grades to maintain clean surfaces often allows better heat transfer than other metals having higher thermal conductivity.Specific Heat:°F°C Btu/lb/°F J/kg i K32 – 2120 – 1000.12500 Magnetic PermeabilityThe 18-8 alloys are generally non-magnetic in the annealed condition with magnetic permeability values typically less than 1.02 at 200H. Permeability values will vary with composition and will increase with cold work.Magnetic PermeabilityPercent Cold Work304304L0 1.005 1.01510 1.009 1.06430 1.163 3.23550 2.2918.480 Mechanical PropertiesRoom Temperature Mechanical PropertiesMinimum mechanical properties for annealed Alloys 304 and 304L austenitic stainless steel plate as required by ASTM specifications A240 and ASME specification SA-240 are shown below.Minimum Mechanical Properties Required by ASTM A240 & ASME SA-240 Property304304L304H0.2% OffsetYield Strength,psi MPa 30,00020525,00017030,000205Ultimate Tensile Strength,psi MPa 75,00051570,00048575,000515PercentElongation in2 in. or 51 mm40.040.040.0Hardness,Max.,Brinell R B 201922019220192Low and Elevated Temperature PropertiesTypical short time tensile property data for low and elevated temperatures are shown below. At temperatures of 1000°F (538°C) or higher, creep and stress rupture become considerations. Typical creep and stress rupture data are also shown below.Test Temperature0.2% Yield Strength Tensile Strength Elongation°F°C psi(MPa)psi(MPa)Percent in2" or 51 mm-423-253100,000690250,000172525 -320-19670,000485230,000158535 -100-7950,000354150,000103550 702135,00024090,00062060 40020523,00016070,00048550 80042719,00013066,00045543 120065015,50010548,00033034 150081513,0009023,00016046Impact ResistanceThe annealed austenitic stainless steels maintain high impact resistance even at cryogenic temperatures, a property which, in combination with their low temperature strength and fabricability, has led to their use in handling liquified natural gas and other cryogenic environments. Typical Charpy V-notch impact data are shown below.Temperature Charpy V-Notch Energy Absorbed °F°C Foot – pounds Joules7523150200-320-19685115-425-25485115Fatigue StrengthThe fatigue strength or endurance limit is the maximum stress below which material is unlikely to fail in 10 million cycles in air environment. The fatigue strength for austenitic stainless steels, as a group, is typically about 35 percent of the tensile strength. Substantial variability in service results is experienced since additional variables influence fatigue strength. As examples –increased smoothness of surface improves strength, increased corrosivity of service environment decreases strength.WeldingThe austenitic stainless steels are considered to be the most weldable of the high-alloy steels and can be welded by all fusion and resistance welding processes. The Alloys 304 and 304L are typical of the austenitic stainless steels.Two important considerations in producing weld joints in the austenitic stainless steels are: 1) preservation of corrosion resistance, and 2) avoidance of cracking.A temperature gradient is produced in the material being welded which ranges from above the melting temperature in the molten pool to ambient temperature at some distance from the weld. The higher the carbon level of the material being welded, the greater the likelihood that the welding thermal cycle will result in the chromium carbide precipitation which is detrimental tocorrosion resistance. To provide material at the best level of corrosion resistance, low carbon material (Alloy 304L) should be used for material put in service in the welded condition. Alternately, full annealing dissolves the chromium carbide and restores a high level of corrosion resistance to the standard carbon content materials.Weld metal with a fully austenitic structure is more susceptible to cracking during the welding operation. For this reason, Alloys 304 and 304L are designed to resolidify with a small amount of ferrite to minimize cracking susceptibility.Alloy 309 (23% Cr – 13.5% Ni) or nickel-base filler metals are used in joining the 18-8 austenitic alloys to carbon steel.Heat TreatmentThe austenitic stainless steels are heat treated to remove the effects of cold forming or to dissolve precipitated chromium carbides. The surest heat treatment to accomplish both requirements is the solution anneal which is conducted in the 1850°F to 2050°F range(1010°C to 1121°C). Cooling from the anneal temperature should be at sufficiently high rates through 1500-800°F (816°C - 427°C) to avoid reprecipitation of chromium carbides.These materials cannot be hardened by heat treatment.CleaningDespite their corrosion resistance, stainless steels need care in fabrication and use to maintain their surface appearance even under normal conditions of service.In welding, inert gas processes are used. Scale or slag that forms from welding processes is removed with a stainless steel wire brush. Normal carbon steel wire brushes will leave carbon steel particles in the surface which will eventually produce surface rusting. For more severe applications, welded areas should be treated with a descaling solution such as a mixture of nitric and hydrofluoric acids, and these should be subsequently washed off.For material exposed inland, light industrial, or milder service, minimum maintenance is required. Only sheltered areas need occasional washing with a stream of pressurized water. In heavy industrial areas, frequent washing is advisable to remove dirt deposits which might eventually cause corrosion and impair the surface appearance of the stainless steel.Stubborn spots and deposits like burned-on food can be removed by scrubbing with a non-abrasive cleaner and fiber brush, a sponge, or pad of stainless steel wool. The stainless steel wool will leave a permanent mark on smooth stainless steel surfaces.Many of these uses of stainless steel involve cleaning or sterilizing on a regular basis. Equipment is cleaned with specially designed caustic soda, organic solvent, or acid solutions such as phosphoric or sulfamic acid (strongly reducing acids such as hydrofluoric or hydrochloric may be harmful to these stainless steels).Cleaning solutions need to be drained and stainless steel surfaces rinsed thoroughly with fresh water.Design can aid cleanability. Equipment with rounded corners, fillets, and absence of crevices facilitates cleaning as do smooth ground welds and polished surfaces.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
清洁
不管腐蚀性怎么样,不锈钢在加工和使用过程中,都要保持其表面清洁。 在焊接时采用惰性气体加工,焊接过程中形成的锈皮和熔渣通过不锈钢刷清除。普通碳钢刷会在不锈钢的表 面留下碳钢粒子,这些粒子最终会导致表面生锈。在要求严格的情况下,焊 接区域要经过除锈溶液处理(如 硝酸和氢氟酸混合溶液),可以洗掉焊接过程中形成的锈皮和熔渣。
比热:
°F 32 – 212
°C 0 – 100
Btu/lb/°F 0.12
J/kgiK 500
磁导率:
18-8合金在退火状态下是无磁性的,磁导率在200H的情况下一般低于1.02。磁导率会因金 属的成分不
用而有所不同。通过冷作,可以提高磁导率。
冷作百分比
0 10 30 50
磁导率
304
304L
1.005
8.00 10.50 0.10
重量百分比
除特别说明外,表中所列为最大值
304L
304H
0.030
0.04 – 0.10
2.00
2.00
0.045
0.045
0.030
0.030
0.75
0.75
18.00
18.00
20.00
20.00
8.00
8.0
12.00
10.5
0.10
0.10
以上表中的数据仅是典型的成分分析,不能作为最终产品成分的最大值或最小值。具体某一块材料的成分
测试 33%
沸腾 氯化锂
26% 氯化钠, 沸腾
40% 氯化钙, 沸腾
周围环境 暴露在海边环境
卤化物 (氯化物应力腐蚀测试)
U型弯曲(高度受压)样品 304
基焊金属 焊接后
断裂,14-96小时 断裂,18-90小时
基焊金属 基焊金属
焊接后
断裂,142-1004小时 断裂,300-500小时
断裂,144小时 ----
in/in/°F 9.2 x 10-6 11.0 x 10-6
系数
cm/cm/°C 16.6 x 10-6 19.8 x 10-6
Btu/hrifti°F
9.4 12.4
W/miK
16.3 21.4
金属的总传导系数除了由金属的热传导性决定以外,还取决于其他因素。18-8合金不锈钢具有保持表面 清洁的性能,和其他热传导系数高的金属相比,18-8合金的热传导性能往往更好。
% 硝酸
10 20 30
温度 °F (°C) 300 (149) 300 (149) 300 (149)
腐蚀率 Mils/Yr (mm/a)
5.0 (0.13) 10.1 (0.25) 17.0 (0.43)
某些情况下,低碳含量的304L合金比高碳含量的304合金的腐蚀率低。从甲酸,氨基磺酸,氢氧化钠得到 的数据印证了这一点。除此以外,304,304L,304H在大多数腐蚀环境下的 性能都是相同的。一个值得注 意的特例是:在足以引起焊接和热影响区粒间腐蚀的环境中,更倾向使用304L合金,因为它的低碳含量有 助于抵抗粒间腐蚀。
0.2% 屈服强度
psi
(MPa)
100,000
690
70,000
485
50,000
354
35,000
240
23,000
160
19,000
130
15,500
105
13,000
90
抗拉强度
psi
(MPa)
250,000 230,000 150,000
90,000 70,000 66,000 48,000 23,000
程度,可以增加疲劳强度,作业环境腐蚀性增加,则降低疲劳强度。
焊接
奥氏体不锈钢被认为是最容易焊接的合金钢,可以用所有的融合物焊接,也进行电阻焊接。304,304L是典 型的奥氏体不锈钢。 生产奥氏体不锈钢的焊接接点时要考虑两个因素:1)保持其耐腐蚀性,2)避免开裂。
材料被焊接过程中会形成温度阶梯,从熔池的熔化温度到离焊接点稍远的周围温度。被焊接材料的碳含量 越高,焊接热循环就更容易导致碳化铬沉淀,对材料的耐腐蚀性有影响。为了保持材料的耐腐蚀性处于最 好的水平,因此在已焊接状态下作业,应该选择低碳材料(304L)。另一种做法是,采用完全退火溶 解碳化 铬,使标准碳含量的材料恢复高水平的耐腐蚀性。
304
304L
304H
30,000 205
25,000 170
30,000 205
极限抗张强度, psi MPa
延伸百分比 (2英寸或51mm)
75,000 515
40.0
硬度,
最大.,
(布R氏B 硬度)
201 92
70,000 485
40.0
201 92
75,000 515
40.0
201 92
焊接完全奥氏体结构的金属,在焊接操作中更容易形成裂纹。因此,304和304L合金中添加了少量的铁素体 , 降低材料的裂纹敏感性,达到重新固化的作用。 把18-8奥氏体合金焊接到碳钢时,通常用309合金(23%铬-13.5%镍)或镍基焊料。
热处理
奥氏体不锈钢通过热处理可以清除冷成形产生的副作用和溶解沉淀的碳化铬。达到这两个要 求的最好的热处 理方法是在1850°F 至 2050°F (1010°C 至 1121°C)的温度范围内进行固熔 退火。从退火温度冷却下来 1500-800°F (816°C - 427°C),应该足以避免碳化铬再沉淀。这些材料不能通过热处理达到硬化。
内陆,轻工业用的材料,所需要的维护比较少,只有遮蔽区域有时需要用加压水清洗。重工 业则建议经常清 洗,去除积聚的灰尘,这些灰尘最终有可能引起腐蚀和损坏不锈钢的表面外观。 顽固的污渍和沉淀物可以用擦洗剂和纤维刷,海绵,不锈钢绒擦洗。不锈钢绒会在平滑的不 锈钢表面留下永 久的擦痕。 很多不锈钢都要定期清洗和消毒。设备通常用特制的苛性钠,有机溶剂,酸性溶液(入磷酸或硫酸)清洗。强 还还原原酸酸((如如氢氢氟氟酸酸或或盐盐酸酸))可可能能对对不不锈锈钢钢造造成成损损坏坏。。 溶液清洗后,用清水彻底冲洗不锈钢。 适当的设计有助于清洗。带圆抹角,内圆角,无缝隙的设备,有利于清洗和表面抛光。
耐腐蚀
全面腐蚀 奥氏体不锈钢304,304L,304H,在适度的氧化和还原环境下,具有相当的耐腐蚀性。这 些合金被广泛 用于加工和处理食物饮料,奶制品的设备和器具。热交换器,管道,油罐,和其他与淡水接触的加工设 备都可以采用这些合金。
这些合金的铬含量是18-19%,在氧化环境下具有抗氧化性。下表是304合金在稀硝酸环境下的氧化率。
低温和升温情况下的性能
低温和升温情况下的短期抗拉性能如下表所示。温度达到1000°F (538°C)或以上,要考虑应力破裂, 应力破裂数据也在下表显示。
测试温度
°F
-423 -320 -100
70 400 800 1200 1500
°C
-253 -196
-79 21 205 427 650 815
304H合金是304的改良品,它的碳含量在0.04-0.10之间,对于要暴露在温度800°F以上的零件,采用304H 有助于改善高温下的强度。
化学成分
化学成分依据ASTM A240 and ASME SA-240:
成分
碳 锰 磷 硫 硅 铬
镍 氮
304 0.08 2.00 0.045 0.030 0.75 18.00 20.00
规范
304
铬-镍
合金304 (S30400), 304L (S30403), and 304H (S30409)的不锈钢是18%铬,8%镍奥氏体合金
的几种变体,是不锈钢家族中最常见和最常用的合金。因为这些合金具有以下一种或多种属性,
因此可以用作各种应用。属性包括:
• 耐腐蚀 • 防止产品污染 • 抗氧化 • 易于加工 • 良好的成形性 • 外观精美 • 易于清洁 • 高强度、低重量 • 低温环境下,良好的强度和韧性 • 已存在多种产品形式
1.015
1.009
1.064
1.163
3.235
2.291
8.480
机械性能
室温下的机械性能 已退火的304和304L奥氏体不锈钢板,ASTM标准A240, ASME标准SA-240,要求的最低 机械性能如下表 所示:
性能
0.2% 抵消 屈服强度, psi MPa
ASTM A240和 ASME SA-240 要求的最低机械性能
物理性能
密度 0.285 lb/in3 (பைடு நூலகம்.90 g/cm3)
(7.90 g/c6m3)
抗拉弹性模数: 29 x 10 psi (200 GPa)
线性热膨胀系数:
°F 68 – 212 18 – 1600
温度范围
°C 20 – 100 20 – 870
热传导:
温度范围
°F
°C
212
100
932
500
ASTM A262 评估测试
Practice E 基焊金属 焊接后
Practice A 基焊金属 焊接后
粒间腐蚀测试 腐蚀率,Mils/Yr (mm/a) 304
弯曲无龟裂 焊接有一些龟裂 (不接受)
304L
无龟裂 无龟裂
级别结构 起沟 (不接受)
级别结构 级别结构
焊接后
应力腐蚀龟裂 304,304L,304H合金是奥氏体不锈钢中最容易发生应力腐蚀龟裂的(SSC),因为他们的镍含量相对低。 引起应力腐蚀龟裂的条件有:(1)卤化物离子的存在(通常是氯化物),(2)残余的张力,(3)温度超 过120°F (49°C)。合金成形过程中的冷变形,拉幅成管板,焊接操作等都可以产生应力。退火,冷变形 后的消除应力热处理都可减少应力,因而降低了卤化物应力腐蚀龟裂可能性。在可能引起粒间腐蚀的 环境 中,低温退火状态下作业,最好选择低碳的304L合金材料。
相关文档
最新文档