滞后型泛函微分方程的Φ-有界变差解的唯一性

合集下载

滞后型脉冲泛函微分方程解对初值的可微性

滞后型脉冲泛函微分方程解对初值的可微性
( , , 得 V( , )∈ , 0 )使 。 t∈L, 成立
I I l C≤ ;
A O (l )={ , Y∈C [ ro , )=0 Y ∈B , ( 一 , ]Y 1 o , e
t∈ I


) t>t, t , ot≠ (
1 )
} 。
△ = ( ) = t, () , kk= 12, , … ( )=
续 } ;
RX 且在 上连 , L R×L , 且在 上
Y , t ft y) t t, = ( o+ , 0 + , ≠ t + =t 一t, 0
( , )= { — R, cR g:
k = 1, .・ 2, . ,
g 存在对于 t , 的P阶连续偏导数 , P∈N } . ( , )= { cR g∈C VR , g ( , ) 且 在 上有界 } ;
20 07年 4 1 月 8日收到 国家 自 基金( 0 7 1 1 及 然 1511) 山东省 自然基金( 2 0 A 7 项 目资助 Y 05 0 ) ‘ 通信作者简介 : 闰宝强 , 山东师范大学 数学科学 学院教授 。E —
malb r . 8 9@ be ̄n C r. i: q a g 1 e k. O 。 n

的可
Lo t
0 = 。

微性。
关键 词 脉 冲泛 函 分方程 微 中图法 分类号 07 ; 15
初值
三 ( 一 ,] [ r , O ) A
可微性
文献标志码
1 预备知识
考虑脉冲泛函方程

, = [ , ]B = { ∈ C [ ,]R }: 0O ,口 1 ( 一r0 , )

一致分数阶时滞微分方程边值问题解的存在性与唯一性

一致分数阶时滞微分方程边值问题解的存在性与唯一性

第61卷 第5期吉林大学学报(理学版)V o l .61 N o .52023年9月J o u r n a l o f J i l i nU n i v e r s i t y (S c i e n c eE d i t i o n )S e p2023d o i :10.13413/j .c n k i .jd x b l x b .2023011一致分数阶时滞微分方程边值问题解的存在性与唯一性张 敏,周文学,黎文博(兰州交通大学数理学院,兰州730070)摘要:用L e r a y -S c h a u d e r 度理论和B a n a c h 压缩映射原理研究一致分数阶时滞微分方程边值问题D β0+u (t )=f (t ,u (t -τ)), t ɪ[0,1],u (t )=φ(t ), t ɪ[-τ,0],u (0)+u ᶄ(0)=0, u (1)+u ᶄ(1)=ìîíïïïï0解的存在性与唯一性.在非线性项满足增长性条件和L i p s c h i t z 条件下,分别得到了该边值问题解的存在性与唯一性结果,并举例说明所得结果的适用性.关键词:一致分数阶导数;时滞;边值问题;L e r a y -S c h a u d e r 度理论;B a n a c h 压缩映射原理中图分类号:O 175.8 文献标志码:A 文章编号:1671-5489(2023)05-1007-07E x i s t e n c e a n dU n i q u e n e s s o f S o l u t i o n s f o rB o u n d a r y Va l u eP r ob l e m s o fC o n f o r m a b l eF r ac t i o n a lD e l a y D i f f e r e n t i a l E qu a t i o n s Z H A N G M i n ,Z HO U W e n x u e ,L IW e n b o(S c h o o l o f M a t h e m a t i c s a n dP h y s i c s ,L a n z h o u J i a o t o n g U n i v e r s i t y ,L a n z h o u 730070,C h i n a )A b s t r a c t :B y u s i n g L e r a y -S c h a u d e rd e g r e et h e o r y a n d B a n a c h c o n t r a c t i o n m a p p i n g p r i n c i p l e ,w e s t u d i e dt h e e x i s t e n c e a n d u n i q u e n e s s o fs o l u t i o n sf o r b o u n d a r y va l u e p r ob l e m s o fc o n f o r m a b l e f r a c t i o n a lde l a y d if f e r e n t i a l e qu a t i o n s D β0+u (t )=f (t ,u (t -τ)), t ɪ[0,1],u (t )=φ(t ), t ɪ[-τ,0],u (0)+u ᶄ(0)=0, u (1)+u ᶄ(1)=0ìîíïïïï,w h e n t h en o n l i n e a r t e r ms a t i s f i e d t h e g r o w t hc o n d i t i o na n d t h eL i ps c h i t z c o n d i t i o n ,w eo b t a i n e d t h e r e s u l t s o f e x i s t e n c e a n du n i q u e n e s s o f s o l u t i o n f o r t h eb o u n d a r y v a l u e p r o b l e mr e s p e c t i v e l y ,a n d g a v e a ne x a m p l e t o i l l u s t r a t e t h e a p p l i c a b i l i t y of t h e o b t a i n e d r e s u l t s .K e y w o r d s :c o n f o r m a b l e f r a c t i o n a l d e r i v a t i v e ;d e l a y ;b o u n d a r y v a l u e p r o b l e m ;L e r a y -S c h a u d e r d e g r e e t h e o r y ;B a n a c hc o n t r a c t i o nm a p p i n gp r i n c i pl e 收稿日期:2023-01-04. 网络首发日期:2023-07-13.第一作者简介:张 敏(1998 ),女,汉族,硕士研究生,从事分数阶微分方程的研究,E -m a i l :m z h a n g 20222022@126.c o m.通信作者简介:周文学(1976 ),男,汉族,博士,教授,从事非线性分析问题的研究,E -m a i l :w x z h o u 2006@126.c o m.基金项目:国家自然科学基金(批准号:11961039;11801243)和兰州交通大学校青年科学基金(批准号:2017012).网络首发地址:h t t ps ://k n s .c n k i .n e t /k c m s 2/d e t a i l /22.1340.o .20230713.1056.001.h t m l .Copyright ©博看网. All Rights Reserved.0 引 言分数阶微分方程的边值问题是分数阶微分系统理论的重要课题.目前,对分数阶微分方程边值问题的研究已取得了丰富成果,其中最主要的是基于R i e m a n n -L i o u v i l l e 和C a p u t o 分数阶导数的定义[1-9].但这两种导数均不满足经典链式法则,并且这两种导数的某些性质使得分数阶导数的应用很困难.因此,K h a l i l 等[10]提出了一种新的分数阶导数和分数阶积分的定义,称为一致分数阶导数和积分.这种新的分数阶导数的定义可满足经典的分数阶导数不能满足的一些性质,如乘积法则㊁商法则㊁链式法则㊁罗尔定理和中值定理等,并且其在生物物理学㊁电容理论㊁控制理论和实验数据拟合等领域应用广泛[11-13].但对带有时滞的分数阶微分方程边值问题的研究目前报道较少[14-16].Y a n g 等[17]利用S c h a e f e r 不动点定理和K r a s n o s e l s k i i s 不动点定理研究了一类非线性分数阶微分方程边值问题cD α0+u (t )=f (t ,u (t ),u ᶄ(t )),u (0)+u ᶄ(0)=0, u (1)+u ᶄ(1)={正解的存在性,其中0<t <1,1<αɤ2,f :[0,1]ˑ[0,+ɕ)ˑℝң[0,+ɕ)是连续函数,c D α0+是α阶C a p u t o 分数阶导数.X u [18]利用B a n a c h 压缩映射原理㊁L e r a y -S c h a u d e r 度理论和K r a s n o s e l s k i i s 不动点定理研究了一类分数阶微分方程边值问题cD q x (t )=f (t ,x (t )), t ɪ[0,1],x (1)=μʏ1x (s )d s , x ᶄ(0)+x ᶄ(1)={解的存在唯一性,其中1<q <2,f :[0,1]ˑX ңX 是连续函数,c D q 是q 阶C a p u t o 分数阶导数.基于上述研究,本文利用L e r a y -S c h a u d e r 度理论和B a n a c h 压缩映射原理考虑如下一类一致分数阶时滞微分方程边值问题:D β0+u (t )=f (t ,u (t -τ)), t ɪ[0,1],u (t )=φ(t ), t ɪ[-τ,0],u (0)+u ᶄ(0)=0, u (1)+u ᶄ(1)=ìîíïïïï0(1)解的存在性与唯一性,其中1<βɤ2,τ>0,f :[0,1]ˑℝңℝ是连续函数,D β0+是阶数为β的一致分数阶导数.1 预备知识定义1[10] 假设函数f :[0,ɕ)ңℝ,则f 的βɪ(n ,n +1]阶一致分数阶导数定义为D βf (t )=l i m εң0f (β⌉-1)(t +εt β⌉-β)-f (β⌉-1)(t )ε, t >0,(2)其中β是大于等于β的最小整数.式(2)右端极限存在,此时称函数f 是β阶可微的.特别地,当βɪ(1,2]时,D βf (t )=l i m εң0f ᶄ(t +εt 2-β)-f ᶄ(t )ε, t >0.(3) 注1 如果函数f 在(0,b )(b >0)上是β阶可微的,并且l i m t ң0+D βf (t )存在,则D βf (0)=l i m t ң0+D βf (t).注2 由一致分数阶导数定义可知,当β=1时,一致分数阶导数定义即为传统的一阶导数定义.引理1[10] 当βɪ(n ,n +1]并且f 在t >0处n +1阶可微时,有D βf (t )=t β⌉-βf(β⌉)(t ).(4) 证明:令k =εt β⌉-β,则ε=t β-β⌉k ,因此由定义1可得D βf (t )=l i m εң0f (β⌉-1)(t +εt β⌉-β)-f (β⌉-1)(t )ε=l i m k ң0t β⌉-βf (β⌉-1)(t +k )-f (β⌉-1)(t )k=t β⌉-βf (β⌉)(t ). 定义2[19]假设函数f :[0,ɕ)ңℝ,则f 的βɪ(n ,n +1]阶一致分数阶积分定义为8001 吉林大学学报(理学版) 第61卷Copyright ©博看网. All Rights Reserved.I βf (t )=1n!ʏt 0(t -s )n s β-n -1f (s )d s .(5)特别地,当βɪ(1,2]时,I βf (t )=ʏt 0(t -s )s β-2f (s )d s .引理2[19] 假设函数f :[0,ɕ)ңℝ连续,并且βɪ(n ,n +1],则有D βI βf (t )=f (t ).(6) 引理3[19]假设f :[0,ɕ)ңℝ是β阶可微函数,并且βɪ(n ,n +1],则有I βD βf (t )=f (t )+a 0+a 1t + +a nt n ,(7)其中a i ɪℝ,i =0,1,2, ,n .引理4 设函数f :[0,1]ˑℝңℝ是连续的,u (t )是边值问题(1)的解,则u (t )=ʏ10G (t ,s )f (s ,u (s -τ))d s ,t ɪ[0,1],φ(t ),t ɪ[-τ,0{],(8)其中格林函数G (t ,s)为G (t ,s )=(1-s )(2-t )sβ-2,0ɤs ɤt ɤ1,(1-t )(2-s )sβ-2,0ɤt ɤs ɤ1{.(9) 证明:由引理3知,有u (t )=I β0+f (t ,u (t -τ))-a 0-a 1t =ʏt 0(t -s )s β-2f (s ,u (s -τ))d s -a 0-a 1t ,(10)从而u ᶄ(t )=ʏts β-2f (s ,u (s -τ))d s -a 1.根据u (0)+u ᶄ(0)=0,有a 0+a 1=0;(11)根据u (1)+u ᶄ(1)=0,有a 0+2a 1-ʏ10(2-s )s β-2f (s ,u (s -τ))d s =0.(12)结合式(11),(12)可得a 0=-ʏ10(2-s )s β-2f (s ,u (s -τ))d s , a 1=ʏ10(2-s )s β-2f (s ,u (s -τ))d s .(13)将式(13)代入式(10)可得u (t )=ʏt 0(t -s )s β-2f (s ,u (s -τ))d s +ʏ10(2-s )s β-2f (s ,u (s -τ))d s -t ʏ1(2-s )s β-2f (s ,u (s -τ))d s =ʏt 0(1-s )(2-t )s β-2f (s ,u (s -τ))d s +ʏ1t(1-t )(2-s )sβ-2f (s ,u (s -τ))d s =ʏ10G (t ,s )f (s ,u (s -τ))d s . 引理5(A r z e l a -A s c o l i 定理)[20] 集合P ⊂C ([a ,b ])列紧的充分必要条件为:1)集合P 有界,即存在常数ψ,使得对∀u ɪP ,有u (t )ɤψ(∀t ɪ[a ,b ]);2)集合P 等度连续,即对∀ε>0,始终存在σ=σ(ε)>0,使得对于∀t 1,t 2ɪ[a ,b ],只要t 1-t 2<σ,即有u (t 1)-u (t 2)<ε(∀u ɪP ).2 主要结果设A 为C ([-τ,1],ℝ)按范数 u =m a x t ɪ[-τ,1]u (t )构成的B a n a c h 空间,在A 上定义一个算子Q ,Q u (t )=ʏ10G (t ,s )f (s ,u (s -τ))d s ,t ɪ[0,1],φ(t ),t ɪ[-τ,0]{. 假设条件:(H 1)函数f ɪC ([0,1]ˑℝ,ℝ),并且φɪC ([-τ,0],ℝ);9001 第5期张 敏,等:一致分数阶时滞微分方程边值问题解的存在性与唯一性 Copyright ©博看网. All Rights Reserved.(H 2)存在常数α,B >0,使得∀(t ,u )ɪ[0,1]ˑℝ,有f (t ,u )ɤαu +B ;(H 3)存在函数η(t )ɪL 1/2([0,1],ℝ+),使得∀t ɪ[0,1],当任取u ,v ɪℝ时,有f (t ,u )-f (t ,v )ɤη(t )u -v ,其中 η =ʏ10η2(s )d ()s 1/2.为方便,引入记号:Λ1=β+2β(β-1),Λ2=1(β-1)(2β-1)(2β-3),Λ3=2β2-β+1(β-1)(2β-1)(2β-3),32<βɤ2.定理1 如果条件(H 1)和(H 2)成立,并且αɪ(0,Λ-11),则边值问题(1)至少存在一个解.证明:由函数G (t ,s ),f (s ,u (s -τ))的连续性可知算子Q 是连续的,并且易证Q (A )⊂A .设P 是A 中的一个有界集,则存在常数M >0,使得对任意的u ɪP ,有 u ɤM .下面利用L e r a y -S c h a u d e r 度理论证明边值问题(1)正解的存在性,分以下3个步骤.1)证明算子Q (P )是一致有界的.对任意的u ɪP ,有Q u (t)=ʏ10G (t ,s )f (s ,u (s -τ))d s ɤʏ10G (t ,s )㊃f (s ,u (s -τ))d s ɤ(αu +B )ʏ10G (t ,s )d s ɤ(αM +B )ʏ10(2-s )(1-t )s β-2d s +ʏt(t -s )s β-2d []s =(αM +B )β+1β(β-1)(1-t )+1β(β-1)㊃t éëêêùûúúβɤ(αM +B )β+1β(β-1)+1β(β-1éëêêùûúú)=(αM +B )Λ1,因此,算子Q (P )是一致有界的.2)证明算子Q (P )是等度连续的.对任意的u ɪP ,t 1,t 2ɪ[-τ,1]且t 1<t 2:①当0ɤt 1<t 2ɤ1时,有Q u (t 2)-Q u (t 1)=ʏ10G (t 2,s )f (s ,u (s -τ))d s -ʏ1G (t 1,s )f (s ,u (s -τ))d s ɤʏ10G (t 2,s )-G (t 1,s )㊃f (s ,u (s -τ))d s ɤ(αu +B )ʏ10G (t 2,s )-G (t 1,s )d s ɤ (αM +B )ʏt 10G (t 2,s )-G (t 1,s )d s +ʏt 2t 1G (t 2,s )-G (t 1,s )d s +ʏ1t 2G (t 2,s )-G (t 1,s )d []s = (αM +B )ʏt 10{[(2-s )(1-t 2)s β-2-(2-s )(1-t 1)s β-2]+[(t 2-s )s β-2-(t 1-s )s β-2]}d s + (αM +B )ʏt 2t 1{[(2-s )(1-t 2)s β-2-(2-s )(1-t 1)s β-2]+(t 2-s )s β-2}d s + (αM +B )ʏ1t 2[(2-s )(1-t 2)s β-2-(2-s )(1-t 1)s β-2]d s =(αM +B )ʏt 10(t 1-t 2)(2-s )s β-2d s +ʏt 10(t 2-t 1)s β-2d s +ʏt 2t 1(t 1-t 2)(2-s )s β-2d [s + ʏt 2t 1(t 2-s )s β-2d s +ʏ1t 2(t 1-t 2)(2-s )s β-2d ]s ɤ(αM +B )(t β2-t β1)-(β+1)(t 2-t 1)β(β-1); ②当-τɤt 1<t 2ɤ0时,有Q u (t 2)-Q u (t 1)ɤφ(t 2)-φ(t 1);③当-τɤt 1<0<t 2ɤ1时,有Q u (t 2)-Q u (t 1)ɤQ u (t 2)-Q u (0)+Q u (0)-Q u (t 1)ɤʏ10G (t 2,s )-G (0,s )㊃f (s ,u (s -τ))d s +φ(0)-φ(t 1)ɤ(αM +B )ʏ10G (t 2,s )d s +φ(0)-φ(t 1)ɤ0101 吉林大学学报(理学版) 第61卷Copyright ©博看网. All Rights Reserved.(αM +B )t β2β(β-1)+φ(0)-φ(t 1)ɤ(αM +B )t β2-t β1β(β-1)+φ(0)-φ(t 1). 在上面3种情形中,当t 1ңt 2时,总有Q u (t 2)-Q u (t 1)ң0,表明Q (P )是等度连续的.故由引理5可知,Q (P )是列紧的,从而算子Q :A ңA 是全连续的.3)利用L e r a y -S c h a u d e r 度理论证明问题(1)正解的存在性.定义范数 φ [-τ,0]=m a x t ɪ[-τ,0]φ(s ).假设当γɪ[0,1],u ɪA 时,u =γQ u ,则u (t )=γQ u (t )ɤQ u (t)ɤʏ10G (t ,s )㊃f (s ,u (s -τ))d s ,t ɪ[0,1],φ(t ),t ɪ[-τ,0{],ɤʏ10G (t ,s )(αu +B )d s ,t ɪ[0,1],φ(t ),t ɪ[-τ,0{],ɤ(αu +B )ʏ10(2-s )(1-t )s β-2d s +ʏt 0(t -s )s β-2d []s ,t ɪ[0,1],φ(t ),t ɪ[-τ,0{],ɤ(α u +B )Λ1,t ɪ[0,1], φ [-τ,0],t ɪ[-τ,0{],从而 u ɤB Λ11-αΛ1 φìîíïïïɤT .令ω=T +1,B ω={u ɪA : u <ω},则u ʂγQ u ,对任意的u ɪ∂B ω,γɪ[0,1].定义一个映射:F γ(u )=u -γQ u ,则F γ(u )=u -γQ u ʂ0,对任意的u ɪ∂B ω,γɪ[0,1].因此,由L e r a y -S c h a u d e r 度的同伦不变性,有d e g (F γ,B ω,θ)=d e g (I -γQ ,B ω,θ)=d e g (F 1,B ω,θ)=d e g (F 0,B ω,θ)=d e g (I ,B ω,θ)=1ʂθ.从而根据L e r a y -S c h a u d e r 度的可解性可知,方程F 1(u )=u -Q u =0在B ω上至少存在一个解,进而边值问题(1)至少有一个正解.证毕.定理2 如果条件(H 1)和(H 3)成立,并且 η (Λ2+Λ3)<1,则边值问题(1)存在唯一解.证明:假设s u p t ɪ[0,1]f (t ,0)=ζ<ɕ.定义B δ={u ɪA : u ɤδ}为A 中的有界闭球,并选择δȡζΛ11- η (Λ2+Λ3).下面利用B a n a c h 压缩映射原理证明边值问题(1)解的存在唯一性,分以下两个步骤.1)证明Q (B δ)⊂B δ.对任意的u ɪB δ,有Q u (t)ɤʏt 0(t -s )s β-2f (s ,u (s -τ))d s +ʏ10(1-t )(2-s )s β-2f (s ,u (s -τ))d s ɤʏt 0(t -s )s β-2[f (s ,u (s -τ))-f (s ,0)+f (s ,0)]d s +ʏ10(1-t )(2-s )s β-2[f (s ,u (s -τ))-f (s ,0)+f (s ,0)]d s ɤ u ʏt(t -s )s β-2η(s )d s +ζʏt(t -s )s β-2d s +u (1-t )ʏ10(2-s )s β-2η(s )d s +ζʏ10(1-t )(2-s )s β-2d s ɤ u ʏt(t s β-2-s β-1)2d ()s 1/2ʏtη2(s )d ()s 1/2+ζβ(β-1)t β+ u (1-t )ʏ10(2s β-2-s β-1)2d []s 1/2ʏ10η2(s )d ()s 1/2+(β+1)ζβ(β-1)(1-t )ɤ1101 第5期张 敏,等:一致分数阶时滞微分方程边值问题解的存在性与唯一性 Copyright ©博看网. All Rights Reserved.1(β-1)(2β-1)(2β-3) u η t β-1/2+ζβ(β-1)t β+2β2-β+1(β-1)(2β-1)(2β-3) u η (1-t )+(β+1)ζβ(β-1)(1-t )ɤδ η (Λ2+Λ3)+ζΛ1,则 Q u ɤδ.表明算子Q 将B δ中的有界子集映为B δ中的有界子集,即Q (B δ)⊂B δ.2)证明算子Q 为压缩映射.对任意的u ,v ɪA :①当t ɪ[0,1]时,有Q u (t )-Qv (t )ɤʏt 0(t -s )s β-2f (s ,u (s -τ))-f (s ,v (s -τ))d s +ʏ10(1-t )(2-s )s β-2f (s ,u (s -τ))-f (s ,v (s -τ))d s ɤ u -v ʏt(t -s )s β-2η(s )d s + u -v (1-t )ʏ10(2-s )s β-2η(s )d s ɤu -v ʏt(t s β-2-s β-1)2d ()s 1/2ʏtη2(s )d ()s 1/2+u -v (1-t )ʏ10(2s β-2-s β-1)2d ()s 1/2ʏ10η2(s )d ()s 1/2ɤ1(β-1)(2β-1)(2β-3) u -v ㊃ ηt β-1/2+2β2-β+1(β-1)(2β-1)(2β-3) u -v ㊃ η (1-t )ɤ η (Λ2+Λ3) u -v ; ②当t ɪ[-τ,0]时,有Q u (t )-Q v (t )=φ(t )-φ(t )=0.由①,②可得Q u -Q v [-τ,1]ɤ η (Λ2+Λ3) u -v [-τ,1]. 因为 η (Λ2+Λ3)<1,所以算子Q 为压缩映射.即由B a n a c h 压缩映射原理可知算子Q 存在唯一的不动点,故边值问题(1)存在唯一解.3 应用实例考虑下列一致分数阶时滞微分方程边值问题:D 7/40+u (t )=e -3t s i n 1/2t 5(2+t )2㊃u (t -τ)1+u (t -τ), t ɪ[0,1],u (t )=φ(t ), t ɪ[-τ,0],u (0)+u ᶄ(0)=0,u (1)+u ᶄ(1)=ìîíïïïïïï0(14)解的存在性与唯一性.证明:在边值问题(14)中,β=74,函数f (t ,u (t ))=e -3t s i n 1/2t 5(2+t)2㊃u 1+u 是连续的,满足条件(H 1);对任意的u ,v ɪℝ,t ɪ[0,1],有f (t ,u (t -τ))-f (t ,v (t -τ))ɤe -3t s i n 1/2t 5(2+t )2u -v ɤe -3t s i n 1/2t ㊃u -v .所以存在η(t )=e -3t s i n 1/2t ɪL 1/2([0,1],ℝ+),满足条件(H 3),且 η =0.1667.又因为Λ2=1(β-1)(2β-1)(2β-3)ʈ1.0328, Λ3=2β2-β+1(β-1)(2β-1)(2β-3)ʈ2.3944.所以 η (Λ2+Λ3)ʈ0.5713<1.因此根据定理2可知,边值问题(14)存在唯一解.2101 吉林大学学报(理学版)第61卷Copyright ©博看网. All Rights Reserved.参考文献[1] K I Y AM E H RZ ,B A G HA N I H.E x i s t e n c eo fS o l u t i o n so fB V P sf o rF r a c t i o n a lL a n g e v i n E q u a t i o n sI n v o l v i n g C a p u t oF r a c t i o n a lD e r i v a t i v e s [J ].J o u r n a l o fA p p l i e dA n a l ys i s ,2021,27(1):47-55.[2] Z O U Y M ,H EGP .O n t h eU n i q u e n e s s o f S o l u t i o n s f o r aC l a s s o f F r a c t i o n a l D i f f e r e n t i a l E q u a t i o n s [J ].A p p l i e d M a t h e m a t i c sL e t t e r s ,2017,74:68-73.[3] J O N G K S ,C HO I H C ,R IY H.E x i s t e n c eo fP o s i t i v eS o l u t i o n so faC l a s so f M u l t i -p o i n tB o u n d a r y V a l u e P r o b l e m s f o r p -L a p l a c i a nF r a c t i o n a lD i f f e r e n t i a lE q u a t i o n sw i t hS i n g u l a rS o u r c eT e r m s [J ].C o mm u n i c a t i o n s i n N o n l i n e a r S c i e n c e a n dN u m e r i c a l S i m u l a t i o n ,2019,72:272-281.[4] C U IYJ ,MA WJ ,S U N Q ,e t a l .N e w U n i q u e n e s sR e s u l t s f o r B o u n d a r y V a l u e P r o b l e mo f F r a c t i o n a l D i f f e r e n t i a l E q u a t i o n [J ].N o n l i n e a rA n a l y s i s :M o d e l l i n g an dC o n t r o l ,2018,23(1):31-39.[5] L IY H ,Y A N G H J .E x i s t e n c eo fP o s i t i v eS o l u t i o n sf o r N o n l i n e a rF o u r -P o i n tC a p u t oF r a c t i o n a lD i f f e r e n t i a l E q u a t i o nw i t h p -L a p l a c i a n [J ].B o u n d a r y V a l u eP r o b l e m s ,2017,2017:75-1-75-15.[6] A HMA DB ,N T O U Y A SSK ,Z HO U Y ,e t a l .AS t u d y o fF r a c t i o n a lD i f f e r e n t i a l E qu a t i o n s a n d I n c l u s i o n sw i t h N o n l o c a l E r d él y i -K o b e rT y p eI n t e g r a lB o u n d a r y C o n d i t i o n s [J ].B u l l e t i no ft h eI r a n i a n M a t h e m a t i c a lS o c i e t y ,2018,44(5):1315-1328.[7] X U ET T ,L I U W B ,Z HA N G W.E x i s t e n c eo fS o l u t i o n sf o rS t u r m -L i o u v i l l eB o u n d a r y V a l u eP r o b l e m so f H i g h e r -O r d e rC o u p l e d F r a c t i o n a lD i f f e r e n t i a lE q u a t i o n sa tR e s o n a n c e [J ].A d v a n c e si n D i f f e r e n c e E q u a t i o n s ,2017,2017:301-1-301-18.[8] L IY H ,Q I A B .E x i s t e n c eo fP o s i t i v eS o l u t i o n sf o r M u l t i -p o i n tB o u n d a r y V a l u eP r o b l e m so fC a p u t o F r a c t i o n a l D i f f e r e n t i a l E q u a t i o n [J ].I n t e r n a t i o n a l J o u r n a l o fD y n a m i c a l S y s t e m s a n dD i f f e r e n t i a l E q u a t i o n s ,2017,7(2):169-183.[9] S E V I N I K A D I G ÜZ E LR ,A K S O Y Ü,K A R A P I N A R E ,e ta l .O nt h eS o l u t i o no faB o u n d a r y Va l u eP r ob l e m A s s oc i a t ed w i t ha F r a c t i o n a lD i f fe r e n t i a lE q u a t i o n [J /O L ].M a t h e m a t i c a l M e t h o d si nt h e A p pl i e d S c i e n c e s ,(2020-06-23)[2022-09-13].h t t p s ://d o i .o r g/10.1002/mm a .6652.[10] K HA L I LR ,A lHO R A N I M ,Y O U S E F A ,e ta l .A N e w D e f i n i t i o no fF r a c t i o n a lD e r i v a t i v e [J ].J o u r n a lo f C o m p u t a t i o n a l a n dA p pl i e d M a t h e m a t i c s ,2014,264:65-70.[11] I Y I O L A OS ,T A S B O Z A N O ,K U R T A ,e t a l .O n t h eA n a l y t i c a l S o l u t i o n s o f t h e S y s t e mo f C o n f o r m a b l eT i m e -F r a c t i o n a lR o b e r t s o nE q u a t i o n sw i t h1-DD i f f u s i o n [J ].C h a o s ,S o l i t o n s&F r a c t a l s ,2017,94:1-7.[12] Z HO U H W ,Y A N GS ,Z HA N GSQ.C o n f o r m a b l eD e r i v a t i v eA p p r o a c ht oA n o m a l o u sD i f f u s i o n [J ].P h y s i c a A :S t a t i s t i c a lM e c h a n i c s a n d I t sA p pl i c a t i o n s ,2018,491:1001-1013.[13] H ESB ,S U N K H ,M E IX Y ,e ta l .N u m e r i c a lA n a l y s i so fa F r a c t i o n a l -O r d e rC h a o t i cS y s t e m B a s e do n C o n f o r m a b l eF r a c t i o n a l -O r d e rD e r i v a t i v e [J ].T h eE u r o p e a nP h y s i c a l J o u r n a l P l u s ,2017,132:36-1-36-11.[14] L IY N ,S U N S R ,Y A N G D W ,e ta l .T h r e e -P o i n t B o u n d a r y V a l u e P r o b l e m s o f F r a c t i o n a lF u n c t i o n a l D i f f e r e n t i a l E q u a t i o n sw i t hD e l a y [J /O L ].B o u n d a r y V a l u eP r o b l e m s ,(2013-02-22)[2022-08-25].h t t ps ://d o i .o r g/10.1186/1687-2770-2013-38.[15] HA N Z L ,L I Y N ,S U I M Z .E x i s t e n c e R e s u l t sf o r B o u n d a r y V a l u e P r o b l e m so f F r a c t i o n a lF u n c t i o n a l D i f f e r e n t i a lE q u a t i o n sw i t hD e l a y [J ].J o u r n a l o fA p p l i e dM a t h e m a t i c s a n dC o m p u t i n g,2016,51(1/2):367-381.[16] L IM M ,WA N GJR.F i n i t eT i m eS t a b i l i t y o fF r a c t i o n a lD e l a y D i f f e r e n t i a l E q u a t i o n s [J ].A p pl i e d M a t h e m a t i c s L e t t e r s ,2017,64:170-176.[17] Y A N G X ,W E IZL ,D O N G W.E x i s t e n c eo fP o s i t i v eS o l u t i o n s f o r t h eB o u n d a r y Va l u eP r ob l e m o fN o n l i n e a r F r ac t i o n a lD i f f e r e n t i a lE qu a t i o n s [J ].C o mm u n i c a t i o n si n N o n l i n e a rS c i e n c ea n d N u m e r i c a lS i m u l a t i o n ,2012,17(1):85-92.[18] X U YF .F r a c t i o n a l B o u n d a r y V a l u eP r o b l e m sw i t h I n t e g r a l a n dA n t i -p e r i o d i cB o u n d a r y C o n d i t i o n s [J ].B u l l e t i n o f t h eM a l a y s i a n M a t h e m a t i c a l S c i e n c e sS o c i e t y,2016,39(2):571-587.[19] A B D E L J AWA D T.O nC o n f o r m a b l e F r a c t i o n a l C a l c u l u s [J ].J o u r n a l o f C o m p u t a t i o n a l a n dA p p l i e dM a t h e m a t i c s ,2015,279:57-66.[20] 许天周.应用泛函分析[M ].北京:科学出版社,2002:67-72.(X U T Z .A p p l i e dF u n c t i o n a lA n a l ys i s [M ].B e i j i n g :S c i e n c eP r e s s ,2002:67-72.)(责任编辑:赵立芹)3101 第5期张 敏,等:一致分数阶时滞微分方程边值问题解的存在性与唯一性 Copyright ©博看网. All Rights Reserved.。

Kurzweil广义常微分方程的φ有界变差解

Kurzweil广义常微分方程的φ有界变差解

西北师范大学硕士学位论文Kurzweil广义常微分方程的φ-有界变差解姓名:梁雪峰申请学位级别:硕士专业:应用数学指导教师:李宝麟2008-06摘 要本文借助Φ-有界变差函数理论,讨论了Kurzweil广义常微分方程Φ-有界变差解对参数的连续依赖性,首次提出了Φ-变差稳定性概念,并且讨论了Kurzweil广义常微分方程Φ-有界变差解的Φ-变差稳定性,建立了Φ-有界变差解的Φ-变差稳定性、渐进Φ-变差稳定性的Ljapunov型定理.这些结果是对文献[27]中Kurzweil方程有界变差解相应结果的本质推广.最后讨论了Kurzweil广义常微分方程与固定时刻一阶脉冲微分系统之间的关系,并建立了这类脉冲微分系统Φ-有界变差解的局部存在性和唯一性定理.关键词:Kurzweil方程;Φ-有界变差解;连续依赖性;Φ-变差稳定性;脉冲微分系统AbstractContinuous dependence on a parameter of boundedΦ-variation solutions to Kurzweil generalized ordinary differential equations is discussed by using the function of boundedΦ-variation.The concept ofΦ-variational stability is established originally and theΦ-variational stability of the boundedΦ-variation solutions to Kurzweil equations is discussed.The Ljapunov type theorems forΦ-variational stability and asymptotically Φ-variational stability of the boundedΦ-variation solutions are established.These results are an essential generalization of corresponding results of bounded variation solution to Kurzweil equations in paper[27].The relation between Kurzweil generalized ordinary dif-ferential equations and thefirst order impulsive differential equations atfixed time is dis-cussed.Furthermore,the local existence and uniqueness theorems of boundedΦ-variation solutions of this impulsive differential systems are established.Key words:Kurzweil equations;boundedΦ-variation solutions;continuous depen-dence on a parameter;Φ-variational stability;impulsive differential systems独创性声明本人声明所呈交的论文是我个人在导师指导下进行的研究工作及取得的研究成果。

有界变差函数空间

有界变差函数空间

有界变差函数空间有界变差函数空间是泛函分析中的一个重要领域,它在数学和工程领域中有广泛的应用。

在本文中,我将介绍有界变差函数空间的定义、性质、应用以及相关的研究方向。

有界变差函数空间是定义在某个区间上的实值函数的集合,它是由有界变差函数组成的。

有界变差函数是指在给定的区间上,其波动幅度有界的函数。

具体地说,给定一个区间[a, b],函数f称为有界变差函数,如果存在一个实数M,使得对于任意的分割[a = x_0 < x_1 < ... < x_n = b],有以下不等式成立:| f(x_i) - f(x_{i-1}) | ≤ M这里的|·|表示绝对值。

根据这个性质,我们可以说有界变差函数的变化是有限的,其波动幅度受到上界M的限制。

有界变差函数空间在实际问题中有许多应用。

例如,在信号处理中,有界变差函数空间可以用来描述信号的平滑性和波动性。

它在图像处理、音频处理和视频处理等领域中都有广泛的应用。

此外,有界变差函数空间也在数学分析的研究中起着重要的作用,例如在傅里叶级数的收敛性以及函数逼近理论的研究中。

有界变差函数空间具有许多重要的性质。

首先,它是一个向量空间,对于任意的有界变差函数f和g,以及任意的实数a和b,我们有af+bg仍然是一个有界变差函数。

此外,有界变差函数空间是一个完备空间,也就是说,任何收敛序列在这个空间中都有极限。

这使得有界变差函数空间成为研究动态系统和非线性泛函分析的有用工具。

另一个重要的性质是有界变差函数空间与L^p空间的关系。

对于1≤p<∞,有界变差函数空间包含在L^p空间中,并且这两个空间之间存在嵌入关系。

特别地,当p=1时,有界变差函数空间就是L^1空间。

这个结果表明有界变差函数空间在测度论和函数空间的研究中具有一定的联系。

在研究有界变差函数空间时,人们关注的一个重要问题是函数的逼近性质。

给定一个函数f,我们希望通过有界变差函数来逼近它。

这个问题在函数逼近理论中有广泛的研究,涉及到泛函分析、小波分析、数值逼近等领域。

解的存在唯一性定理

解的存在唯一性定理

一阶微分方程解的存在性定理的其它证明方法姜旭东摘要 本文在文[1]对一阶微分方程初值问题解得存在唯一性定理证明的基础上,应用压缩映像原理,Schauder 不动点定理,以及Euler 折线法,给出了一阶微分方程解得存在唯一性定理的其它几种证法.关键词 一阶微分方程 不动点定理 解的存在性 唯一性 1、引言微分方程来源于生活实际,研究微分方程的目的在于掌握它所反映的客观规律。

在文[1]第二章里,介绍了能用初等解法求解的一阶方程的若干类型,但同时指出,大量的一阶方程一般是不能用初等解法求解它的通解,而实际问题需要的往往是要求满足某种初始条件的解. 本文在文[1]对一阶微分方程初值问题解的存在唯一性定理证明的基础上,应用压缩映像原理,Schauder 不动点定理,以及Euler 折线法,给出了一阶微分方程解的存在唯一性定理的其它几种证法.考虑一阶微分方程 (,)dyf x y dx= (1.1)这里(,)f x y 是在矩形区域00:||,||R x x a y y b -≤-≤ (1.2)上的连续函数.函数(,)f x y 在R 上满足Lipschitz 条件,即存在常数L >0,使得不等式1212|(,)(,)|||f x y f x y L y y -≤- (1.3)对所有12(,),(,)x y x y R ∈都成立, L 称为Lipschitz 常数。

定理1.1、如果(,)f x y 在R 上连续且关于y 满足Lipschitz 条件,则方程(1.1)存在唯一的解()y x ϕ=,定义于区间0||x x h -≤上,连续且满足初始条件00()x y ϕ=这里min(,)bh a M=,(,)max |(,)|x y R M f x y ∈=.文[1]中采用皮卡逐步逼近法来证明这个定理.为了简单起见,只就区间00x x x h≤≤+来讨论,对于00x h x x -≤≤的讨论完全一样.分五个命题来证明这个定理:命题1、设()y x ϕ=是方程(1.1)定义于区间00x x x h ≤≤+上满足初始条件00()x y ϕ=的解,则()y x ϕ=是积分方程0(,)xx y y f x y dx =+⎰ 00x x x h ≤≤+ (1.4)的定义于00x x x h ≤≤+上的连续解.反之亦然. 现在取00()x y ϕ=,构造皮卡逐步逼近函数序列如下:0000100()()(,())x nn x x y x y f d x x x hϕϕξϕξξ-=⎧⎪⎨=+≤≤+⎪⎩⎰ (1.5)(n=1,2,…)命题2 、对于所有的n ,(1.5)中()n x ϕ在00x x x h ≤≤+上有定义、且满足不等式0|()|n x y b ϕ-≤命题3 、函数序列{}()n x ϕ在00x x x h ≤≤+上是一致收敛的. 命题4 、()x ϕ是积分方程(1.4)的定义于00x x x h ≤≤+上的连续解.命题5 、()x ψ是积分方程(1.4)的定义于00x x x h ≤≤+上的一个连续解,则()()x x ϕψ=,00x x x h ≤≤+.综合命题1—5,即得到存在唯一性定理.本文在方程(1.1)在满足定理1.1条件下,应用应用压缩映像原理,Schauder 不动点定理,以及Euler 折线法,给出了一阶微分方程解得存在唯一性定理的其它几种证法.2、预备知识定义 2.1、 定义在t αβ≤≤上的实值(m 维)向量函数族{}()F f t =,如果存在数M >0,使得对任一f F ∈,都有()f t M ≤,当t αβ≤≤时,则称函数族F 在t αβ≤≤上是一致有界的.定义2.2 、定义在t αβ≤≤上的实值(m 维)向量函数族{}()F f t =,如果对于任给的ε﹥0,总存在δ﹥0,使得对任一f F ∈和任意的12,[,]t t αβ∈,只要12|,|t t -<δ就有12()()f t f t -<ε则称函数族F 在 t αβ≤≤上是同等连续.定义2.3、设X 是度量空间,M 是X 中子集,若M 是X 中紧集,则称M 是X 中相对紧集。

泛函微分方程解的唯一性和渐近性

泛函微分方程解的唯一性和渐近性

等价 于积 分方 程
j : )d , + I 中
X 一 , ≥ a £
, ( 2 ) J
弓 理 1 若 x ( ,+口 , , 4 l EC [ 一y 口 ] R ) 贝 当 X
()其 中 r£为 时滞 偏 差 , 其 为 带 有 时滞 变 量 £, () 称
的泛 函微 分方 程L . 1 近年 来 , 类 系统大量 出现在 ] 这
t +a 时关 于 t 连续 的. E[ , ] 是
证 明 由 z £在 [ —y d ] () d , +口 上一 致 连 续
对 V£ O 了 £> O 使 当 l一5 < 时 ,z £ 一 > , () , t I I ()
收 稿 日期 :0 11—0 2 1-01.
作 者简 介 : 赵宪 民(9 7) 男 , 1 6- , 山东莱芜人 , 莱芜 职业技术 学院副教授 , 主要从事微分方程研 究.
1 2
甘 肃 联合 大 学 学 报 ( 自然科 学 版)
第2 5卷
I f s z )s— I (+ , d — ( , d 1 l s z s f )
定性 理 论 的 一 部 分 , 最 近 3 在 O年 有 了 迅 速 的发 展 , 泛的应 用 背 景 是促 使 这 一 理论 迅 速 发 展 的 广 基础 . 作为 某 系统 的微 分 方 程 不 仅含 自变 量 t 若 , 而且 还含 有不 同 于 t “ 差 变元 ” 通 常记 为 r 的 偏 ,
()t O , ≥ .
并 引人 零初 始条 件 , z t是 ( ) ( , 的 设 () 1 过 ) 解, 令
xa £ ( + )一 ( + £ + ()t 一 y ( ) ) £ ,≥ , 3

滞后型脉冲泛函微分方程有界性的Lyapunov逆定理

滞后型脉冲泛函微分方程有界性的Lyapunov逆定理

滞后型脉冲泛函微分方程有界性的Lyapunov逆定理
李宝麟;周云菲
【期刊名称】《数学年刊(A辑)》
【年(卷),期】2024(45)1
【摘要】本文通过建立滞后型脉冲泛函微分方程饱和解的存在唯一性定理,在广义常微分方程与滞后型脉冲泛函微分方程等价的基础上,研究了滞后型脉冲泛函微分方程关于一致有界性的Lyapunov逆定理.
【总页数】12页(P97-108)
【作者】李宝麟;周云菲
【作者单位】兰州工商学院数学教学部
【正文语种】中文
【中图分类】O175.1
【相关文献】
1.无限滞后测度泛函微分方程解的有界性
2.p-滞后型脉冲泛函微分系统的一致有界性
3.一类二阶滞后型泛函微分方程解的有界性和趋零性
4.滞后型测度泛函微分方程解的有界性
5.无穷时滞测度泛函微分方程的Lyapunov逆定理
因版权原因,仅展示原文概要,查看原文内容请购买。

具无限时滞随机偏泛函微分方程解的存在唯一性及渐进性

具无限时滞随机偏泛函微分方程解的存在唯一性及渐进性

具无限时滞随机偏泛函微分方程解的存在唯一性及渐进性
本文中,我们将考虑Lp(Ω,Chp)空间中具无限时滞的随机偏泛函微分方程温和解的存在性,唯一性及渐进性质
(p&gt;2) :dX(t)=[-AX(t)+f(t,Xt)]dt+g(t,Xt)dW(t),其中,我们假设-A是一个闭的,稠密定义的线性算子,它是某一个解析半群的无穷小生成元. f:R+×Cαh →H,g:R+×Cαh→L20(K,H)是两个局部李普希兹连续函数.这里Cαh=C(R-,D(A α))和L20(K,H)是两个无限维空间,0&lt;α&lt;1,W(t)是一个给定的K-值维纳过程,H和K都是可分的希尔伯特空间.本文由两章构成.第一章简述了问题产生的历史背景,本文的主要工作以及本文中主要定理证明所使用的工具.在第二章中,首先,我们研究巴拿赫空间Chp和Lp(Ω,Chp),它是后面研究的基础.其次,我们利用半群方法给出了当函数f和g满足局部李普希兹条件和线性增长条件时,具无限时滞的随机偏泛函微分方程解的存在性,唯一性.再次,通过利用随机卷积估计,我们将致力研究温和解的p-阶矩和几乎必然李雅普诺夫指数稳定性(见下面的引理2. 3. 1) .最后,我们将给出具无限时滞的Volterra随机积分-微分方程的一些应用,另外,我们将给出一个Volterra随机积分-微分反应-扩散方程的例子来说明我们的主要定理.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考虑滞 后泛 函微分 方程初 值 问题 :
J { 土 ( 厂 ( c
xE 0 一 ,
( ‘ 1 j ) J
其 中: z∈ R ” 是定 义在 [ £ 。 一r , t 。 + ] 上 的函数 , > 0 , t 。 >0 , r >0 . 对所 有 的 t ∈[ , t o + ] , 函数 X ∈R ”
并且 定义 z ( )一 x ( t + ) , 0∈ [ 一r , O ] . 由文献E 8 ] 可知 , 滞 后泛 函微分 方程初 值 问题 ( 1 )的解 等价于求 解泛 函积分 方程
j ( 一 0 + J f t f ‘ I—j J ‘ 5 .

第2 5 卷
第 1期
甘 肃 科 学 学 报
J o u r n a l o f Ga n s u S c i e n c e s
Vo 1 . 2 5 No . 1
Ma r . 2 01 3
2 0 1 3 年 3月
滞 后 型 泛 函微 分 方 程 的 一 有 界 变 差 解 的 唯 一 性
s o l ut i o n; un i q ue ne s s
1 9 5 7 年以来 , He n s t o c k 和 Ku r z w e i l 各 自独立 的建立 了 He n s t o c k - K u r z w e i l 积分. 利用 He n s t o c k — Ku r z we i l 积
Ke y wo r ds : He n s t o c k — Kur z we i l i n t e gr a l ; r e t a r d e d f unc t i on a l di f f e r e nt i a l e q u a t i o ns ; bo u nd e d 一 v a r i a t i o n
卢金芳 , 李 宝麟
( 西北 师 范 大学 数 学 与 统 计 学 院 , 甘 肃 兰州 7 3 0 0 7 0 )
摘 要 : 利 用 Mu s i e l a k及 O r l i c k建 立 的 一 有界 变差 函数 理论 , 引入 了滞后 泛 函微 分 方程 的 一 有
界 变差 解 , 建 立 了滞后 型泛 函微 分 方程 有界 变差解 的唯 一性 定理. 关键词 : He n s t o c k — Ku r z we i l 积分 ; 滞 后泛 函微 分方程 ; 一 有界 变差解 ; 唯 一性
Ab s t r a c t : B a s e d o n t h e b o u n d e d  ̄- v a r i a t i o n f u n c t i o n a l t h e o r y e s t a b l i s h e d b y Mu s i e l a k a n d Or l i c k, t h e — v a r i a t i o n s o l u t i o n s o f t h e r e t a r d e d f u n c t i o n a l d i f f e r e n t i a l e q u a t i o n s we r e i n t r o d u c e d a n d t h e u n i q u e n e s s t h e — o r e m o f t h e b o u n d e d 一 v a r i a t i o n s o l u t i o n s wa s s e t u p .
中图分 类号 : O1 7 5 . 1 2 文 献标 志码 : A 文 章编号 : 1 0 0 4 - 0 3 6 6 ( 2 O 1 3 ) 0 1 一 O O 0 4 — 0 4
Un i qu e ne s s o f Bo u n d e d  ̄- v a r i a t i o n S o l u t i o n s f o r
分, 在 研究滞 后泛 函微 分方 程 中 的应 用见 文献 [ 1 — 3 ] . 文献[ 4 , 5 ]中首 次利 用 Mu s i e t a k及 Or l i c z等人 提 出的
有 界变 差 函数 理论 建立 了 Ku r z we i l 方程 的 一 有 界变 差解 的唯一性 定理 和一类 固定 时刻 脉冲微 分 系统 有界变差解 的唯一性 . 我们在文献[ 7 3的基 础上建立 了滞后 泛 函微分方程 的 有界变差解 的唯一 性定理.
Re t a r d e d Fu n c t i o n a l Di f f e r e nt i a l Eq u a t i o ns
L U J i n — f a n g, LI B a o — l i n
( C o l l e g e o f Ma t h e m a t i c s a n d S t a t i s t i c s , No r t h w e s t No r a l m U n i v e r s i t y, L a n z h o u 7 3 0 0 7 0 , C h i n a )
’ t o
x,
( 2 Z )

我 们对 滞后 泛 函微 分方 程 的条件 比文献 [ 9 ]中更广 泛 , 考虑 厂是 He n s t o c k — Ku r z we i l 积分 , 是 一 有 界
变差 函数 .
收 稿 日期 : 2 0 1 2 — 1 1 — 2 0 基 金项 目 : 国家 自然 科学 基金 项 目( 1 1 0 6 1 0 3 1 ) ; 甘 肃省 “ 5 5 5 ” 创 新 人 才 工 程 资 助项 目; 西 北 师 范 大 学科 技 创 新 工 程 资助 项 目
相关文档
最新文档