解分式方程及增根-无解的典型问题含答案
初中数学分式方程的增根、无解问题解答题基础训练(附答案详解)

17.若关于x的方程 的解是正数,求k值.
18.当k为何值时,分式方程 有增根?
19.已知关于x的方程 的根是x=1,求 的值.
参考答案
1.m<5且m≠2
【解析】
【分析】
先解分式方程,然后根据分式方程解的取值范围和增根的定义列出不等式即可求出结论.
【详解】
解:
解得:
∵关于x的分式方程 的解为正数,
∴
即
解得:m<5且m≠2.
【点睛】
此题考查的是根据分式方程解的情况,求参数的取值范围,掌握分式方程的解法和增根的定义是解决此题的关键.
2.(1) ;(2) ,数轴上表示见解析.
【解析】
【分析】
(1)将y=-1代入原方程解出a即可.
(2)根据不等式的解法解出解集即可.
【详解】
(2)将新方程的x表示出来,令方程小于零,解出即可.
【详解】
由上得:2x=(m-2)x-6,整理得:(4-m)x=-6.
(1)①当4-m=0即m=4时,原方程无解;
②当分母x+3=0即x=-3时,方程无解;
故2×(-3)=(m-2)×(-3)-6,
解得m=2,
综上所述,m=4或m=2.
(2)
当m≠4时, ,
∵方程的解是负数,
∴a-4<0,
∴a<4,
又∵x+2≠0,
∴x≠-2,
∴a≠2
那么a的取值范围是:a<4且a≠2.
【点睛】
本题考查解分式方程,解题的关键是掌握分式方程的求解,注意x+2≠0.
9. 且
【解析】
【分析】
先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求a的取值范围.
分式方程的无解与增根

∵原方程有增根 x 2,即2 3 - m ∵原方程无解
小结: 1、分式方程的增根是在分式方程化为整式 方程的过程中,整式方程的解使最简公分母 为0的未知数的值。 2、分式方程无解则包含两种情形:
1)原方程去分母后的整式方程无解, 2)原方程去分母后的整式方程有解,但解 是增根。 3、分式方程有增根和无解时:
(× )
(× ) )
x -3 2、无解的分式方程就一定有增根。
中,其值一定为0。
例如: 0; X=-3 ( x 3)(x - 1) 3、分式方程若有增根,增根代入最简公分母
(√ 2 例如: = 0 0X=2 4、使分式方程的分母等 x 0的未知数的值一定
是分式方程的增根。
(× )
应用升华
1 1- x X=2 1.如果 x - 2 + 3 = 2 - x 有增根,那么增根是__________. 2 k 3 2.关于x的方程 x 2 x 2 4 x 2 有增根,
x -3 m 有增根, 无解, 例4、若关于x的方程 x-2 2-x x -3 m 解:原方程可化为 =x -2 x-2 方程两边同乘以( x - 2),得 x - 3 = -m 1、化为整式方程 ∴x = 3 - m
求m的ቤተ መጻሕፍቲ ባይዱ。
解得,m =1 2、把增根代入整式方程 求出字母的值 ∴当m 1时,原方程有增根。 时,原方程无解。
1 k 1 x2 x2
• 有增根,则k= 1 。
xa a 无解,则a的 • 1、若分式方程 a
取值是a=
0
。
m x 0 无 • 2、若分式方程 2m x 1
解,则m的取值是( A ) • • A、-1或 C、-1
分式方程的增根与无解详解(最新整理)

x-2 (x-3)=m
整理得:
x=6-m
∵原方程有解,故 6-m 不是增根。
∴6-m≠3 即 m≠3
∵x>0
∴m<6
由此可得答案为 m 的取值范围是 m<6 且 m≠3。 一、分式方程有增根,求参数值
2
x2 4xa 例 7 a 为何值时,关于 x 的方程 x 3 =0 有增根?
解:原方程两边同乘以(x-3)去分母整理,得 x2-4x+a=0(※) 因为分式方程有增根,增根为 x=3,把 x=3 代入(※)得,9-12+a=0 a=3
整理得(a-1)x=-10
②
1
若原方程无解,则有两种情形: (1)当 a-1=0(即 a=1)时,方程②为 0x=-10,此方程无解,所以原方程无解。 (2)如果方程②的解恰好是原分式方程的增根,那么原分式方程无解.原方程若有增根,增根为 x=2 或-2,把 x=2 或-2 代入方程②中,求出 a=-4 或 6. 综上所述,a=1 或 a=一4或 a=6 时,原分式方程无解. 例 5:(2005 扬州中考题)
入(※)得 m=-2
3 所以 m=- 2 或-2 时,原分式方程有增根
k
2
点评:分式方程有增根,不一定分式方程无解(无实根),如方程 x 1 +1= ( x 1)( x 2) 有增根,可求得 k=-
2
8
3 ,但分式方程这时有一实根 x= 3 。
二、分式方程是无实数解,求参数值
x2 m 例 9 若关于 x 的方程 x 5 = x 5 +2 无实数,求 m 的值。
整理得:
m(x+1)=7-x2
当 x= -1 时,此时 m 无解;
当 x=1 时,解得 m=3。
(完整版)分式方程无解增根专题

分式方程专题一:知识梳理如果一个分式方程的根能使此方程的公分母为零,那么这个根就是原方程的增根。
产生增根的条件是:①是得到的整式方程的解;②代入最简公分母后值为0。
在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根。
二:例题精讲例题1:若方程﹣=1有增根,则它的增根是,m=.【解答】解:由分式方程有增根,得到(x+1)(x﹣1)=0,解得:x=±1,分式方程去分母得:6﹣m(x+1)=x2﹣1,把x=1代入整式方程得:6﹣2m=0,即m=3;把x=﹣1代入整式方程得:6=0,无解,综上,分式方程的增根是1,m=3.故答案为:1;3.反馈:(1)若关于x的分式方程=1有增根,则增根为;此时a=.(2)关于x的方程+=2有增根,则m=.(3)若关于x的分式方程=﹣有增根,则k的值为.例题2:若关于x的方程的解为正数,则m的取值范围是.【解答】解:方程两边都乘以x﹣2,得:﹣2+x+m=2(x﹣2),解得:x=m+2,∵方程的解为正数,∴m+2>0,且m+2≠2,解得:m>﹣2,且m≠0,故答案为:m>﹣2且m≠0.反馈:(1)已知关于x的方程=3的解是正数,则m的取值范围是.(2)关于x的方程的解是负数,则a的取值范围是.例题3:若关于x的分式方程=a无解,则a的值为.【解答】解:两边同乘以x+1,得x﹣a=ax+a移项及合并同类项,得x(a﹣1)=﹣2a,系数化为1,得x=,∵关于x的分式方程=a无解,∴x+1=0或a﹣1=0,即x=﹣1或a=1,∴﹣1=,得a=﹣1,故答案为:±1.反馈:(1)关于x的方程无解,则k的值为.(2)若关于x的分式方程无解,则m的值为.(3)若关于x的分式方程无解,则m=.三:典型错题1.在中,x的取值范围为.2.要使方式的值是非负数,则x的取值范围是.3.已知,则分式的值为.4.将分式(a、b均为正数)中的字母a、b都扩大到原来的2倍,则分式值为原来的倍.5.若=+,则A=,B=.6.若解分式方程产生增根,则m=.7.若关于x的方程是非负数,则m的取值范围是.8.关于x的分式方程有解,则字母a的取值范围是9.已知,则的值为.10.已知a2+b2=9ab,且b>a>0,则的值为.参考答案:例题1:反馈:(1)若关于x的分式方程=1有增根,则增根为;此时a=.【解答】解:去分母得:2x﹣a=x+1,由分式方程有增根,得到x+1=0,即x=﹣1,把x=﹣1代入得:﹣2﹣a=0,解得:a=﹣2,故答案为:﹣1;﹣2(2)关于x的方程+=2有增根,则m=.【解答】解:去分母得:5x﹣3﹣mx=2x﹣8,由分式方程有增根,得到x﹣4=0,即x=4,把x=4代入整式方程得:20﹣3﹣4m=0,快捷得:m=,故答案为:(3)若关于x的分式方程=﹣有增根,则k的值为.【解答】解:去分母得:5x﹣5=x+2k﹣6x,由分式方程有增根,得到x(x﹣1)=0,解得:x=0或x=1,把x=0代入整式方程得:k=﹣;把x=1代入整式方程得:k=,则k的值为或﹣.故答案为:或﹣例题2:反馈:(1)已知关于x的方程=3的解是正数,则m的取值范围是.【解答】解:解关于x的方程=3得x=m+6,∵方程的解是正数,∴m+6>0且m+6≠2,解这个不等式得m>﹣6且m≠﹣4.故答案为:m>﹣6且m≠﹣4.(2)关于x的方程的解是负数,则a的取值范围是.【解答】解:把方程移项通分得,∴方程的解为x=a﹣6,∵方程的解是负数,∴x=a﹣6<0,∴a<6,当x=﹣2时,2×(﹣2)+a=0,∴a=4,∴a的取值范围是:a<6且a≠4.故答案为:a<6且a≠4.例题3:反馈:(1)关于x的方程无解,则k的值为.【解答】解:去分母得:2x+4+kx=3x﹣6,当k=1时,方程化简得:4=﹣6,无解,符合题意;由分式方程无解,得到x2﹣4=0,即x=2或x=﹣2,把x=2代入整式方程得:4+4+2k=0,即k=﹣4;把x=﹣2代入整式方程得:﹣4+4﹣2k=﹣12,即k=6,故答案为:﹣4或6或1(2)若关于x的分式方程无解,则m的值为.【解答】解:两边都乘以(x﹣2),得x﹣1=m+3(x﹣2).m=﹣2x+5.分式方程的增根是x=2,将x=2代入,得m=﹣2×2=5=1,故答案为:1.(3)若关于x的分式方程无解,则m=.【解答】解:方程两边都乘以(x+1)(x﹣1),得:m﹣(x﹣1)=0,即m=x﹣1,∵关于x的分式方程无解,∴x=1或x=﹣1,当x=1时,m=0,当x=﹣1时,m=﹣2,故答案为:0或﹣2.典型错题:1.在中,x的取值范围为0<x≤1.2.要使方式的值是非负数,则x的取值范围是x≥1或x<﹣2.3.已知,则分式的值为.4.将分式(a、b均为正数)中的字母a、b都扩大到原来的2倍,则分式值为原来的倍.5.若=+,则A=﹣12,B=17.6.若解分式方程产生增根,则m=﹣2或1..7.若关于x的方程是非负数,则m的取值范围是m≥﹣2且m≠﹣1 .8.关于x的分式方程有解,则字母a的取值范围是a≠5,a≠0.9.已知,求的值.【解答】解:将两边同时乘以x,得x2+1=3x,===.10.已知a2+b2=9ab,且b>a>0,求的值.【解答】解:∵a2+b2=9ab,∴a2+b2+2ab=11ab,a2+b2﹣2ab=7ab,即(a+b)2=11ab,(a﹣b)2=7ab,∵b>a>0,即b﹣a>0,∴a+b=,b﹣a=,则原式=﹣=﹣=﹣.。
分式方程的增根与无解

分式方程的增根与无解甲:增根是什么?乙:增根是解分式方程时,把分式方程转化为整式方程这一变形中,由于去分母扩大了未知数的取值范围而产生的未知数的值.比如例一、解方程:。
①为了去分母,方程两边乘以,得②由②解得。
甲:原方程的解是。
乙:可是当时,原方程两边的值相等吗?甲:这我可没注意,查验一下不就明白了。
哟!当时,原方程有的项的分母为0,没成心义,是不是方程变形进程中弄错啦?乙:求解进程完全正确,没有任何的过失。
甲:那什么缘故会显现这种情形呢?乙:因为原先方程①中未知数x的取值范围是且,而去分母化为整式方程②后,未知数x的取值范围扩大为全部实数。
如此,从方程②解出的未知数的值就有可能不是方程①的解。
甲:如此说来,从方程①变形为方程②,这种变形并非能保证两个方程的解相同,那么,如何明白从整式方程②解出的未知数的值是或不是原方程①的解呢?乙:很简单,两个字:查验。
能够把方程②解出的未知数的值一一代入去分母时方程两边所乘的那个公分母,看是不是使公分母等于0,若是公分母为0,则说明那个值是增根,不然确实是原方程的解。
甲:那么,那个题中确实是增根了,可原方程的解又是什么呢?乙:原方程无解。
甲:啊?!什么缘故会无解呢?乙:无解时,方程本身确实是个矛盾等式,不论未知数取何值,都不能使方程两边的值相等,如上题中,不论x取何值,都不能使方程①两边的值相等,因此原方程无解,又如关于方程,不论x取何值也不能使它成立,因此,那个方程也无解。
甲:是不是有增根的分式方程确实是无解的,而无解的分式方程就必然有增根呢?乙:不是!有增根的分式方程不必然无解,无解的分式方程也不必然有增根,你看:例二、解方程,去分母后化为,解得或,现在,是增根,但原方程并非是无解,而是有一个解,而方程,去分母后化为,原方程尽管无解,但原方程也没有增根。
乙:增根不是原分式方程的解,但它是去分母后所得的整式方程的解,利用这种关系能够解决分式方程的有关问题,你看:例3、已知关于x的方程有增根,求k的值。
专题12 分式方程的无解与增根(含答案)

专题12 分式方程的无解与增根知识解读1.分式方程增根的定义方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根. 2.分式方程无解有两种可能(1)将分式方程通过“去分母”变成整式方程后,整式方程是“0x =1”的形式,即整式方程无解;(2)整式方程求得的解,使得原分式方程的分母等于0,即求得的根为增根。
3.验根的方法(1)代人原方程检验,看方程左、右两边的值是否相等,如果相等,则未知数的值是原方程的解,否则就是原方程的增根;(2)代人最简公分母检验,看最简公分母的值是否为零,若值为零,则未知数的值是原方程的增根,否则就是原方程的根.前一种方法虽然计算量大,但是能检查解分式方程中有无计算错误,后一种虽然简单,但不能检查解方程的过程有无计算错误,所以在使用后一种检验方法时,应以解方程的过程没有错误为前提。
培优学案典例示范一、分式方程增根的讨论 例1若方程233x mx x -=--有增根,则m 的值为 ( ) A. -3 B .3 C .0 D .以上都不对【提示】如果这个方程有增根,则这个增根为x =3,x =3虽然不是233x mx x -=--的解,但却是这个方程去分母之后得到的整式方程的解。
【技巧点评】方程有增根,一定存在使公分母等于0的未知数的值.解这类题的一般步骤:①把分式方程化成整式;方程;②令公分母为0,求出x 的值;③把x 的值代入整式方程,求出字母系数的值。
跟踪训练1.当m 为何值时,解方程225++111mx x x =--会产生增根?二、分式方程的无解 例2若关于x 的分式方程311x a x x--=-无解,则a = . 【提示】分式方程无解,需要就分式方程有增根和整式方程无解两种情况讨论。
【技巧点评】已知分式方程的无解,可先考虑去分母,将它化成整式方程,然后讨论是整式方程无解,还是分式方程的根为增根。
跟踪训练2.当k 时,分式方程,0111x k x x x x +-=--+无解.三、分式方程解的讨论 例3 已知关于x 的方程232x mx +=-的解是正数,则m 的取值范围为 。
(完整版)分式方程的增根与无解详解

分式方程的增根与无解讲解2 4x 3例1解方程上 二—.①x 2 x 4 x 2解:方程两边都乘以(x+2) (x-2 ),得2 (x+2) -4x=3 (x-2 ).② 解这个方程,得x=2 .经检验:当x=2时,原方程无意义,所以 x=2是原方程的增根.所以原方程无解.x 13 x 例2解方程2 .x 22 x解:去分母后化为 x — 1 = 3- x + 2 (2 + x ). 整理得0x = 8.因为此方程无解,所以原分式方程无解.例3 (2007湖北荆门)若方程 口 = 旦 无解,则m 二——x 2 2 x解:原方程可化为方程两边都乘以 x — 2,得x — 3=— m. 解这个方程,得x=3 — m因为原方程无解,所以这个解应是原方程的增根.即 x=2 ,所以2=3 — m,解得m=1 故当m=1时,原方程无解.2例4当a 为何值时,关于x 的方程 ---------x 2解:方程两边都乘以(x+2) (x-2 ),得 2 (x + 2) + ax = 3 (x — 2) 整理得(a — 1) x = — 10②若原分式方程有增根,则 x = 2或—2是方程②的根. 把x = 2或一 2代入方程②中,解得,a = — 4或6. 若将此题“会产生增根”改为“无解” ,即:此时还要考虑转化后的整式方程(a — 1) x =— 10本身无解的情况,解法如下:解:方程两边都乘以(x+2) (x-2 ),得 2 (x + 2) + ax = 3 (x — 2)2当a 为何值时,关于x 的方程门 axx 2 4①无解?axx 2 4①会产生增根?整理得(a—1) x = —10 ②若原方程无解,则有两种情形:(1 )当a - 1 = 0 (即a = 1)时,方程②为Ox = - 10,此方程无解,所以原方程无解。
(2)如果方程②的解恰好是原分式方程的增根,那么原分式方程无解•原方程若有增根,增根为 =2或一2,把x = 2或一2代入方程②中,求出 a =- 4或6.综上所述,a = 1或a =—4或a = 6时,原分式方程无解. 例5: (2005扬州中考题)A 、0B 、1C 、-1D 、1 或-1 分析:使方程的最简公分母 (x+1)(x-1)=0 则x=-1或x=1,但不能忽略增根除满足最简公分母为零须是所化整式方程的根。
分式方程的增根与无解详解

分 式 方 程 的 增 根 与 无 解 讲 解例1解方程—24x 3•①x 2 x 4 x 2解:方程两边都乘以(x+2) (x-2 ),得2 (x+2) -4x=3 (x-2 ).②解这个方程,得x=2.经检验:当x=2时,原方程无意义,所以x=2是原方程的增根.所以原方程无解.例2解方程x 13 x2 .x 22 x解:去分母后化为x — 1 = 3— x + 2 (2+ x ).整理得0x = 8.因为此方程无解,所以原分式方程无解.例3 (2007湖北荆门)若方程 王卫二―丄无解,则m= ------------ .x 22 x解:原方程可化为x 3二—m.x 2 x 2方程两边都乘以x — 2,得x — 3=— m解这个方程,得x=3— m因为原方程无解,所以这个解应是原方程的增根.即 x=2,所以2=3— m 解得m=1.故当m=1时,原方程无解.ax例4当a为何值时,关于x的方程齐厂齐①会产生增根?解:方程两边都乘以(x+2) (x-2 ),得 2 (x + 2)+ ax= 3 (x —2)整理得(a—1) x = —10若原分式方程有增根,则x= 2或-2是方程②的根.把x = 2或一2代入方程②中,解得,a = —4或6.若将此题“会产生增根”改为“无解”,即:2 ax 3当a为何值时,关于x的方程厂2 厂门①无解?此时还要考虑转化后的整式方程(a—1)x二—10本身无解的情况,解法如下:解:方程两边都乘以(x+2) (x-2 ),得 2 (x + 2)+ ax= 3 (x —2)整理得(a—1) x = —10若原方程无解,则有两种情形:(1)当a—1 = 0 (即a= 1)时,方程②为0x =一10,此方程无解,所以原方程无解。
(2)如果方程②的解恰好是原分式方程的增根,那么原分式方程无解•原方程若有增根,增根为x = 2或一2,把x = 2或一2代入方程②中,求出a= —4或6.综上所述,a= 1或a = —4或a=6时,原分式方程无解.例5: (2005扬州中考题)6A 、0B 、1C 、-1D 、1 或-1分析:使方程的最简公分母(x+1)(x-1)=0 则x=-1或x=1,但不能忽略增根除满足最简公 分母为零,还必须是所化整式方程的根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解分式方程及增根-无解的典型问题含答案
优博辅导中心
当堂检测
1. 解方程
1x?2?1?x2?x?3 答案:x?2是增根原方程无解。
2. 关于x的方程a1?2x?4?1?x4?x有增根,则a=-------答案:7 3. 解关于x
的方程
mx?5?1下列说法正确的是(C )
A.方程的解为x?m?5
B.当m??5时,方程的解
为正数 C.当m??5时,方程的解为负数 D.无法确定
4.若分式方程
x?ax?1?a无解,则a的值为-----------答案:1或-1 5. 若
分式方程
m?xx?1=1有增根,则m的值为-------------答案:-1 6.分
式方程1x?2?mx?1有增根,则增根为------------答案:2或-1 7. 关于x的方程1x?2?1?kx?2有增根,则k的值为-----------答
案:1 8. 若分式方程x?aa?a无解,则a的值是----------答
案:0 9.若分式方程2m?m?x1x?1?0无解,则m的取值是------答案:-1或-2 10. 若关于x的方程
m(x?1)?52x?1?m?3无解,则m的值为-------答案:6,10 11. 若关于x的方程
x?mx?1?3x?1无解,求m的值为-------答案: 12.解方程1162-x?x?2??x3x?12答案x??627 13.解方程
2x-1?4x2?1?0 14. 解方程
2x2x?5?22x?5?1 15. 解方程x?22x2x?3?3??13x2?9 x?1m216. 关于x的方程x?3?2x?6有增根,则m的值-----答案:m=2或-2 17.当a为何值时,关于x的分式方程
x?ax?1?3x?1无解。
答案:-2或1
1。