武汉工程大学物理练习册答案
武汉工程大学物理练习册答案

大学物理练习 一一.选择题:1.一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=其中a 、b为常量, 则该质点作 A 匀速直线运动. B 变速直线运动. C 抛物线运动. D 一般曲线运动.解:选B j bt i at r 22+=22bty at x ==2.一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为v,某一段时间内的平均速度为v,平均速率为v ,它们之间的关系必定有A v =v,v =v . C ≠vv,v ≠v .B ≠vv,v =v . D v =v,v ≠v .解:选D .根据瞬时速度与瞬时速率的关系dsr d =所以但s r ∆≠∆ 所以3.质点作半径为R 的变速圆周运动时的加速度大小为 v 表示任一时刻质点的速率A dtdv . BR v 2.C dt dv +R v2. D 21222⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛R v dt dv .解:选D . 因变速圆周运动的加速度有切向加速度和法向加速度,故22τa a a n += ;4.某物体的运动规律为2kv dt dv -=,式中的k 为大于零的常数;当t=0时,初速为v 0,则速度v 与时间t 的函数关系是 Av = kt+v 0 Bv =-kt + v 0大学物理练习 二一、选择题:1.质量为m 的小球在向心力作用下,在水平面内作半径为R 、速率为v 的匀速圆周运动,如下左图所示;小球自A 点逆时针运动到B 点的半周内,动量的增量应为:A mv 2jB j mv2-C i mv2D imv 2- 解: Bjmv j mv j mv v m v m A B2-=--=-2.如图上右所示,圆锥摆的摆球质量为m,速率为v,圆半径为R,当摆球在轨道上运动半周时,摆球所受重力冲量的大小为A .2mvB ()()22/2v R mg mv π+C v Rmg /πD 0;解:C ⎰===2/0/2/T v Rmg mgT mgdt I π恒力冲量 v Rt π=vRmgmgt π=3.一质点在力)25(5t m F -= SI 式中m 为质点的质量,t 为时间的作用下,0=t 时从静止开始作直线运动,则当s t 5=时,质点的速率为A s m /50B s m /25 C0 D s m /50-解:CB00=-mv mv如果当s t 1=时m mv mv 200=-4.质量分别为m 和4m 的两个质点分别以动能E 和4E 沿一直线相向运动,它们的总动量大小为A ,22mEB mE 23,C mE 25,D ()mE 2122-;解: B 因质点m;mE mv E mv 2,21121=∴= 因质点m 4:mE mE mv E mv 24324,4421222==∴=所以mE mE mE P 23242=+-=5.一个质点同时在几个力作用下的位移为:k j i r654+-=∆ SI 其中一个力为恒力 k j i F953+--= SI,则此力在该位移过程中所作的功为A 67JB 91JC 17JD –67J解: AJk j i k j i r F W 67542512)654()953(=++-=+-•+--=∆•=6.对功的概念有以下几种说法:⑴ 保守力作正功时,系统内相应的势能增加;⑵ 质点运动经一闭合路径,保守力对质点作的功为零;⑶ 作用力和反作用力大小相等、方向相反,所以两者所做功的代数和必为零; 在上述说法中: A ⑴、⑵正确; B ⑵、⑶正确;C 只有⑵正确; D 只有⑶正确;解: C7.机枪每分钟可射出质量为g 20 的子弹900颗,子弹射出的速率为s m /800,则射击时的平均反冲力大小为 A N 267.0 B N 16 C N 240 D N 14400解: C8.一质量为M 的弹簧振子,水平放置且静止在平衡位置,如图所示.一质量为m的子弹以水平速度v射入振子中,并随之一起运动.如果水平面光滑,此后弹簧的最大势能为A 221v m . B )(222m M m +v . C 2222)(v Mm m M +. D 222v M m . B 解:碰撞动量守恒V m M mv )(+=9.一质点在如图所示的坐标平面内作圆周运动,有一力)(0j y i x F F+=作用在质点上,在该质点从坐标原点运动到)2,0(R 位置的过程中,力F对它所做的功为 A 20R F B 202R F C 203R F D 204R F解:10.质量为kg 10.0的质点,由静止开始沿曲线j i t r2353+=SI 运动,则在0=t 到s t 2=的时间内,作用在该质点上的合外力所做的功为A J 45B J 20 CJ 475D J 40i t a m F 1010.0⨯==二、填空题:1.下列物理量:质量、动量、冲量、动能、势能、功,其中与参照系的选取有关的物理量是 ;不考虑相对论效应解:.动量v 、动能v、功()r ∆ 与运动的参考系选取有关; 2.一个物体可否具有动量而机械能等于零 填可、否解:可3.质量为m 的子弹以速度v 0水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为K,忽略子弹的重力,求:1 子弹射入沙土后,速度随时间变化的函数式 ;2 子弹进入沙土的最大深度 ;解:1 子弹进入沙土后受力为-Kv ,由牛顿定律tmK d d vv =- ∴ ⎰⎰=-=-vv v vv v 0d d ,d d 0t t m K t m K ∴ mKt /0e -=v v2 求最大深度 解法一: t xd d =vt x mKt d ed /0-=vt x m Kt txd e d /000-⎰⎰=v∴ )e1()/(/0mKt K m x --=vK m x /0max v =解法二:x m t x x m t mK d d )d d )(d d (d d vvv v v ===- ∴ v d Kmdx -=v v d d 0max⎰⎰-=K mx x ∴ K m x /0max v =4.质量m =1kg 的物体,在坐标原点处从静止出发在水平面内沿x 轴运动,其所受合力方向与运动方向相同,合力大小为x F 23+= SI,那么,物体在开始运动的3m 内,合力所作功A = ;且x =3m 时,其速率v = ;解:j x x Fdx W 1833023=+==⎰sm v jmv W /618212=∴==5.有一人造地球卫星,质量为m,在地球表面上空2倍于地球半径R 的高度沿圆轨道运行,用m 、R 、引力常数G 和地球的质量M 表示⑴卫星的动能为 ;⑵卫星的引力势能为 ;解:1R GMm 6 RmvR GMm 3)3(22= R r 3=2R GMm3- dr rGMmE RP⎰∞=326.一质量为M 的质点沿x 轴正向运动,假设质点通过坐标为x 时的速度为2kxk 为正常量,则此时作用于该质点上的力F = ;该质点从x = x 0 点出发到x = x 1 处所经历的时间 ∆t = ;解:t k t t k x x xx x ∆=-=-=-)(1110110107.一个力作用在质量为kg 0.1的质点上,使之沿X 轴运动;已知在此力作用下质点的运动方程为32243t t t X +-= SI;在0到4s的时间间隔内, ⑴ 力F 的冲量大小I= ;⑵ 力F 对质点所作的功A解:3dtdx v -==12s m v /674= s m v /30= 8. 一质量为m的质点在指向圆心的平方反比力F=-k / r 2 的作用下,作半径为r的圆周运动,此质点的速度v = ,若取距圆心无穷远处为势能零点,它的机械能 E = ;解:2mr ka -= ⎰⎰∞∞-=-+=+=+=rr p k r kdr r k r k Fdr mr k m E E E 22)(21229.一物体按规律x =ct 2在媒质中作直线运动,式中c 为常量,t 为时间;设媒质对物体的阻力正比于速度的平方,阻力系数为k ,则物体由x =0运动到x = L时,阻力所作的功为 ;解: 2ct x = ct dt dxv 2==kcx t kc kv f 44222===224kcLkcxdx fdx W LL-=-=-=⎰⎰10.一陨石从距地面高R h 5=R 为地球半径处由静止开始落向地面,忽略空气阻力;则陨石下落过程中,万有引力的功A = ;陨石落地的速度v = ;解: R GMmh R R GMm dr r GMm W RR 65)11(62=+-=-=⎰R GMmmv W 65212==注意:,因为万有引力不是mg ,也不是常数;大学物理练习三一.选择题 1.一力学系统由两个质点组成,它们之间只有引力作用;若两质点所受外力的矢量和为零,则此系统 A 动量、机械能以及对一轴的角动量都守恒;B 动量、机械能守恒,但角动量是否守恒不能断定;C 动量守恒,但机械能和角动量守恒与否不能断定;D 动量和角动量守恒,但机械能是否守恒不能断定;解: C 按守恒条件:∑=0iF 动量守恒,但∑≠0i M 角动量不守恒, 机械能不能断定是否守恒;2.如图所示,有一个小物体,置于一个光滑的水平桌面上,有一绳其一端连结此物体,另一端穿过桌面中心的小孔,该物体原以角速度ω在距孔为R 的圆周上转动,今将绳从小孔往下拉;则物体 A 动能不变,动量改变;B 动量不变,动能改变;C 角动量不变,动量不变;D 角动量改变,动量改变;E 角动量不变,动能、动量都改变;解: E 因对o 点,合外力矩为0,角动量守恒3.有两个半径相同,质量相等的细圆环A 和B;A 环的质量分布均匀,B 环的质量分布不均匀;它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则 A A J >B J B A J < B J C A J =B J D 不能确定A J 、B J 哪个大;解: C 细圆环的转动惯量与质量是否均匀分布无关O R⎰==220mR dmR J4.光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为31m L 2,起初杆静止;桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同的速率v 相向运动,如图所示;当两小球同时与杆的两个端点发生完全非弹性碰撞后与杆粘在一起转动,则这一系统碰撞后的转动角速度为A Lv 32. B L v 54 C L v 76 D L v 98解: C角动量守恒二.填空题1.绕定轴转动的飞轮均匀地减速,t = 0时角速度ω0 =5 rad/s,t = 20s 时角速度ω=ω0,则飞轮的角加速度β= ,t=0到t=100s 时间内飞轮所转过的角度θ= ;解:因均匀减速,可用t βωω=-0 ,20/05.0202.0s rad -=-=∴ωβ2.半径为30cm 的飞轮,从静止开始以2/s rad 的匀角加速度转动,则飞轮边缘上一点在飞轮转 2400 时的切向加速度a t = ,法向加速度a n = ;解:2/15.05.03.0s m r a t =⨯==βO v俯视图βθωr r a n 22==3.一轴承光滑的定滑轮,质量为M = kg ,半径为R = m ,一根不能伸长的轻绳,一端固定在定滑轮上,另一端系有一质量为m = kg 的物体,如图所示.已知定滑轮的转动惯量为J =221MR ,其初角速度0ω= rad/s ,方向垂直纸面向里.定滑轮的角加速度的大小 ,定滑轮的角速度变化到ω=0时,物体上升的高度 ;解法一:ma T mg =- βJ TR =βR a =解法二:1设在任意时刻定滑轮的角速度为ω,物体的速度大小为v,则有v=R ω.则物体与定滑轮的系统总角动量为:ωωω2mR J mvR J L +=+=根据角动量定理,刚体系统所受的合外力矩等于系统角动量对时间的变化率: dtdLM =,该系统所受的合外力矩即物体的重力矩:M=mgR 所以:22/7.81srad mR J mgR dt d =+==ωβ 2该系统只有重力矩做功物体的重力,所以机械能守恒;m h h mg J mv 220201012.62121-⨯=∆⇒∆=+ω 4.质量为m 的质点以速度v沿一直线运动,则它对直线外垂直距离为d 的一点的角动量大小是 ;解:mvd5.长为L 、质量为M 的匀质杆可绕通过杆一端O 的水平光滑固22/7.81srad mR J mgR =+=β定轴转动,转动惯量为31ML 2,开始时杆竖直下垂,如图所示;有一质量为m 的子弹以水平速度0v射入杆上A 点,并嵌在杆中,OA=2L /3,则子弹射入后瞬间杆的角速度ω= ;解:系统子弹+杆角动量守恒,=ω6.一长为L 、质量为m 的细杆,两端分别固定质量为m 和2m 的小球,此系统在竖直平面内可绕过中点O 且与杆垂直的水平光滑固定轴O 轴转动.开始时杆与水平成60°角,处于静止状态.无初转速地释放以后,杆球这一刚体系统绕O 轴转 动.系统绕O 轴的转动惯量J = ;释放后, 当杆转到水平位置时,刚体受到的合外力矩M =解:三.计算题:1.质量为m,长度为L 的匀质杆可绕通过其下端的水平光滑固定轴O 在竖直平面内转动,如图;设它从竖直位置由静止倒下,求它倾倒到与水平面成θ角时的角速度ω和角加速度β;解法一:取O 点为重力势能零点,杆在倒下过程中只有重力做功,机械能守恒,有:而 231mL J =所以 Lg )sin 1(3θω-=θωωθθωωβd d dt d d d dt d -===L g LL g L2cos 3)sin -3g(12cos 3)sin -3g(1 θθθθ=⋅-⋅-=解法二: 由刚体转动定律:βJ M = 得L g mL mgL J M 2cos 331cos 212θθβ===再由 θωωθθωωβd d dt d d d dt d -=== 得θβωωd d -=两边积分:⎰⎰-=θπωθθωω2cos 23d L g d 得 )sin 1(23212θω-=Lg则: Lg )sin 1(3θω-=3.长为l 的匀质细杆,可绕过杆的一端O 点的水平光滑固定轴转动,开始时静止于竖直位置;紧挨O 点悬一单摆,轻质摆线的长度也是l ,摆球质量为m ;若单摆从水平位置由静止开始自由摆下,且摆球与细杆作完全弹性碰撞,碰撞后摆球正好静止;求:1 细杆的质量;2 细杆摆起的最大角度θ ; 解:1单摆下落过程机械能守恒:mglmv =221 gl v 2=⇒碰撞过程角动量守恒:ω231Ml mvl =碰撞过程能量守恒:ωl v =则细杆的质量:m M 3=2细杆摆动过程机械能守恒:)cos 1(21312122θω-⋅=⋅⋅l Mg Ml 即:mgl mv l Mg Ml ==-⋅=⋅⋅22221)cos 1(213121θω 则:31arccos 1cos =⇒=θθ34. 一圆盘的质量为m 2、半径为R 可绕固定的过圆心的水平轴O 转动,原来处于静止状态,现有一质量为m 1,速度为v 的子弹嵌入圆盘的边缘,如图所示;求: (1)子弹嵌入圆盘后,圆盘的角速度ω;(2)由子弹与圆盘组成的系统在此过程中的动能增量; 解:1子弹与圆盘碰撞过程角动量守恒:ω)21(21221R m R m vR m +=2大学物理练习 四一.选择题:1.下列几种说法:1 所有惯性系对物理基本规律都是等价的;2 在真空中,光的速度与光的频率、光源的运动状态无关;3 在任何惯性系中,光在真空中沿任何方向的传播速率都相同;其中那些说法是正确的: A 只有1、2是正确的.B 只有1、3是正确的.C 只有2、3是正确的.D 三种说法都是正确的.解: D2.一火箭的固定长度为L ,相对于地面作匀速直线运动,速度为v 1,火箭上有一个人从火箭的后端向火箭前端上的一个靶子发射一颗相对于火箭的速度为v 2的子弹;在火箭上测得子弹从射出到击中靶的时间间隔是: A21v v L + B 2v L C 12v v L - D 211)/(1c v v L -c 表示真空中光速解: B 在火箭上测得子弹从射出到击中靶的时间间隔是火箭的固定长度除以子弹相对于火箭的速度;3.1对某观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其它惯性系中的观察者来说,它们是否同时发生2在某惯性系中发生于同一时刻、不同地点的的两个事件,它们在其它惯性系中是否同时发生关于这两个问题的正确答案是: A1同时,2不同时; B1不同时,2同时; C1同时,2同时; D 不1同时,2不同时;解: A发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其它惯性系中的观察者来说,它们是同时发生;在某惯性系中发生于同一时刻、不同地点的的两个事件,它们在其它惯性系中不是同时发生;4.K 系与K '系是坐标轴相互平行的两个惯性系,K '系相对于K 系沿Ox 轴正方向匀速运动;一根刚性尺静止在K '系中,与O ’x ’轴成 30°角;今在K 系中观测得该尺与Ox 轴成 45°角,则K '系相对于K 系的速度是:A 2/3cB 1/3cC 2/31/2cD 1/31/2c解: , , , y y xy tg x y tg ='=''='θθ 221c u x x -'= 22131c u tg tg x x -=='='θθ c u 32=⇒5.一宇航员要到离地球为5光年的星球去旅行;如果宇航员希望把这路程缩短 为3光年,则它所乘的火箭相对于地球的速度应是: A v = 1/2c B v = 3/5c . C v = 4/5c D v = 9/10c.解: C 原长5=∆l 光年2)(153cu -= , 25162591)(2=-=c u , 54=c u6.一宇宙飞船相对地球以c 表示真空中光速的速度飞行;一光脉冲从船尾传到船头,飞船上的观察者测得飞船长为90m,地球上的观察者测得光脉冲从船尾发出和到达船头两个事件的空间间隔为 A 90m B 54m C 270m D 150m.解: C另解:7.设某微观粒子的总能量是它的静止能量的K 倍,则其运动速度的大小为c 表示真空中光速 A1-K c B 21K Kc -C12-K KcD)2(1++K K K c解: C8.根据相对论力学,动能为MeV 41的电子,其运动速度约等于A B C D .c 表示真空中光速, 电子的静能m 0c 2=解: C二、填空题:1.有一速度为u 的宇宙飞船沿X 轴正方向飞行,飞船头尾各有一个脉冲光源 在工作,处于船尾的观察者测得船头光源发出的光脉冲的传播速度大小为 ;处于船头的观察者测得船尾光源发出的光脉冲的传播速度大小 ;c ; c . 光速不变原理2.一观察者测得一沿米尺长度方向匀速运动着的米尺的长度为;则此米尺以速度v = m ·s -1接近观察者;解:2315.0122=⇒-=⇒-=βββL L81060.223⨯==∴c v s m /3.静止时边长为50cm 的立方体,当它沿着与它的一个棱边平行的方向相对于地面以匀速度×108m/s 运动时,在地面上测得它的体积是 3cm ;解:3075.0m 运动方向的长度收缩4.一匀质矩形薄板,在它静止时测得其长为a ,宽为b ,质量为m 0;由此可算出其面积密度为m 0 /ab ;假定该薄板沿长度方向以接近光速的速度v 作匀速直线运动,此时再测算该矩形薄板的面积密度则为 ;5.π+ 介子是不稳定的粒子,在它自己的参照系中测得平均寿命是×10-8 s,如果它相对于实验室以 c c 为真空中光速的速率运动,那么实验室坐标系中测得的 π+ 介子的寿命是____________s;解:s cv 8822103.46.0106.21/--⨯=⨯=-'=ττ 6.一宇宙飞船以c /2c 为真空中的光速的速率相对地面运动;从飞船中以相对飞船为c /2的速率向前方发射一枚火箭;假设发射火箭不影响飞船原有速率,则地面上的观察者测得火箭的速率为__________________;解:c c c cu v u v v x x x 8.025.015.05.012=++='++'= 7.1在速度v= 情况下粒子的动量等于非相对论动量的两倍; 2在速度v= 情况下粒子的动能等于它的静止能量;解:8.设电子静止质量为m e ,将一个电子从静止加速到速率为c 表示真空中光速,需作功 ;解:9.一电子以的速率运动电子静止质量为kg 311011.9-⨯,则电子的总能量是 J,电子的经典力学的动能与相对论动能之比是 ;解:大学物理练习五一、选择题1.温度、压强相同的氦气和氧气,它们分子的平均动能k ε和平均平动动能t ε有如下关系:A k ε和t ε都相等;B k ε相等,而t ε不相等;C t ε相等,而k ε不相等;D k ε和t ε都不相等;解: C 氦气i=3和氧气i=5分子的平均动能 kT sr t k 2++=ε而2.已知氢气与氧气的温度相同,请判断下列说法哪个正确(A) 氧分子的质量比氢分子大,所以氧气的压强一定大于氢气的压强; (B) 氧分子的质量比氢分子大,所以氧气的密度一定大于氢气的密度; (C) 氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子的速率大; (D) 氧分子的质量比氢分子大,所以氢分子的方均根速率一定比氧分子的方均根速率大;解: DμRTv 32=氧分子的质量比氢分子大μ12∝vnkT P =温度相同,还要看n;RTP μρ=温度相同,还要看P ;3.已知一定量的某种理想气体,在温度为T 1与T 2时的分子最可几速率分别为V p1和V p2,分子速率分布函数的最大值分别为fV p1和fV p2;若T 1 > T 2,则 A V p1>V p2; fV p1 >fV p2; B V p1>V p2; fV p1 <fV p2; C V p1< V p2; fV p1 >fV p2; D V p1< V p2; fV p1 <fV p2;解: B 若T 1 > T 2,则Vp1>V p2;4.在标准状态下,若氧气视为刚性双原子分子的理想气体和氦气的体积比V 1 / V 2=1 / 2 ,则其内能之比E 1 / E 2为: A 3 / 10 B 1 / 2C 5 / 6D 5 / 3解:C 212121==V V νν 65352325212121===ννννRT RT E E 5.一定量的理想气体,在温度不变的条件下,当体积增大时,分子的平均碰撞频率Z 和平均自由程λ的变化情况是:A Z 减小而λ不变;B Z 减小而λ增大;C Z 增大而λ减小; DZ 不变而λ增大;解:BnRTd n v d Z μππ6.12222==n d nKTd KT Pd kT 2222122πππλ===二、填空题1. 黄绿光的波长是50000A 10A =10-10m ;理想气体在标准状态下,以黄绿光的 波长为边长的立方体内有 个分子;解:理想气体在标准状况下,分子数密度为:以5000A为边长的立方体内应有分子数:637251036.3)105(1069.2⨯=⨯⨯⨯==-nV N 个.2.若某种理想气体分子的方均根速率()4502/12=vm / s,气体压强为P =7×104 Pa,则该气体的密度为 ρ =_______________;324222/04.14501073)(33m kg v P nm m kT v nkTP =⨯⨯==⇒⎪⎪⎭⎪⎪⎬⎫===ρρ3.一容器内储有某种气体,若已知气体的压强为 3×105 Pa ,温度为27℃,密度为 kg/m 3,则可确定此种气体是________气;并可求出此气体分子热运动的最概然速率为__________________m/s ;解:氢气, ρμμRT PRTM PV RT M PV ==⇒=1mol kg P RT /10210324.030031.835-⨯=⨯⨯⨯==ρμ sm PRTv P /158122===ρμ4.有一瓶质量为M 的氢气 视作刚性双原子分子的理想气体,温度为T ,则氢分子的平均平动动能为 ,氢分子的平均动能为______________,该瓶氢气的内能为____________________;解: kT 23 kT 25 MRT 31045⨯5.一瓶氢气和一瓶氧气温度相同.若氢气分子的平均平动动能为t ε= ×10-21 J;则氧气分子的平均平动动能 ;方均根速率 ;氧气的温度 ;解: J 211021.6-⨯ = kT 23s m M RT v mol /4.483103230031.83332=⨯⨯⨯==- 6.在容积为32100.3m -⨯的容器中,贮有Kg 2100.2-⨯的气体,其压强为Pa 3107.50⨯,则该气体分子平均速率为 ;解:s m MPV M RTRT M MPV molmol /8.275100.2100.3107.50 223=⨯⨯⨯⨯==⇒=-- s m M RT v mol /2.4408.27588=⨯==ππ7.已知f v 为麦克斯韦速率分布函数,N 为总分子数,则1速率v > 100 m ·s -1的分子数占总分子数的百分比的表达式为 ;2速率v > 100 m ·s -1的分子数的表达式为 ;速率v > 100 m ·s -1的哪些分子的平均速率表达式为 ;解: 1⎰∞100)(dv v f ; 2⎰∞100)(dv v f N8.现有两条气体分子速率分布曲线1和2,如图所示;若两条曲线分别表示同一种气体处于不同的温度下的速率 分布,则曲线 表示的温度较高;若两条曲线分别表示同一温度下的氢气和氧气的速率分布,则曲线 表示的是氧气的速率分布;解: 实线的p v 比虚线的p v 小,因同气体μ质量相同,p v 与T 成正比;虚线的温度高,填2;后面的填19.今测得温度为t 1=150C,压强为p 1=汞柱高时,氩分子和氖分子的平均自由程分别为:m Ar 8107.6-⨯=λ和m Ne 8102.13-⨯=λ,求:1 氖分子和氩分子有效直径之比=Ar Ne d d / ; 2 温度为t 2=200C,压强为p 2=汞柱高时,氩分子的平均自由程='Ar λ ;解: ⇒=P d kT 22πλ71.0102.13107.688=⨯⨯==--Ne Ar Ar Ne d d λλ m P T P T Ar Ar 782112105.315.028876.0293107.6--⨯=⨯⨯⨯⨯=='λλ⎰⎰⎰⎰⎰⎰∞∞∞∞∞∞===1001001001001001002)()()()( dv v f dvv vf dv v Nf dv v vNf dN vdNv大学物理练习 六一、选择题:1.理想气体经历如图所示的a b c 平衡过程,则系统对外做功A,从外界吸收的热量Q 和内能的增量E ∆的正负情况如下: (A) 0>∆E ,.0,0<>A Q (B) .0,0,0>>>∆A Q E (C) .0,0,0><>∆A Q E (D) .0,0,0><<∆A Q E解: c b a →→,则A >0,另外c T >a T ,故温度升高内能增加;据热一律E A Q ∆+=,Q >0;选 B2.一定量理想气体经历的循环过程用V -T 曲线表示如图.在此循环过程中,气体从外界吸热的过程是A A →B B B →C C C →AD A →B 和B →C解: A B →C 等容降温过程放热C →A 等温压缩过程放热A →B 等压膨胀过程吸热3.有人设计了一台卡诺热机可逆的.每循环一次可从 400 K 的高温热源吸热1800 J,向 300 K 的低温热源放热 800 J .同时对外做功1000 J,这样的设计是 A 可以的,符合热力学第一定律. B 可以的,符合热力学第二定律. C 不行的,卡诺循环所作的功不能大于向低温热源放出的热量.pO Vab cD 不行的,这个热机的效率超过理论值.解: D 00136.5518001000180080011==-=-=QQη 00.254140030011==-=-=g d T T 卡η4.“理想气体和单一热源接触作等温膨胀时,吸收的热量全部用来对外作功;”对此说法,有如下几种评论,哪种是正确的 (A) 不违反热力学第一定律,但违反热力学第二定律; (B) 不违反热力学第二定律,但违反热力学第一定律; (C) 不违反热力学第一定律,也不违反热力学第二定律; (D) 违反热力学第一定律,也违反热力学第二定律;解:选 C 等温膨胀只是一个过程,不是一个循环;5.理想气体绝热地向真空自由膨胀,体积增大为原来的两倍,则始、末两态的温度T 1与T 2和始、末两态气体分子的平均自由程1λ与2λ的关系为 (A) T 1=T 2 ,1λ=2λ B T 1=T 2 ,1λ=212λ C T 1=2T 2 ,1λ=2λ D T 1=2T 2 ,1λ=212λ解:E A Q∆+=因绝热则0=Q,向真空自由膨胀不作功,0=A ;所以0=∆E ,选 B二、填空题:1.在p--V 图上1系统的某一平衡态用 来表示; 2系统的某一平衡过程用 来表示;3系统的某一平衡循环过程用 来表示;解:1系统的某一平衡态用一个点来表示;2系统的某一平衡过程用一条曲线来表示;3系统的某一平衡循环过程用封闭曲线来表示;2.如图所示,已知图中画不同斜线的两部分的面积分别为S 1和S 2,那么:1如果气体的膨胀过程为a-1-b ,则气体对外作功A= ;2如果气体进行a -2-b -1-a 的循环过程,则它对外做功A= ;解:1S 1 +S 2 2- S 13.2mol 单原子分子理想气体,经过一等容过程后,温度从200K 上升到500K,若该过程为准静态过程,气体吸收的热量为 ;若为不平衡过程,气体吸收的热量为 ;解:等容过程则=A ,j T R iM E Q 74792=∆=∆=μ若为不平衡过程,过程曲线有间断点无法求功;此题正好功为零,j T R iM E Q 74792=∆=∆=μ;4.将1 mol 理想气体等压加热,使其温度升高72 K,传给它的热量等于×103 J,求:1 气体所作的功A= ;2 气体内能的增量E ∆= ; 3 比热容比γ = ;解⇒⎪⎭⎪⎬⎫∆=∆∆=+∆=T C E T C Q W E Q V P P ⎪⎪⎪⎩⎪⎪⎪⎨⎧==∆===-=∆=∆=∆-=6.110001600)3(1000)2(600)()1(E Q C C JW Q E JT R T C C W P V P V P γ5.3 mol 的理想气体开始时处在压强p 1 =6 atm 、温度T 1 =500 K 的平衡态.经过一个等温过程,压强变为p 2 =3 atm .该气体在此等温过程中吸收的热量为 Q =____________________J; 普适气体常量11K m ol J 31.8--⋅⋅=R解31064.8⨯ 21ln PP RT A Q ν==6.一定量理想气体,从同一状态开始把其体积由0V 压缩到021V ,分别经历以下三种过程:1 等压过程;2 等温过程;3 绝热过程.其中:__________过程外界对气体做功最多;__________过程气体内能减少最多;__________过 程气体放热最多;解绝热;等压;等压气体放热2ln 2ln 000V p RT MQ T==μ000422221V p i RT i M T C MQ P P +=+=∆=μμ三、计算题:1.1mol 双原子分子理想气体从状态Ap 1,V 1沿p —V 图所示直线变化到状态Bp 2,V 2,试求:1气体的内能增量;2气体对外界所作的功;3气体吸收的热量;4此过程的摩尔热容;摩尔热容T Q C ∆∆=/,其中Q ∆表示1mol 物质在过程中升高温度T ∆时所吸收的热量;解:1)(25)(25112212V P V P T T R E -=-=∆2)(21))((2111221221V P V P V V P P A -=-+= 3)(3)(2611221122V P V P V P V P E A Q -=-=∆+=4T R V P V P T C T C MQ ∆=-=∆=∆=3)(31122μ所以RC 3=3. 一定量的刚性双原子分子理想气体,开始时处于压强为 p 0 = ×105 Pa,体积为V 0 =4×10-3 m 3,温度为T 0 = 300 K 的初态,后经等压膨胀过程温度上升到T 1 = 450 K,再经绝热过程温度降回到T 2 = 300 K,求气体在整个过程中对外作的功.解:等压过程末态的体积 1001T T VV =等压过程气体对外作功p 1p p 12)1()(01000101-=-=T T V p V V p W =200 J 根据热力学第一定律,绝热过程气体对外作的功为 W 2 =-△E =-νC V T 2-T 1 这里 000RT V p =ν,R C V 25=,则 500)(2512002==--=T T T V p W J 气体在整个过程中对外作的功为 W = W 1+W 2 =700 J4.一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、等压两过程回到状态A . 1 求A →B ,B →C ,C →A 各过程中系统对外所作的功W ,内能的增量E ∆ 以及所吸收的热量Q .2 整个循环过程中系统对外所作的总功以及从外界吸收的总热量过程吸热的代数和.解:1 A →B :))((211A B A B V V p p A -+==200 J .ΔE 1=ν C V T B -T A =3p B V B -p A V A /2=750 JQ 1=A 1+ΔE 1=950 J .B →C : A 2 =0 ΔE 2 =ν C V T C -T B =3 p C V C -p B V B /2 =-600 J . Q 2 =A 2+ΔE 2=-600 J . C →A : A 3 = p A V A -V C =-100 J .150)(23)(3-=-=-=∆C C A A C A V V p V p T T C E ν J . Q 3 =A 3+ΔE 3=-250 J2 A = A 1 +A 2 +A 3=100 J . Q = Q 1 +Q 2 +Q3 =100 J12 312O V (10-3 m 3) 5A BC大学物理练习 七一、选择题:1.关于电场强度定义式0/q F E=,下列说法中哪个是正确的A 场强E的大小与试探电荷q 0的大小成反比.B 对场中某点,试探电荷受力F与q 0的比值不因q 0而变.C 试探电荷受力F 的方向就是场强E的方向.D 若场中某点不放试探电荷q 0,则F =0,从而E=0. B2.四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I;这四条导线被纸面截得的断面,如图所示,它们组成了边长为2a的正方形的四个角顶;每条导线中的电流流向亦如图所示,则在图中正方形中心O 点的磁感应强度的大小为A .20I aB πμ=B .220I a B πμ=C B=0.D B=.0I aπμ C 3. 在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁 感强度为A RI π40μ. B RIπ20μ. C 0. D RI40μ . DIa二、填空题:1. 有一个球形的橡皮膜气球,电荷q 均匀地分布在表面上,在此气球被吹大的过程中,被气球表面掠过的点该点与球中心距离为 r,其电场强度的大小将由 变为 ;解:变为 0 ;2.如图所示,一长为10 cm 的均匀带正电细杆,其电荷为×108 C,试求在杆的延长线上距杆的端点5 cm 处的P 点的电 场强度 ; 解: 设P 点在杆的右边,选取杆的左端为坐标原点O ,x 轴沿杆的方向,如图,并设杆的长度为L .P 点离杆的端点距离为d .在x 处取一电荷元d q =q /L d x ,它在P 点产生场强()()20204d 4d d x d L L xq x d L q E -+π=-+π=εε P 点处的总场强为()()d L d qx d L x L q E L +π=-+π=⎰00204d 4εε代入题目所给数据,得E =×104 N/CE 的方向沿x 轴正向.3.一长直螺线管是由直径d=的漆包线密绕而成;当它通以I=的电忽略绝缘层厚度三、计算题:1.一个细玻璃棒被弯成半径为R 的半圆形,沿其上半部分均匀分布有电量+Q,沿其下半部分均匀分布有电量-Q,如图所示;试求圆心O 处的电场强度;解:先看上半部分+Q,θλλRd dl dq==θsin dE dE x = ,θcos dE dE y=xO。
大学物理课后习题答案(上下册全)武汉大学出版社 习题3详解

3-1 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 [ ] A.2ωmR J J + B. 02)(ωR m J J+ C.02ωmR JD. 0ω 答案:A3-2 如题3-2图所示,圆盘绕O 轴转动。
若同时射来两颗质量相同,速度大小相同,方向相反并在一直线上运动的子弹,子弹射入圆盘后均留在盘内,则子弹射入后圆盘的角速度ω将:[ ]A. 增大.B. 不变.C. 减小.D. 无法判断. 题3-2 图 答案: C3-3 芭蕾舞演员可绕过脚尖的铅直轴旋转,当她伸长两手时的转动惯量为J 0,角速度为ω0,当她突然收臂使转动惯量减小为J 0 / 2时,其角速度应为:[ ] A. 2ω0 . B. ω0 . C. 4ω0 . D. ω 0/2. 答案:A3-4 如题3-4图所示,一个小物体,位于光滑的水平桌面上,与一绳的一端相连结,绳的另一端穿过桌面中心的小孔O . 该物体原以角速度ω 在半径为R 的圆周上绕O 旋转,今将绳从小孔缓慢往下拉.则物体:[ ]A. 动量不变,动能改变; 题3-4图B. 角动量不变,动量不变;C. 角动量改变,动量改变;D. 角动量不变,动能、动量都改变。
答案:D3-5 在XOY 平面内的三个质点,质量分别为m 1 = 1kg, m 2 = 2kg,和 m 3 = 3kg,位置坐标(以米为单位)分别为m 1 (-3,-2)、m 2 (-2,1)和m 3 (1,2),则这三个质点构成的质点组对Z 轴的转动惯量J z = .答案: 38kg ·m 23-6 如题3-6图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动,今有一子弹沿着与水平面成一角度的方向击中木球并嵌于其中,则在此击中过程中,木球、子弹、细棒系统对o 轴的 守恒。
(完整word)大学物理练习册习题及答案1-1

习题及参考答案第一章 运动学x1—1一质点在xy 平面上运动,已知质点的位置矢量为j bt i at r 22+=(其中a 、b 为常量),则该质点作 (A)匀速直线运动 (B )变速直线运动(C)抛物线运动 (D )圆周运动x1—2一质点在xy 平面内运动,其运动方程为)(5sin 105cos 10SI j t i t r +=,则时刻t 质点切向加速度的大小为 (A) (A) 250(m/s 2) (B) )j t 5sin i t 5(cos 250-+(m/s 2) (C ))(m/s j t 5cos 50i t 5sin 502 +- (D )0x1-3质点作曲线运动,r 表示位置矢量,S 表示路程,u 表示速度的大小, a 表示加速度的大小,a t 表示切向加速度的大小,下列表达式中,正确的是 (A)dt ds =υ (B )dt d a υ= (C ) dt dr =υ (D) dt d a t υ =x1—4一运动质点在某瞬时位于矢径),(y x r 的端点处,其速度大小为(A)dt dr (B)dt r d (C)dt r d (D )22)()(dt dy dt dx +x1—5质点作半径为R 的变速圆周运动时的加速度的大小为(设任一时刻质点的速率为u )(A )dt d a υ= (B)R a 2υ= (C )R dt d a 2υυ+= (D)222)()(dt d R a υυ+=x1—6于沿曲线运动的物体,以下几种说法中哪一种是正确的?(A) (A) 切向加速度必不为零。
(B)法向加速度必不为零(除拐点外)。
(C)由于速度沿切线方向,法向分速度为零,因此法向加速度必为零。
(D )若物体作匀速率运动,则其总加速度必为零。
x1—7一质点的运动方程为x =6t-t 2(SI ),则在t 由0至4s 的时间内质点走过的路程为(A) (A ) 10m (B)8 m (C )9 m (D)6 mx1-8某物体的运动规律为t k dt d 2υυ-=,式中的k 为大于零的常数。
大学物理课后习题答案(上下册全)武汉大学出版社 习题3详解.pdf

3-1 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 [ ] A.2ωmR J J + B. 02)(ωR m J J+ C.02ωmR JD. 0ω 答案:A3-2 如题3-2图所示,圆盘绕O 轴转动。
若同时射来两颗质量相同,速度大小相同,方向相反并在一直线上运动的子弹,子弹射入圆盘后均留在盘内,则子弹射入后圆盘的角速度ω将:[ ]A. 增大.B. 不变.C. 减小.D. 无法判断. 题3-2 图 答案: C3-3 芭蕾舞演员可绕过脚尖的铅直轴旋转,当她伸长两手时的转动惯量为J 0,角速度为ω0,当她突然收臂使转动惯量减小为J 0 / 2时,其角速度应为:[ ] A. 2ω0 . B. ω0 . C. 4ω0 . D. ω 0/2. 答案:A3-4 如题3-4图所示,一个小物体,位于光滑的水平桌面上,与一绳的一端相连结,绳的另一端穿过桌面中心的小孔O . 该物体原以角速度ω 在半径为R 的圆周上绕O 旋转,今将绳从小孔缓慢往下拉.则物体:[ ]A. 动量不变,动能改变; 题3-4图B. 角动量不变,动量不变;C. 角动量改变,动量改变;D. 角动量不变,动能、动量都改变。
答案:D3-5 在XOY 平面内的三个质点,质量分别为m 1 = 1kg, m 2 = 2kg,和 m 3 = 3kg,位置坐标(以米为单位)分别为m 1 (-3,-2)、m 2 (-2,1)和m 3 (1,2),则这三个质点构成的质点组对Z 轴的转动惯量J z = .答案: 38kg ·m 23-6 如题3-6图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动,今有一子弹沿着与水平面成一角度的方向击中木球并嵌于其中,则在此击中过程中,木球、子弹、细棒系统对o 轴的 守恒。
武汉工程大学物理练习册练习四

M mol RT 8.31 300 0.24 2.0 10 3 kg / mol P 3.0 105
或 vP
2P
2 3.0 105 1581m / s 0.24
2 RT 2 8.31 300 vP 1579m / s 3 M mol 2.0 10
0.71 3.45107 m
9.今测得温度为t1=150C,压强为p1=0.76m汞柱高时,氩分子和 8 氖分子的平均自由程分别为:Ar 6.7 10 8 m 和 Ne 13.2 10 m ,求: (1) 氖分子和氩分子有效直径之比 d Ne / d Ar ; (2) 温度为t2=200C,压强为p2=0.15m汞柱高时,氩分子的平均自由 ' 程 Ar 。
23
7 3
1.04kg / m3
2.若某种理想气体分子的方均根速率 v
2
1/
450 m / s,气体压
强为P=7.00×104 Pa,则该气体的密度为 解:
=____。
1 1 2 2 p mnv v 3 3
3P 3P 3 7.00 104 v2 1.04kg / m3 2 2 4502 ( v )
8RT 8PV 8 50.7 103 3.0 102 v 440.2m / s 2 M mol M 3.14 2.0 10
100
f (v)dv N
100
f (v)dv
100
vf (v)dv /
100
f (v)dv
7.已知f(v)为麦克斯韦速率分布函数,N为总分子数,则(1)速 率v > 100 m·s-1的分子数占总分子数的百分比的表达式为 ; (2)速率v > 100 m·s-1的分子数的表达式为 。(3)速率v > 100 m·s-1的分子的平均速率表达式为 。
大学物理习题集加答案解析

大学物理习题集(一)大学物理教研室2010年3月目录部分物理常量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2练习一库伦定律电场强度┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3练习二电场强度(续)电通量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4练习三高斯定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5练习四静电场的环路定理电势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6练习五场强与电势的关系静电场中的导体┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8练习六静电场中的导体(续)静电场中的电介质┄┄┄┄┄┄┄┄┄┄┄┄9练习七静电场中的电介质(续)电容静电场的能量┄┄┄┄┄┄┄┄┄┄10练习八恒定电流┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄11练习九磁感应强度洛伦兹力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13练习十霍尔效应安培力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄14练习十一毕奥—萨伐尔定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄16练习十二毕奥—萨伐尔定律(续)安培环路定律┄┄┄┄┄┄┄┄┄┄┄┄17练习十三安培环路定律(续)变化电场激发的磁场┄┄┄┄┄┄┄┄┄┄┄18练习十四静磁场中的磁介质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄20练习十五电磁感应定律动生电动势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄21练习十六感生电动势互感┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄23练习十七互感(续)自感磁场的能量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄24练习十八麦克斯韦方程组┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄26练习十九狭义相对论的基本原理及其时空观┄┄┄┄┄┄┄┄┄┄┄┄┄27练习二十相对论力学基础┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄28练习二十一热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄29练习二十二光电效应康普顿效应热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄30练习二十三德布罗意波不确定关系┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄32练习二十四薛定格方程氢原子┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄33部分物理常量万有引力常量G=×1011N·m2·kg2重力加速度g=s2阿伏伽德罗常量N A=×1023mol1摩尔气体常量R=·mol1·K1玻耳兹曼常量k=×1023J·K1斯特藩玻尔兹曼常量= ×10-8 W·m2·K4标准大气压1atm=×105Pa真空中光速c=×108m/s基本电荷e=×1019C电子静质量m e=×1031kg质子静质量m n=×1027kg中子静质量m p=×1027kg真空介电常量0= ×1012 F/m真空磁导率0=4×107H/m=×106H/m普朗克常量h = ×1034 J·s维恩常量b=×103m·K说明:字母为黑体者表示矢量练习一库伦定律电场强度一.选择题1.关于试验电荷以下说法正确的是(A) 试验电荷是电量极小的正电荷;(B) 试验电荷是体积极小的正电荷;(C) 试验电荷是体积和电量都极小的正电荷;(D) 试验电荷是电量足够小,以至于它不影响产生原电场的电荷分布,从而不影响原电场;同时是体积足够小,以至于它所在的位置真正代表一点的正电荷(这里的足够小都是相对问题而言的).2.关于点电荷电场强度的计算公式E = q r / (4 0 r3),以下说法正确的是(A) r→0时, E→∞;(B) r→0时,q不能作为点电荷,公式不适用;(C) r→0时,q仍是点电荷,但公式无意义;(D) r→0时,q已成为球形电荷,应用球对称电荷分布来计算电场.3.关于电偶极子的概念,其说法正确的是(A) 其电荷之间的距离远小于问题所涉及的距离的两个等量异号的点电荷系统;(B) 一个正点电荷和一个负点电荷组成的系统;(C) 两个等量异号电荷组成的系统;(D) 一个正电荷和一个负电荷组成的系统.(E) 两个等量异号的点电荷组成的系统4.试验电荷q0在电场中受力为f , 其电场强度的大小为f / q0 , 以下说法正确的是(A) E正比于f;(B) E反比于q0;(C) E正比于f 且反比于q0;(D) 电场强度E是由产生电场的电荷所决定的,不以试验电荷q0及其受力的大小决定.5.在没有其它电荷存在的情况下,一个点电荷q1受另一点电荷q2的作用力为f12,当放入第三个电荷Q后,以下说法正确的是(A) f12的大小不变,但方向改变, q1所受的总电场力不变;(B) f12的大小改变了,但方向没变, q1受的总电场力不变;(C) f12的大小和方向都不会改变, 但q1受的总电场力发生了变化;(D) f12的大小、方向均发生改变, q1受的总电场力也发生了变化.二.填空题1.如图所示,一电荷线密度为的无限长带电直线垂直通过图面上的A点,一电荷为Q的均匀球体,其球心为O点,ΔAOP是边长为a的等边三角形,为了使P点处场强方向垂直于OP, 则和Q的数量关系式为,且与Q为号电荷(填同号或异号) .2.在一个正电荷激发的电场中的某点A,放入一个正的点电荷q ,测得它所受力的大小为f1;将其撤走,改放一个等量的点电荷q,测得电场力的大小为f2 ,则A点电场强度E的大小满足的关系式为.3.一半径为R的带有一缺口的细圆环, 缺口宽度为d (d<<R)环上均匀带正电, 总电量为q ,如图所示, 则圆心O处的场强大小E = ,场强方向为.三.计算题1.一“无限长”均匀带电的半圆柱面,半径为R, 设半圆柱面沿轴线单位长度上的电量为,如图所示.试求轴线上一点的电场强度.2.一带电细线弯成半径为R的半圆形, 电荷线密度为= 0 sin, 式中0为一常数, 为半径R与X 轴所成的夹角, 如图所示,试求环心O处的电场强度.练习二电场强度(续)电通量一.选择题1. 以下说法错误的是(A) 电荷电量大,受的电场力可能小;(B)电荷电量小,受的电场力可能大;(C)电场为零的点,任何点电荷在此受的电场力为零;(D)电荷在某点受的电场力与该点电场方向一致.2.在点电荷激发的电场中,如以点电荷为心作一个球面,关于球面上的电场,以下说法正确的是(A) 球面上的电场强度矢量E处处不等;(B) 球面上的电场强度矢量E处处相等,故球面上的电场是匀强电场;(C) 球面上的电场强度矢量E的方向一定指向球心;(D) 球面上的电场强度矢量E的方向一定沿半径垂直球面向外.3.关于电场线,以下说法正确的是(A) 电场线上各点的电场强度大小相等;(B) 电场线是一条曲线,曲线上的每一点的切线方向都与该点的电场强度方向平行;(A) 开始时处于静止的电荷在电场力的作用下运动的轨迹必与一条电场线重合;(D) 在无电荷的电场空间,电场线可以相交.4.如图,一半球面的底面园所在的平面与均强电场E的夹角为30°,球面的半径为R,球面的法线向外,则通过此半球面的电通量为(A)R2E/2 .(B) R2E/2.(C) R2E.(D) R2E.5.真空中有AB两板,相距为d ,板面积为S(S>>d2),分别带+q和q,在忽略边缘效应的情况下,两板间的相互作用力的大小为(A)q2/(40d2 ) .(B) q2/(0 S) .(C) 2q2/(0 S).(D) q2/(20 S) .二.填空题1.真空中两条平行的无限长的均匀带电直线,电荷线密度分别为+ 和,点P1和P2与两带电线共面,其位置如图所示,取向右为坐标X正向,则= ,= .2.为求半径为R带电量为Q的均匀带电园盘中心轴线上P点的电场强度, 可将园盘分成无数个同心的细园环, 园环宽度为d r,半径为r,此面元的面积d S= ,带电量为d q = ,此细园环在中心轴线上距圆心x的一点产生的电场强度E = .3.如图所示,均匀电场E中有一袋形曲面,袋口边缘线在一平面S内,边缘线所围面积为S0,袋形曲面的面积为S ,法线向外,电场与S面的夹角为,则通过袋形曲面的电通量为.三.计算题1.一带电细棒弯曲线半径为R的半圆形,带电均匀,总电量为Q,求圆心处的电场强度E.2.真空中有一半径为R的圆平面,在通过圆心O与平面垂直的轴线上一点P处,有一电量为q 的点电荷,O、P间距离为h ,试求通过该圆平面的电通量.练习三高斯定理一.选择题1.如果对某一闭合曲面的电通量为=0,以下说法正确的是(A) S面上的E必定为零;(B) S面内的电荷必定为零;(C) 空间电荷的代数和为零;(D) S面内电荷的代数和为零.2.如果对某一闭合曲面的电通量0,以下说法正确的是(A) S面上所有点的E必定不为零;(B) S面上有些点的E可能为零;(C) 空间电荷的代数和一定不为零;(D) 空间所有地方的电场强度一定不为零.3.关于高斯定理的理解有下面几种说法,其中正确的是(A) 如高斯面上E处处为零,则该面内必无电荷;(B) 如高斯面内无电荷,则高斯面上E处处为零;(C) 如高斯面上E处处不为零,则高斯面内必有电荷;(D) 如高斯面内有净电荷,则通过高斯面的电通量必不为零;(E) 高斯定理仅适用于具有高度对称的电场.4.图示为一轴对称性静电场的E~r关系曲线,请指出该电场是由哪种带电体产生的(E表示电场强度的大小, r表示离对称轴的距离)(A) “无限长”均匀带电直线;(B) 半径为R的“无限长”均匀带电圆柱体;(C) 半径为R的“无限长”均匀带电圆柱面;(D) 半径为R的有限长均匀带电圆柱面.5.如图所示,一个带电量为q 的点电荷位于立方体的A角上,则通过侧面a b c d 的电场强度通量等于:(A) q / 240.(B) q / 120.(C) q / 6 0 .(D) q / 480.二.填空题1.两块“无限大”的均匀带电平行平板,其电荷面密度分别为( 0)及2 ,如图所示,试写出各区域的电场强度EⅠ区E的大小,方向;Ⅱ区E的大小,方向;Ⅲ区E的大小,方向.2.如图所示,真空中两个正点电荷,带电量都为Q,相距2R,若以其中一点电荷所在处O点为中心,以R为半径作高斯球面S,则通过该球面的电场强度通量= ;若以r0表示高斯面外法线方向的单位矢量,则高斯面上a、b 两点的电场强度的矢量式分别为,.3.点电荷q1、q2、q3和q4在真空中的分布如图所示,图中S为闭合曲面,则通过该闭合曲面的电通量= ,式中的E是哪些点电荷在闭合曲面上任一点产生的场强的矢量和答:是.三.计算题1.厚度为d的无限大均匀带电平板,带电体密度为,试用高斯定理求带电平板内外的电场强度.2.半径为R的一球体内均匀分布着电荷体密度为的正电荷,若保持电荷分布不变,在该球体内挖去半径r的一个小球体,球心为O′ , 两球心间距离= d, 如图所示, 求:(1) 在球形空腔内,球心O处的电场强度E0;(2) 在球体内P点处的电场强度E.设O、O、P三点在同一直径上,且= d .练习四静电场的环路定理电势一.选择题1.真空中某静电场区域的电力线是疏密均匀方向相同的平行直线,则在该区域内电场强度E和电位U是(A) 都是常量.(B) 都不是常量.(C) E是常量, U不是常量.(D) U是常量, E不是常量.2.电量Q均匀分布在半径为R的球面上,坐标原点位于球心处,现从球面与X轴交点处挖去面元S, 并把它移至无穷远处(如图,若选无穷远为零电势参考点,且将S移走后球面上的电荷分布不变,则此球心O点的场强E0与电位U0分别为(注:i为单位矢量)(A)-i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].(B) i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].(C) i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].(D) -i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].3.以下说法中正确的是(A) 沿着电力线移动负电荷,负电荷的电势能是增加的;(B) 场强弱的地方电位一定低,电位高的地方场强一定强;(C) 等势面上各点的场强大小一定相等;(D) 初速度为零的点电荷, 仅在电场力作用下,总是从高电位处向低电位运动;(E) 场强处处相同的电场中,各点的电位也处处相同.4.如图,在点电荷+q的电场中,若取图中P点处为电势零点,则M点的电势为(A) .(B) .(C) .(D) .5.一电量为q的点电荷位于圆心O处,A、B、C、D为同一圆周上的四点,如图所示,现将一试验电荷从A点分别移动到B、C、D各点,则(A) 从A到B,电场力作功最大.(B) 从A到各点,电场力作功相等.(C) 从A到D,电场力作功最大.(D) 从A到C,电场力作功最大.二.填空题1.电量分别为q1 , q2 , q3的三个点电荷分别位于同一圆周的三个点上,如图所示,设无穷远处为电势零点,圆半径为R, 则b点处的电势U = .2.如图,在场强为E的均匀电场中,A、B两点距离为d, AB连线方向与E方向一致, 从A点经任意路径到B点的场强线积分= .3.如图所示,BCD是以O点为圆心, 以R为半径的半圆弧, 在A点有一电量为+q的点电荷, O点有一电量为–q的点电荷, 线段= R, 现将一单位正电荷从B点沿半圆弧轨道BCD移到D点,则电场力所作的功为.三.计算题1.电量q均匀分布在长为2 l的细杆上, 求在杆外延长线上与杆端距离为a的P点的电势(设无穷远处为电势零点) .2.一均匀带电的球层, 其电荷体密度为, 球层内表面半径为R1 , 外表面半径为R2 ,设无穷远处为电势零点, 求空腔内任一点的电势.练习五场强与电势的关系静电场中的导体一.选择题1.以下说法中正确的是(A) 电场强度相等的地方电势一定相等;(B) 电势梯度绝对值大的地方场强的绝对值也一定大;(C) 带正电的导体上电势一定为正;(D) 电势为零的导体一定不带电2.以下说法中正确的是(A) 场强大的地方电位一定高;(B) 带负电的物体电位一定为负;(C) 场强相等处电势梯度不一定相等;(D) 场强为零处电位不一定为零.3. 如图,真空中有一点电荷Q及空心金属球壳A, A处于静电平衡, 球内有一点M, 球壳中有一点N, 以下说法正确的是(A) E M≠0, E N=0 ,Q在M处产生电场,而在N处不产生电场;(B) E M =0, E N≠0 ,Q在M处不产生电场,而在N处产生电场;(C) E M =E N =0 ,Q在M、N处都不产生电场;(D) E M≠0,E N≠0,Q在M、N处都产生电场;(E) E M =E N =0 ,Q在M、N处都产生电场.4.如图,原先不带电的金属球壳的球心处放一点电荷q1, 球外放一点电荷q2,设q2、金属内表面的电荷、外表面的电荷对q1的作用力分别为F1、F2、F3 , q1受的总电场力为F, 则(A) F1=F2=F3=F=0.(B) F1= q1 q2 / ( 4 0d2 ) ,F2 = 0 , F3 = 0, F=F1 .(C) F1= q1 q2 / ( 4 0d2 ) , F2 = 0,F3 = q1 q2 / ( 4 0d2 ) (即与F1反向), F=0 .(D) F1= q1 q2 / ( 4 0d2 ) ,F2 与F3的合力与F1等值反向,F=0 .(E) F1= q1 q2 / ( 4 0d2 ) , F2= q1 q2 / ( 4 0d2 ) (即与F1反向), F3 = 0, F=0 .5.如图,一导体球壳A,同心地罩在一接地导体B上,今给A球带负电Q, 则B球(A)带正电.(B) 带负电.(C) 不带电.(D) 上面带正电,下面带负电.二.填空题1.一偶极矩为P的电偶极子放在电场强度为E的均匀外电场中, P与E的夹角为角,在此电偶极子绕过其中心且垂直于P与E组成平面的轴沿角增加的方向转过180°的过程中,电场力作功为A = .2.若静电场的某个立体区域电势等于恒量, 则该区域的电场强度分布是;若电势随空间坐标作线性变化, 则该区域的场强分布是.3.一“无限长”均匀带电直线,电荷线密度为,在它的电场作用下,一质量为m,带电量为q 的质点以直线为轴线作匀速圆周运动,该质点的速率v = .三.计算题1.如图所示,三个“无限长”的同轴导体圆柱面A、B和C,半径分别为R A、R B、R C,圆柱面B上带电荷,A和C 都接地,求B的内表面上电荷线密度1,和外表面上电荷线密度之比值1/2.22.已知某静电场的电势函数U=-+ ln x(SI) ,求点(4,3,0)处的电场强度各分量值.练习六静电场中的导体(续)静电场中的电介质一.选择题1.一孤立的带正电的导体球壳有一小孔,一直导线AB穿过小孔与球壳内壁的B点接触,且与外壁绝缘,如图、D分别在导体球壳的内外表面上,A、C、D三点处的面电荷密度分别为A、C、D , 电势分别为U A、U C、U D ,其附近的电场强度分别为E A、E C、E D , 则:(A) A>D ,C = 0 , E A> E D , E C = 0 , U A = U C = U D .(B) A>D ,C = 0 , E A> E D , E C = 0 , U A > U C = U D .(C) A=C ,D≠0 , E A= E C=0, E D ≠0 , U A = U C =0 , U D≠0.(D) D>0 ,C <0 ,A<0 , E D沿法线向外, E C沿法线指向C ,E A平行AB指向外,U B >U C > U A .2.如图,一接地导体球外有一点电荷Q,Q距球心为2R,则导体球上的感应电荷为(A)0.(B) Q.(C) +Q/2.(D) –Q/2.3.导体A接地方式如图,导体B带电为+Q,则导体A(A) 带正电.(B) 带负电.(C) 不带电.(D) 左边带正电,右边带负电.4.半径不等的两金属球A、B ,R A = 2R B ,A球带正电Q ,B球带负电2Q,今用导线将两球联接起来,则(A) 两球各自带电量不变.(B) 两球的带电量相等.(C) 两球的电位相等.(D) A球电位比B球高.5. 如图,真空中有一点电荷q , 旁边有一半径为R的球形带电导体,q距球心为d ( d > R ) 球体旁附近有一点P ,P在q与球心的连线上,P点附近导体的面电荷密度为.以下关于P点电场强度大小的答案中,正确的是(A) / (20 ) + q /[40 ( d-R )2 ];(B) / (20 )-q /[40 ( d-R )2 ];(C) / 0 + q /[40 ( d-R )2 ];(D)/ 0-q /[40 ( d-R )2 ];(E)/ 0;(F) 以上答案全不对.二.填空题1.如图,一平行板电容器, 极板面积为S,,相距为d,若B板接地,,且保持A板的电势U A=U0不变,,如图, 把一块面积相同的带电量为Q的导体薄板C平行地插入两板中间, 则导体薄板C的电势U C = .2.地球表面附近的电场强度约为100N/C ,方向垂直地面向下,假设地球上的电荷都均匀分布在地表面上,则地面的电荷面密度= , 地面电荷是电荷(填正或负).3.如图所示,两块很大的导体平板平行放置,面积都是S,有一定厚度,带电量分别为Q1和Q2,如不计边缘效应,则A、B、C、D四个表面上的电荷面密度分别为、、、.三.计算题1.半径分别为r1 = cm 和r2 = cm 的两个球形导体, 各带电量q = ×108C, 两球心相距很远, 若用细导线将两球连接起来, 并设无限远处为电势零点,求: (1)两球分别带有的电量;(2)各球的电势.2.如图,长为2l的均匀带电直线,电荷线密度为,在其下方有一导体球,球心在直线的中垂线上,距直线为d,d大于导体球的半径R,(1)用电势叠加原理求导体球的电势;(2)把导体球接地后再断开,求导体球上的感应电量.练习七静电场中的电介质(续)电容静电场的能量一.选择题1.极化强度P是量度介质极化程度的物理量, 有一关系式为P = 0(r1)E , 电位移矢量公式为D = 0E + P ,则(A) 二公式适用于任何介质.(B) 二公式只适用于各向同性电介质.(C) 二公式只适用于各向同性且均匀的电介质.(D) 前者适用于各向同性电介质, 后者适用于任何电介质.2.电极化强度P(A) 只与外电场有关.(B) 只与极化电荷产生的电场有关.(C) 与外场和极化电荷产生的电场都有关.(D) 只与介质本身的性质有关系,与电场无关.3.真空中有一半径为R, 带电量为Q的导体球, 测得距中心O为r 处的A点场强为E A =Q r /(40r3) ,现以A为中心,再放上一个半径为,相对电容率为r的介质球,如图所示,此时下列各公式中正确的是(A) A点的电场强度E A=E A / r;(B) ;(C) =Q/0;(D) 导体球面上的电荷面密度= Q /( 4R2 ).4.平行板电容器充电后与电源断开,然后在两极板间插入一导体平板,则电容C, 极板间电压V,极板空间(不含插入的导体板)电场强度E以及电场的能量W将(↑表示增大,↓表示减小)(A) C↓,U↑,W↑,E↑.(B) C↑,U↓,W↓,E不变.(C) C↑,U↑,W↑,E↑.(D) C↓,U↓,W↓,E↓.5.如果某带电体电荷分布的体电荷密度增大为原来的2倍,则电场的能量变为原来的(A) 2倍.(B) 1/2倍.(C) 1/4倍.(D) 4倍.二.填空题1.一平行板电容器,充电后断开电源, 然后使两极板间充满相对介电常数为r的各向同性均匀电介质, 此时两极板间的电场强度为原来的倍, 电场能量是原来的倍.2.在相对介电常数r= 4 的各向同性均匀电介质中,与电能密度w e=2×106J/cm3相应的电场强度大小E = .3.一平行板电容器两极板间电压为U,其间充满相对介电常数为r的各向同性均匀电介质,电介质厚度为d , 则电介质中的电场能量密度w = .三.计算题1.一电容器由两个很长的同轴薄圆筒组成,内外圆筒半径分别为R 1=2cm ,R2= 5cm,其间充满相对介电常数为r的各向同性、均匀电介质、电容器接在电压U=32V的电源上(如图所示为其横截面),试求距离轴线R=处的A点的电场强度和A点与外筒间的电势差.2.假想从无限远处陆续移来微电荷使一半径为R的导体球带电.(1) 球上已带电荷q时,再将一个电荷元dq从无限远处移到球上的过程中,外力作多少功(2) 使球上电荷从零开始加到Q的过程中,外力共作多少功练习八恒定电流一.选择题1.两个截面不同、长度相同的用同种材料制成的电阻棒,串联时如图(1)所示,并联时如图(2)所示,该导线的电阻忽略,则其电流密度J与电流I应满足:(A) I1 =I2 J1 = J2 I1 = I2 J1 = J2.(B) I1 =I2 J1 >J2 I1<I2 J1 = J2.(C) I1<I2 J1 = J2 I1 = I2 J1>J2.(D) I1<I2 J1 >J2 I1<I2 J1>J2.2.两个截面相同、长度相同,电阻率不同的电阻棒R1 、R2(1>2)分别串联(如上图)和并联(如下图)在电路中,导线电阻忽略,则(A) I1<I2 J1<J2 I1= I2 J1 = J2.(B)I1 =I2 J1 =J2 I1= I2 J1 = J2.(C)I1=I2 J1 = J2 I1<I2 J1<J2.(D)I1<I2 J1<J2 I1<I2 J1<J2.3.室温下,铜导线内自由电子数密度为n= × 1028个/米3,电流密度的大小J= 2×106安/米2,则电子定向漂移速率为:(A)×10-4米/秒.(B) ×10-2米/秒.(C) ×102米/秒.(D) ×105米/秒.4.在一个长直圆柱形导体外面套一个与它共轴的导体长圆筒,两导体的电导率可以认为是无限大,在圆柱与圆筒之间充满电导率为的均匀导电物质,当在圆柱与圆筒上加上一定电压时,在长度为l的一段导体上总的径向电流为I,如图所示,则在柱与筒之间与轴线的距离为r 的点的电场强度为:(A) 2rI/ (l2).(B) I/(2rl).(C) Il/(2r2).(D) I/(2rl).5.在如图所示的电路中,两电源的电动势分别为1、2、,内阻分别为r1、r2,三个负载电阻阻值分别为R1、R2、R,电流分别为I1、I2、I3 ,方向如图,则由A到B的电势增量U B-U A为:(A) 2-1-I1 R1+I2 R2-I3 R .(B) 2+1-I1(R1 + r1)+I2(R2 + r2)-I3 R.(C) 2-1-I1(R1-r1)+I2(R2-r2) .(D) 2-1-I1(R1 + r1)+I2(R2 + r2) .二.填空题1.用一根铝线代替一根铜线接在电路中,若铝线和铜线的长度、电阻都相等,那么当电路与电源接通时铜线和铝线中电流密度之比J1:J2 = .(铜电阻率×106·cm , 铝电阻率×106 · cm , )2.金属中传导电流是由于自由电子沿着与电场E相反方向的定向漂移而形成, 设电子的电量为e , 其平均漂移率为v , 导体中单位体积内的自由电子数为n , 则电流密度的大小J = , J的方向与电场E的方向.3.有一根电阻率为、截面直径为d、长度为L的导线,若将电压U加在该导线的两端,则单位时间内流过导线横截面的自由电子数为;若导线中自由电子数密度为n,则电子平均漂移速率为.(导体中单位体积内的自由电子数为n)三.计算题1.两同心导体球壳,内球、外球半径分别为r a , r b,其间充满电阻率为的绝缘材料,求两球壳之间的电阻.2.在如图所示的电路中,两电源的电动势分别为1=9V和2 =7V,内阻分别为r1 = 3和r2= 1,电阻R=8,求电阻R两端的电位差.练习九磁感应强度洛伦兹力一.选择题1.一个动量为p电子,沿图所示的方向入射并能穿过一个宽度为D、磁感应强度为B(方向垂直纸面向外)的均匀磁场区域,则该电子出射方向和入射方向间的夹角为(A) =arccos(eBD/p).(B) =arcsin(eBD/p).(C) =arcsin[BD /(ep)].(D) =arccos[BD/(e p)].2.一均匀磁场,其磁感应强度方向垂直于纸面,两带电粒子在该磁场中的运动轨迹如图所示,则(A)两粒子的电荷必然同号.(B) 粒子的电荷可以同号也可以异号.(C) 两粒子的动量大小必然不同.(D) 两粒子的运动周期必然不同.3.一运动电荷q,质量为m,以初速v0进入均匀磁场,若v0与磁场方向的夹角为,则(A)其动能改变,动量不变.(B) 其动能和动量都改变.(C) 其动能不变,动量改变.(D) 其动能、动量都不变.4.两个电子a和b同时由电子枪射出,垂直进入均匀磁场,速率分别为v和2v,经磁场偏转后,它们是(A)a、b同时回到出发点.(B) a、b都不会回到出发点.(C) a先回到出发点.(D) b先回到出发点.5. 如图所示两个比荷(q/m)相同的带导号电荷的粒子,以不同的初速度v1和v2(v1v2)射入匀强磁场B中,设T1、T2分别为两粒子作圆周运动的周期,则以下结论正确的是:(A) T1 = T2,q1和q2都向顺时针方向旋转;(B) T1 = T 2,q1和q2都向逆时针方向旋转(C) T1T2,q1向顺时针方向旋转,q2向逆时针方向旋转;(D) T1 = T2,q1向顺时针方向旋转,q2向逆时针方向旋转;二.填空题1. 一电子在B=2×10-3T的磁场中沿半径为R=2×10-2m、螺距为h=×10-2m的螺旋运动,如图所示,则磁场的方向, 电子速度大小为.2. 磁场中某点处的磁感应强度B=-(T), 一电子以速度v=×106i+×106j (m/s)通过该点,则作用于该电子上的磁场力F= .3.在匀强磁场中,电子以速率v=×105m/s作半径R=的圆周运动.则磁场的磁感应强度的大小B= .三.计算题1.如图所示,一平面塑料圆盘,半径为R ,表面均匀带电,电荷面密度为,假定盘绕其轴线OO以角速度转动,磁场B垂直于轴线OO,求圆盘所受磁力矩的大小。
大学物理课后习题答案(上下册全)武汉大学出版社 习题2详解

2-1 如题2-1图所示,弹簧秤挂一滑轮,滑轮两边各挂一质量为m 和2m 的物体,绳子与滑轮的质量忽略不计,轴承处摩擦忽略不计,在m 及2m 的运动过程中,弹簧秤的读数为[ ]A. 3mg .B. 2mg .C. 1mg .D. 8mg / 3.答案: D题 2-1图 2-2 一质点作匀速率圆周运动时,[ ] A.它的动量不变,对圆心的角动量也不变。
B.它的动量不变,对圆心的角动量不断改变。
C.它的动量不断改变,对圆心的角动量不变。
D.它的动量不断改变,对圆心的角动量也不断改变。
答案: C2-3 质点系的内力可以改变[ ] A.系统的总质量。
B.系统的总动量。
C.系统的总动能。
D.系统的总角动量。
答案: C2-4 一船浮于静水中,船长L ,质量为m ,一个质量也为m 的人从船尾走到船头。
不计水和空气阻力,则在此过程中船将:[ ] A.不动 B.后退LC.后退L 21 D.后退L 31答案: C2-5 对功的概念有以下几种说法:[ ]①保守力作正功时,系统内相应的势能增加。
②质点运动经一闭合路径,保守力对质点作的功为零。
③作用力与反作用力大小相等、方向相反,所以两者所作功的代数和必为零。
在上述说法中:A.①、②是正确的。
B.②、③是正确的。
C.只有②是正确的。
D.只有③是正确的。
答案: C2-6 某质点在力(45)F x i =+(SI )的作用下沿x 轴作直线运动。
在从x=0移动到x=10m的过程中,力F所做功为 。
答案: 290J2-7 如果一个箱子与货车底板之间的静摩擦系数为μ,当这货车爬一与水平方向成θ角的平缓山坡时,要不使箱子在车底板上滑动,车的最小加速度 。
< < < < <m 2m答案: ()cos sin g μθθ-2-8 一质量为1Kg 的球A ,以5m /s 的速率与原来静止的另一球B 作弹性碰撞,碰后A 球以4m /s 的速率垂直于它原来的运动方向,则B 球的动量大小为 。
高分子物理标准化作业本

- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
武汉工程大学物理练习册答案LELE was finally revised on the morning of December 16, 2020大学物理练习 一一.选择题:1.一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中a 、b 为常量), 则该质点作 (A) 匀速直线运动. (B) 变速直线运动.(C) 抛物线运动. (D)一般曲线运动.解:选(B )j bt i at r 22+=22bty at x ==2.一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为v ,某一段时间内的平均速度为v,平均速率为v ,它们之间的关系必定有 [ ](A )v =v ,v =v . (C ) ≠vv ,v ≠v .(B ) ≠vv ,v =v . (D ) v =v ,v ≠v .解:选(D ).根据瞬时速度与瞬时速率的关系(ds r d = ) 所以但s r ∆≠∆ 所以3.质点作半径为R 的变速圆周运动时的加速度大小为 (v 表示任一时刻质点的速率) [ ](A )dtdv . (B)R v 2.(C) dt dv +R v2. (D)21222⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛R v dt dv .解:选(D ). 因变速圆周运动的加速度有切向加速度和法向加速度,故22τa a a n += 。
4.某物体的运动规律为2kv dt dv -=,式中的k 为大于零的常数。
当t=0时,初速为v 0,则速度v 与时间t 的函数关系是 [ ] (A )v = kt+v 0 (B )v =-kt + v 0大学物理练习 二一、选择题:1.质量为m 的小球在向心力作用下,在水平面内作半径为R 、速率为v 的匀速圆周运动,如下左图所示。
小球自A 点逆时针运动到B 点的半周内,动量的增量应为:(A) mv 2j(B )j mv2-(C )imv2 (D )imv 2- 解: [ B ]jmv j mv j mv v m v m A B2-=--=-2.如图上右所示,圆锥摆的摆球质量为m,速率为v,圆半径为R,当摆球在轨道上运动半周时,摆球所受重力冲量的大小为 [ ](A) .2mv (B )()()22/2v R mg mv π+(C )v Rmg /π (D ) 0。
解:[C ] ⎰===2/0/2/T v Rmg mgT mgdt I π恒力冲量 v R t π=v Rmgmgt π= 3.一质点在力)25(5t m F -= (SI )(式中m 为质点的质量,t 为时间)的作用下,0=t 时从静止开始作直线运动,则当s t 5=时,质点的速率为 [ ](A )s m /50 (B )s m /25 (C )0 (D )s m /50-解:[C ] 00=-mv mv如果当s t 1=时m mv mv 200=-4.质量分别为m 和4m 的两个质点分别以动能E 和4E 沿一直线相向运动,它们的总动量大小为 [ ](A) ,22mE (B) mE 23, (C) mE 25, (D) ()mE 2122-。
解:[ B ] 因质点m;mE mv E mv 2,21121=∴=因质点m 4:mE mE mv E mv 24324,4421222==∴=所以 mE mE mE P 23242=+-=5.一个质点同时在几个力作用下的位移为:k j i r654+-=∆ (SI ) 其中一个力为恒力 k j i F953+--= (SI ),则此力在该位移过程中所作的功为 [ ](A) 67J (B) 91J (C) 17J (D) –67J解:[ A ]Jk j i k j i r F W 67542512)654()953(=++-=+-•+--=∆•=6.对功的概念有以下几种说法:⑴ 保守力作正功时,系统内相应的势能增加。
⑵ 质点运动经一闭合路径,保守力对质点作的功为零。
⑶ 作用力和反作用力大小相等、方向相反,所以两者所做功的代数和必为零。
在上述说法中: [ ](A) ⑴、⑵正确。
(B) ⑵、⑶正确。
(C) 只有⑵正确。
(D) 只有⑶正确。
解:[ C ]7.机枪每分钟可射出质量为g 20 的子弹900颗,子弹射出的速率为s m /800,则射击时的平均反冲力大小为 [ ] (A) N 267.0 (B) N 16 (C)N 240 (D)N 14400解: [ C ]8.一质量为M 的弹簧振子,水平放置且静止在平衡位置,如图所示.一质量为m 的子弹以水平速度v射入振子中,并随之一起运动.如果水平面光滑,此后弹簧的最大势能为 [ ](A) 221v m . (B) )(222m M m +v .(C) 2222)(v Mm m M +. (D) 222v M m . [ B ] 解:碰撞动量守恒V m M mv )(+=9.一质点在如图所示的坐标平面内作圆周运动,有一力)(0j y i x F F+=作用在质点上,在该质点从坐标原点运动到)2,0(R 位置的过程中,力F对它所做的功为 [ ] (A) 20R F (B) 202R F (C)203R F (D) 204R F解:10.质量为kg 10.0的质点,由静止开始沿曲线j i t r2353+=(SI )运动,则在0=t 到s t 2=的时间内,作用在该质点上的合外力所做的功为 (A)J 45 (B) J 20 (C) J 475(D) J 40 [ ] i t a m F 1010.0⨯==二、填空题:1.下列物理量:质量、动量、冲量、动能、势能、功,其中与参照系的选取有关的物理量是 。
(不考虑相对论效应)解:.动量(v )、动能(v)、功()r∆ 与运动的参考系选取有关。
2.一个物体可否具有动量而机械能等于零? (填可、否)解:可3.质量为m 的子弹以速度v 0水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为K,忽略子弹的重力,求:(1) 子弹射入沙土后,速度随时间变化的函数式 ;(2) 子弹进入沙土的最大深度 。
解:(1) 子弹进入沙土后受力为-Kv ,由牛顿定律tmK d d vv =- ∴ ⎰⎰=-=-vv v vv v 0d d ,d d 0t t m K t m K ∴ m Kt /0e -=v v(2) 求最大深度解法一: txd d =vt x m Kt d e d /0-=vt x m Kt txd e d /000-⎰⎰=v∴ )e 1()/(/0m Kt K m x --=v K m x /0max v =解法二: xm t x x m t m K d d )d d )(d d (d d vv v v v ===-∴ v d Kmdx -=v v d d 000max ⎰⎰-=K mx x∴ K m x /0max v =4.质量m =1kg 的物体,在坐标原点处从静止出发在水平面内沿x 轴运动,其所受合力方向与运动方向相同,合力大小为x F 23+= (SI ),那么,物体在开始运动的3m 内,合力所作功A = ;且x =3m 时,其速率v = 。
解:j xx Fdx W 1833023=+==⎰ sm v jmv W /618212=∴==5.有一人造地球卫星,质量为m ,在地球表面上空2倍于地球半径R 的高度沿圆轨道运行,用m 、R 、引力常数G 和地球的质量M 表示⑴卫星的动能为 ;⑵卫星的引力势能为 。
解:(1)R GMm 6 ( RmvR GMm 3)3(22= ) R r 3=(2)R GMm3- ( dr rGMmE RP⎰∞=32 )6.一质量为M 的质点沿x 轴正向运动,假设质点通过坐标为x 时的速度为2kx(k 为正常量),则此时作用于该质点上的力F = ;该质点从x = x 0 点出发到x = x 1 处所经历的时间 ∆t = 。
解:t k t t k x x xx x ∆=-=-=-)(1110110107.一个力作用在质量为kg 0.1的质点上,使之沿X 轴运动。
已知在此力作用下质点的运动方程为32243t t t X +-= (SI )。
在0到4s的时间间隔内, ⑴ 力F 的冲量大小I= 。
⑵ 力F 对质点所作的功A = 。
解: 2683t t dtdx v +-==(1)(2)s m v /674= s m v /30=8. 一质量为m 的质点在指向圆心的平方反比力F=-k / r 2 的作用下,作半径为r 的圆周运动,此质点的速度v = ,若取距圆心无穷远处为势能零点,它的机械能 E = 。
解:2mr ka -=⎰⎰∞∞-=-+=+=+=rr p k r kdr r k r k Fdr mr k m E E E 22)(21229.一物体按规律x =ct 2在媒质中作直线运动,式中c 为常量,t 为时间。
设媒质对物体的阻力正比于速度的平方,阻力系数为k ,则物体由x =0运动到x = L时,阻力所作的功为 。
解: 2ct x = ct dt dxv 2==kcx t kc kv f 44222===224kcLkcxdx fdx WLL-=-=-=⎰⎰10.一陨石从距地面高R h 5=(R 为地球半径)处由静止开始落向地面,忽略空气阻力。
则陨石下落过程中,万有引力的功A = ;陨石落地的速度v = 。
解: RGMmh R R GMm dr r GMm W RR 65)11(62=+-=-=⎰ R GMmmv W 65212==注意:为万有引力不是mg ,也不是常数。
大学物理练习三一.选择题1.一力学系统由两个质点组成,它们之间只有引力作用。
若两质点所受外力的矢量和为零,则此系统 [ ](A) 动量、机械能以及对一轴的角动量都守恒。
(B) 动量、机械能守恒,但角动量是否守恒不能断定。
(C) 动量守恒,但机械能和角动量守恒与否不能断定。
(D) 动量和角动量守恒,但机械能是否守恒不能断定。
解:[ C ] 按守恒条件:∑=0iF 动量守恒,但∑≠0i M 角动量不守恒, 机械能不能断定是否守恒。
2.如图所示,有一个小物体,置于一个光滑的水平桌面上,有一绳其一端连结此物体,另一端穿过桌面中心的小孔,该物体原以角速度ω在距孔为R 的圆周上转动,今将绳从小孔往下拉。
则物体 [ ] (A)动能不变,动量改变。
(B)动量不变,动能改变。
(C)角动量不变,动量不变。
(D)角动量改变,动量改变。
(E)角动量不变,动能、动量都改变。
解:[ E ] 因对o 点,合外力矩为0,角动量守恒3.有两个半径相同,质量相等的细圆环A 和B 。
A 环的质量分布均匀,B 环的质量分布不均匀。