人教版初中数学代数式技巧及练习题含答案
最新人教版七年级数学上册 代数式单元复习练习(Word版 含答案)

一、初一数学代数式解答题压轴题精选(难)1.从2022年4月1日起龙岩市实行新的自来水收费阶梯水价,收费标准如下表所示:(2)某用户8月份用水量为24吨,求该用户8月份应缴水费是多少元.(3)若某用户某月用水量为m吨,请用含m的式子表示该用户该月所缴水费.【答案】(1)解:2.2×10=22元,答:该用户4月份应缴水费是22元,(2)解:15×2.2+(24﹣15)×3.3=62.7元,答:该用户8月份应缴水费是 62.7元(3)解:①当m≤15时,需交水费2.2m元;②当15<m≤25时,需交水费,2.2×15+(m﹣15)×3.3=(3.3m﹣16.5)元,③当m>25时,需交水费2.2×15+10×3.3+(m﹣25)×4.4=(4.4m﹣44)元.【解析】【分析】(1)先根据月用水量确定出收费标准,再进行计算即可;(2) 8月份应缴水费为:不超过15吨的水费+超出的9吨的水费;(3)分①m≤15吨,②15<m≤25吨,③m>25吨三种情况,根据收费标准列式进行计算即可得解。
2.糖业是我省重要的生物资源产业.我省某糖业集团今年4月收购甘蔗后入榨甘蔗250万吨,榨糖率为12%.经市场调查知5月份糖的销售价为2940/吨,若糖业集团在5月销售4月生产的糖,产销率为60%;又知糖业集团若在6月、7月两个月内销售4月生产的糖,销售价将在5月的基础上每月比上月降低6%、糖销量将在5月的基础上每月比上月增加9%.(1)问2005年4月糖业集团生产了多少吨糖?(2)若糖业集团计划只在7月销售4月生产的糖,请求出该糖业集团7月销售4月生产的糖的销售额是多少?(精确到万元)(注:榨糖率=(产糖量/入榨甘蔗量)×100%,产销率=(糖销量/产糖量)×100%,销售额=销售单价×销售数量).【答案】(1)解:2005年4月糖业集团产糖250×12%=30(万吨)=300000(吨)(2)解:设7月份的糖价为x元/吨,则据已知条件有x=2597.784(元/吨);设7月份的糖销量为y吨,则据已知条件得:y=30×0.60×(1+9%)2=21.3858(万吨)设7月份销售4月份产糖的销售额为w元,则据题意得:w=2597.784×21.3858≈55556(万元).答:糖业集团7月份销售4月份产糖的销售额约为55556万元.【解析】【分析】(1)根据产糖量等于入搾甘蔗量乘以搾糖率即可求解;(2)由题意先求出7月份的糖价=2940(1-6%)2=2597.784元/吨,再求出7月份的糖销量=30×0.60×(1+9%)2=21.3858(万吨),最后根据销售额等于销售单价乘以销售量即可解答。
代数式练习题及答案

代数式练习题及答案代数式练习题及答案代数是数学中的一个重要分支,它研究数和运算的关系。
代数式是代数中的基本概念之一,它由数、字母和运算符号组成。
通过解答代数式练习题,我们可以提高我们的代数运算能力,培养我们的逻辑思维和解决问题的能力。
下面我将给大家提供一些代数式练习题及答案,希望能对大家的学习有所帮助。
一、简单代数式练习题1. 计算下列代数式的值:(1) 2x + 3y,当x = 4,y = 5时;(2) 3a - 2b,当a = 7,b = 2时;(3) 5m^2 + 2mn,当m = 3,n = 2时。
答案:(1) 2x + 3y = 2 * 4 + 3 * 5 = 8 + 15 = 23;(2) 3a - 2b = 3 * 7 - 2 * 2 = 21 - 4 = 17;(3) 5m^2 + 2mn = 5 * 3^2 + 2 * 3 * 2 = 5 * 9 + 12 = 45 + 12 = 57。
2. 化简下列代数式:(1) 2x + 3x;(2) 4y - 2y;(3) 5a^2 - 3a^2。
答案:(1) 2x + 3x = 5x;(2) 4y - 2y = 2y;(3) 5a^2 - 3a^2 = 2a^2。
二、复杂代数式练习题1. 计算下列代数式的值:(1) 3(x + 2) - 2(3x - 4),当x = 2时;(2) 2(3a + 4b) - 5(2a - 3b),当a = 1,b = 2时;(3) 4(2m^2 + 3mn) - 3(4m^2 - 5mn),当m = 2,n = 1时。
答案:(1) 3(x + 2) - 2(3x - 4) = 3(2 + 2) - 2(3 * 2 - 4) = 3 * 4 - 2(6 - 4) = 12 - 2(2) = 12 - 4 = 8;(2) 2(3a + 4b) - 5(2a - 3b) = 2(3 * 1 + 4 * 2) - 5(2 * 1 - 3 * 2) = 2(3 + 8) - 5(2 - 6) = 2 * 11 - 5(-4) = 22 + 20 = 42;(3) 4(2m^2 + 3mn) - 3(4m^2 - 5mn) = 4(2 * 2^2 + 3 * 2 * 1) - 3(4 * 2^2 - 5 * 2 * 1) = 4(2 * 4 + 6) - 3(4 * 4 - 10) = 4(8 + 6) - 3(16 - 10) = 4 * 14 - 3 * 6 = 56 - 18 = 38。
代数式技巧及练习题附答案解析

代数式技巧及练习题附答案解析1 )个图形中面积为1的正方形有2个,1的图象有2+3=5个,1的正方形有2+3+4=9个,按此规律,的正方形有2+3+4+--+ (n+1)= —3)个,2则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选B.一、选择题1.已知单项式3a2b m 1与7a n b互为同类项,则m n为(A. 1【答案】D【解析】B. C. 3 D. 4【分析】根据同类项的概念求解.【详解】解:Q单项式3a2b m 1与7a n b互为同类项,n 2, 则m n 故选D.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个的指数相同.相同”相同字母2.如图,面积为1面积为1下列图形都是由面积为1的正方形按一定的规律组成,其中,第(的正方形有的正方形有2个,第(2)个图形中面积为1的正方形有5个,9个,…,按此规律.则第(6)个图形中面积为1个图形中个图形中1)第(3)的正方形的个数为【答案】B【解析】试题解析:第(第(2)个图形中面积为第(3)个图形中面积为第n个图形中面积为1考点:规律型:图形变化类3.下列命题正确的个数有( )①若x2+kx+25是一个完全平方式,则k的值等于10;②一组对边平行,一组对角相等的四边形是平行四边形;③ 顺次连接平行四边形的各边中点,构成的四边形是菱形;④黄金分割比的值为逻二■- 0.618.2B. 1个A. 0个【答案】C【解析】【分析】根据完全平方式的定义,黄金分割的定义,平行四边形的判定,菱形的判定即可一一判断;【详解】①错误.x2+kx+25是一个完全平方式,则k的值等于± 10 正确.一组对边平行,一组对角相等,可以推出两组对角分别相等,即可判断是平行四边形;③错误.顺次连接平行四边形的各边中点,构成的四边形是平行四边形;^5十1④正确.黄金分割比的值为一3~ 0.618故选C.C. 2个D. 3个【点睛】本题考查完全平方式的定义,黄金分割的定义,平行四边形的判定,菱形的判定等知识, 解题的关键是熟练掌握基本知识.4.下列运算正确的是( )A. x3+x5=x8B. (y+1)(y-1)=y2-1 C a10+a=a5 D. (-a2b)3=a6b3 【答案】B【解析】【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算得出答案.【详解】A、x3+x5, 无B、(y+1)C、a10^2=aD、(-a2b) 故选:B.【点睛】匸法计算,故此选项错误; (y-1) =y2-l,正确;8,故此选项错误;3=-a6b3,故此选项错误.本题考查了合并同类项以及积的乘方运算、整式的乘除运算, 题的关键. 正确掌握相关运算法则是解5.若(x+1)( x+n )= x 2+mx - 2,贝U m 的值为( A . - 1 B . 1 C - 2 【答案】A 【解析】 【分析】 先将(x+1)(x+ n)展开得出一个关于 x 的多项式,再将它与 m , n 的值. 【详解】 解:••• (x+1)(x+n)=x 2+(1+ n) x+n , •-x 2+(1+ n)x+n=x 2+mx-2, 1 n D . 2x 2+mx-2作比较,即可分别求得n=-2. /. m=-1 , 故选A . 【点睛】 本题考查了多项式乘多项式的法则以及类比法在解题中的运用. 6.如果(x 2 +px + q)(x 2 — 5x + 7)的展开式中不含 x 2与x 3叽那么p 与q 的值是( )A . p = 5, q = 18B . C. p =— 5, q =一 18【答案】A D . P =— 5, q = 18 p = 5, q = 一 18【解析】 试题解析:•••( x 2+ px+q )(x 2-5x+7) =x 4+ (p-5) 又•••展开式中不含x 2与x 3项, ••• p -5=0, 7-5p+q=0 , 解得 p=5, q=18. 故选A . x 3+ (7-5 p+q ) x 2+ (7-5q ) x+7q ,A . 5.某企业今年3月份产值为d 万元, 15%,贝y 5月份的产值是()(4 — 10%)( d +15%)万元 (d — 10 % +15%)万元 4月份比 B . 月份减少了10%, 5月份比4月份增加(1+15 %)万元 C. 【答案】B 【解析】 列代数式.据3月份的产值是a 万元, 得出5月份产值列出式子a 1 — 10%)D .(1 — 10 %) (1 — 10% + 15%)万元a 把4月份的产值表示出来 a ( 1— 10%),从而 (1+15%).故选 B .【解析】 本题考查幕的运算. 点拨:根据幕的运算法则. 3a故选B .【解析】【分析】 根据幕的乘方和同底数幕除法的运算法则求解. 【详解】...2m = 5, 4n= 3,• 43n 飞=41 =心=£ =空 4m(2m)25225故选B. 【点睛】10.下列计算,正确的是()【答案】D【解析】A. a 2和a,和不能合并,故本选项错误;D 2 3B. a aC 93C. a aD. a 328.下列计算正确的是( A . a?a 2= a 2 【答案】B B .()a 2) 2= a 4C. 3a+2a = 5a 2D . (a 2b ) 3= a 2?b 3A . a 2a a D 2 3B . a aC. a 9a 3a 3D .a 3 2解答:a a2a 1 2 a 22a 2 2a 43a 2a a 2b ‘5a6. 3a b9.若 2m = 5, 4n= 3,则43nm的值是(9A.—1027B.——25C. 2 D .本题考查幕的乘方和同底数幕除法,熟练掌握运算法则是解题关键a 5 a 6,故本选项错误;a 6 a 3 和不能合并,故本选项错误;a 6,故本选项正确;故选D.11.如图1,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ),把余下的部分剪拼成如图2所示的长方形.通过计算剪拼前后阴影部分的面积,验证了一个等式,这 则个等式是(75a7!A .( a+b )( a - b )C.( a - b ) 2【答案】A =a 2-b2=a 2- 2ab+b 2B .( a+b ) 2= a 2+2ab+b 2D . a ( a — b ) = a 2— ab【解析】 【分析】分别计算出两个图形中阴影部分的面积即可. 【详解】图1阴影部分面积:a 2- b 2,图2阴影部分面积:(a+b ) ( a - b ), 由此验证了等式(a+b )( a - b ) = a 2-b 2,故选:A .此题主要考查了平方差公式的几何背景,运用几何直观理解、解决平方差公式的推导过 程,通过几何图形之间的数量关系对平方差公式做出几何解释.计算(0.5 X 50 3x (4X 10 2的结果是(2 1013B . 0.5 1014【答案】C 12. A . )C. 2 1021D . 8 1021【解析】根据同底数幕的乘法的性质,幕的乘方的性质,积的乘方的性质进行计算. 解:(0.5 X 10 3X ( 4 X故选C.本题考查同底数幕的乘法,10 2=0.125 X 10< 16 X 6=2 X 10.幕的乘方,积的乘方,理清指数的变化是解题的关键.13.图(1)是一个长为开,把它分成四块形状和大小都一样的小长方形,然后按图( 中间空的部分的面积是()2a ,宽为2b (a b )的长方形,用剪刀沿图中虚线(对称轴)剪2)那样拼成一个正方形,则【答案】C 【解析】 【分析】图(2)的中间部分是正方形,边长为 【详解】中间部分的四边形是正方形,边长为: •••面积是(a b )2, 故选:C.【点睛】此题考查完全平方公式的几何背景,观察图形得到线段之间的关系是解题的关键15.下面的图形都是由同样大小的棋子按照一定的规律组成,其中第① 个图形有1颗棋子,第②个图形有6颗棋子,第 ③个图形有15颗棋子,第 ④ 个图中有28颗棋子,…, 则第6个图形中棋子的颗数为( )A . abB . (a b)22C. (a b)D . a 2b 2a-b ,根据图形列面积关系式子即可得到答案a+b-2b=a-b .A . ( 2x 2)38x 6B . 2x x 1 2x 2 c , 、222C. (x y) x yD .x 2yx 2y2x x 2 4y 2【解析】解: A . B .C. D . 故选A . (-2x 2)3=- 8x 6,正确;—2x(x + 1)=- 2x 2- 2x ,故 B 错误; (X + y)2= X 2 + 2xy+y 2,故 C 错误;(-X + 2y)(- x -2y) = x 2-4y 2,故 D 错误;巧I下列运算正确的是( 14. )【答案】 A【解析】 【分析】解:•••通过观察可以发现: 第1个图形中棋子的个数为 第2个图形中棋子的个数为故选:D 【点睛】16. 如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角 形中y 与n 之间的关系是()【解析】 【详解】•• •观察可知:左边三角形的数字规律为:■« « ・ • • • * • • • • •« + 4 * • ■• •• ««• • • • « « • • ••4•• • • ■•• • ▼ ■ ■ ■* * 4图①图②15③■圏④A . 63B . 64C. 65D . 66根据图形中棋子的个数找到规律, 【详解】从而利用规律解题.第3个图形中棋子的个数为 15 第4个图形中棋子的个数为28第n 个图形中棋子的个数为 n 2n•••第6个图形中棋子的个数为66.本题考查了图形变化规律的问题,能找出第n 个图形棋子的个数的表达式是解题的关键.A . y=2n+1【答案】B D . y=2n+n+11 , 2, …,n ,【答案】D B . y=2n+nC. y=2n+1+n右边三角形的数字规律为: 下边三角形的数字规律为: •••最后一个三角形中 y 与n 之间的关系式是y=2n+n. 故选B .【点睛】考点:规律型:数字的变化类.17. 若 x+y = 3+2^2,X -y = 3 - 2 迈,则庁【分析】根据二次根式的性质解答.【详解】 解:••• x+y = 3+2 屈,X - y = 3- 2血,•7X 2 y 2J (Q y)(x y) J (3 272)(3 近=「故选:B . 【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差 公式进行解题.【解析】C 正确;19.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉著的《详解九章算术》一书中,用如图的三角形解释二项和( a+b ) n的展开式的各项系数,此三角形称为 杨辉三角”.2, 2?,…,2",1+2, 2 + 2$ …,^+2"|,y2的值为(A . 4©【答案】B 【解析】B . 1 C. D . 3 - 24218.下列运算正确的是( A . X 4【答案】 )B . X 2X 3X 6c . 2,3 6 C. (X ) X r 2 2 . , 2D . X y (X y )试题分析:X 4与X 2不是同类项,不能合并, X 5 A 错误;B 错误;/ 2\3(X2 2X y故选C.考点:幕的乘方与积的乘方;合并同类项;同底数幕的乘法;因式分解(X y )(x y ) , D 错误.-运用公式法.13世纪)所(约(2to+勺 Q ......... Zzr 际1 ... ®id a/ ■① ② G 坍 ............ ,①③® ra+6/ ..... ① ® ⑥ ⑤ @ @ 根据杨辉三角”请计算(a+b ) 20 A . 2017 B . 2016【答案】D【解析】① ① ④①的展开式中第三项的系数为(C. 191 D . 190试题解析:找规律发现( (a+b ) 4的第三项系数为 (a+b ) 5的第三项系数为10=1+2+3+4; 不难发现(a+b ) n的第三项系数为1+2+3+-+ •••( a+b ) 20 第三项系数为 1+2+3+- +20=190, 故选D . a+b ) 3的第三项系数为 3=1+2;6=1+2+3; (n - 2) + (n - 1), 考点:完全平方公式. 20.如图,是一块直径为 2a + 2b 的圆形钢板, 剩下的钢板的面积为( ) 从中挖去直径分别为 2a 、2b 的两个圆,则【答案】B 【解析】 【分析】 B . 2ab C. 3ab D . 4ab剩下钢板的面积等于大圆的面积减去两个小圆的面积 ,利用圆的面积公式列出关系式 ,化简即【详解】 解:S 剩下=S 大圆-S 小圆1 - S 小圆2 2a+2b 2 / 2a 2 / 2b 2)-(T)- (7)a+b22 2-a -b =2 ab ,故选:B【点睛】此题考查了整式的混合运算,涉及的知识有:圆的面积公式,完全平方公式,去括号、合并同类项法则,熟练掌握公式及法则是解本题的关键.。
人教版初中数学代数式全集汇编及答案解析

人教版初中数学代数式全集汇编及答案解析一、选择题1.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A .110B .158C .168D .178【答案】B【解析】根据排列规律,10下面的数是12,10右面的数是14,∵8=2×4−0,22=4×6−2,44=6×8−4,∴m =12×14−10=158.故选C.2.下列运算正确的是( ).A .()2222x y x xy y -=--B .224a a a +=C .226a a a ⋅=D .()2224xy x y = 【答案】D【解析】【分析】直接利用合并同类项法则以及积的乘方法则、同底数幂的乘法法则、完全平方公式分别化简求出答案.【详解】解:A.、()2222x y x xy y -=-+,故本选项错误;B.、2222a a a +=,故本选项错误;C.、224a a a ⋅=,故本选项错误;D 、 ()2224xy x y =,故本选项正确;故选:D .【点睛】本题主要考查合并同类项、积的乘方、同底数幂的乘法、完全平方公式,熟练掌握相关的计算法则是解题的关键.3.一种微生物的直径约为0.0000027米,用科学计数法表示为( )A .62.710-⨯B .72.710-⨯C .62.710-⨯D .72.710⨯【答案】A【解析】【分析】绝对值小于1的正数科学记数法所使用的是负指数幂,指数由原数左边起第一个不为0的数字前面的0的个数所决定.【详解】解:0.0000027的左边第一个不为0的数字2的前面有6个0,所以指数为-6,由科学记数法的定义得到答案为62.710-⨯.故选A.【点睛】本题考查了绝对值小于1的正数科学记数法表示,一般形式为10n a -⨯.4.下列运算或变形正确的是( )A .222()a b a b -+=-+B .2224(2)a a a -+=-C .2353412a a a ⋅=D .()32626a a =【答案】C【解析】【分析】根据合并同类项,完全平方公式,同底数幂的乘法以及幂的乘方与积的乘方计算法则解答.【详解】A 、原式中的两项不是同类项,不能合并,故本选项错误;B 、原式=(a-1)2+2,故本选项错误;C 、原式=12a 5,故本选项正确;D 、原式=8a 6,故本选项错误;故选:C .【点睛】此题考查单项式的乘法,因式分解,解题关键在于熟记计算法则.5.下列运算错误的是( )A .()326m m =B .109a a a ÷=C .358⋅=x x xD .437a a a +=【答案】D【解析】【分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简求出即可.【详解】A 、(m 2)3=m 6,正确;B 、a 10÷a 9=a ,正确;C、x3•x5=x8,正确;D、a4+a3=a4+a3,错误;故选:D.【点睛】此题考查合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则等知识,正确掌握运算法则是解题关键.6.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示9,则表示58的有序数对是()A.(11,3)B.(3,11)C.(11,9)D.(9,11)【答案】A【解析】试题分析:根据排列规律可知从1开始,第N排排N个数,呈蛇形顺序接力,第1排1个数;第2排2个数;第3排3个数;第4排4个数根据此规律即可得出结论.解:根据图中所揭示的规律可知,1+2+3+4+5+6+7+8+9+10=55,所以58在第11排;偶数排从左到右由大到小,奇数排从左到右由小到大,所以58应该在11排的从左到右第3个数.故选A.考点:坐标确定位置.7.下列计算正确的是()A.2x2•2xy=4x3y4B.3x2y﹣5xy2=﹣2x2yC.x﹣1÷x﹣2=x﹣1D.(﹣3a﹣2)(﹣3a+2)=9a2﹣4【答案】D【解析】A选项:2x2·2xy=4x3y,故是错误的;B选项:3x2y和5xy2不是同类项,不可直接相加减,故是错误的;C.选项:x-1÷x-2=x ,故是错误的;D选项:(-3a-2)(-3a+2)=9a2-4,计算正确,故是正确的.故选D.8.计算的值等于()A.1 B.C.D.【答案】C【解析】【分析】直接利用幂的乘方运算法则、积的乘方运算法则将原式变形进而得出答案.【详解】原式===.故选C.【点睛】此题主要考查了幂的乘方运算以及积的乘方运算,正确将原式变形是解题关键.9.下列各运算中,计算正确的是( )A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b2【答案】B【解析】试题解析:A、2a•3a=6a2,故此选项错误;B、(3a2)3=27a6,正确;C、a4÷a2=a2,故此选项错误;D、(a+b)2=a2+2ab+b2,故此选项错误;故选B.【点睛】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式乘以单项式等知识,正确化简各式是解题关键.10.如果(x2+px+q)(x2-5x+7)的展开式中不含x2与x3项,那么p与q的值是() A.p=5,q=18 B.p=-5,q=18C.p=-5,q=-18 D.p=5,q=-18【答案】A【解析】试题解析:∵(x2+px+q)(x2-5x+7)=x4+(p-5)x3+(7-5p+q)x2+(7-5q)x+7q,又∵展开式中不含x2与x3项,∴p-5=0,7-5p+q=0,解得p=5,q=18.11.若x +y =,x ﹣y =3﹣的值为( )A .B .1C .6D .3﹣【答案】B【解析】【分析】根据二次根式的性质解答.【详解】解:∵x+y =,x ﹣y =3﹣,==1.故选:B .【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.12.下列计算正确的是( )A .2571a a a -÷=B .()222a b a b +=+C .2+=D .()235a a =【答案】A【解析】 分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A 、2571a a a -÷=,正确; B 、(a+b )2=a 2+2ab+b 2,故此选项错误;C 、,无法计算,故此选项错误;D 、(a 3)2=a 6,故此选项错误;故选:A .点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.13.已知:()()22x 1x 32x px q +-=++,则p ,q 的值分别为( ) A .5,3B .5,−3C .−5,3D .−5, −3【答案】D【解析】此题可以将等式左边展开和等式右边对照,根据对应项系数相等即可得到p 、q 的值.【详解】由于()()2x 1x 3+-=2x 2-6x+x-3=2 x 2-5x-3=22x px q ++, 则p=-5,q=-3,故答案选D.【点睛】本题考查了多项式乘多项式的法则,根据对应项系数相等求解是关键.14.下列图形都是由同样大小的五角星按照一定规律所组成的,按此规律排列下去,第n 个图形中五角星的个数为( )A .31n -B .3nC .31n +D .32n +【答案】C【解析】【分析】 根据前4个图形中五角星的个数得到规律,即可列式得到答案.【详解】观察图形可知:第1个图形中一共是4个五角星,即4311=⨯+,第2个图形中一共是7个五角星,即7321=⨯+,第3个图形中一共是10个五角星,即10331=⨯+,第4个图形中一共是13个五角星,即13341=⨯+,L ,按此规律排列下去,第n 个图形中一共有五角星的个数为31n +,故选:C.【点睛】此题考查图形类规律的探究,观察图形得到五角星的个数的变化规律并运用解题是关键.15.若代数式()212323aa x y xy -+-是五次二项式,则a 的值为( ) A .2B .2±C .3D .3± 【答案】A【解析】【分析】根据多项式的次数与项数的定义解答.【详解】∵()212323a a x y xy -+-是五次二项式,∴2125a -+=,且20a +≠,解得a=2,故选:A.【点睛】此题考查多项式的次数与项数的定义,熟记定义是解题的关键.16.计算(0.5×105)3×(4×103)2的结果是( )A .13210⨯B .140.510⨯C .21210⨯D .21810⨯ 【答案】C【解析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质进行计算.解:(0.5×105)3×(4×103)2=0.125×1015×16×106=2×1021.故选C .本题考查同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.17.下列算式能用平方差公式计算的是( )A .(2)(2)a b b a +-B .11(1)(1)22x x +-- C .(3)(3)x y x y --+D .()()m n m n ---+ 【答案】D【解析】【分析】利用平方差公式的结构特征判断即可.【详解】(-m-n )(-m+n )=(-m )2-n 2=m 2-n 2,故选D .【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.18.已知112x y+=,则23xy x y xy +-的值为( ) A .12 B .2 C .12- D .2-【答案】D【解析】先将已知条件变形为2x y xy +=,再将其整体代入所求式子求值即可得解.【详解】 解:∵112x y += ∴2x y xy+= ∴2x y xy += ∴2222323xy xy xy x y xy xy xy xy ===-+---. 故选:D【点睛】 本题考查了分式的化简求值,此题涉及到的是整体代入法,能将已知式子整理变形为2x y xy +=的形式是解题的关键.19.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1【答案】B【解析】【详解】 ∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,,…,, 下边三角形的数字规律为:1+2,,…,, ∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类.20.若35m =,34n =,则23m n -等于( ) A .254 B .6C .21D .20 【答案】A【分析】根据幂的运算法则转化式子,代入数值计算即可.【详解】解:∵35m =,34n =, ∴222233(3)3253544-==÷÷÷==m n m n m n , 故选:A .【点睛】本题考查了同底数幂的除法和幂的乘方的逆用,熟练掌握同底数幂的除法和幂的乘方的运算法则是解题的关键.。
人教版七年级上册数学 代数式专题练习(解析版)

一、初一数学代数式解答题压轴题精选(难)1.任何一个整数N,可以用一个的多项式来表示:N= .例如:325=3×102+2×10+5.一个正两位数的个位数字是x,十位数字y.(1)列式表示这个两位数;(2)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明新数与原数的和能被11整除.(3)已知是一个正三位数.小明猜想:“ 与的差一定是9的倍数。
”请你帮助小明说明理由.(4)在一次游戏中,小明算出、、、与等5个数和是3470,请你求出这个正三位数.【答案】(1)解:10y+x(2)解:根据题意得:10y+x+10x+y=11(x+y),则所得的数与原数的和能被11整除(3)解:∵ - =100a+10b+c-(100b+10c+a)=99a-90b-9c =9(11a-10b-c),∴与的差一定是9的倍数(4)解:∵ + + + + + =3470+ ∴222(a+b+c)=222×15+140+ ∵100<<1000,∴3570<222(a+b+c)<4470,∴16<a+b+c≤20.尝试发现只有a+b+c=19,此时 =748成立,这个三位数为748.【解析】【分析】(1)由已知一个正两位数的个位数字是x,十位数字y ,因此这个两位数是:十位上的数字×10+个位数的数字。
(2)根据题意将新的两位数和原两位数相加,再化简,即可得出结果。
(3)分别表示出两个三位数,再求出它们的差,就可得出它们的差是否为9的倍数。
(4)根据题意求出a+b+c的取值范围,再代入数据进行验证即可。
2.某校要将一块长为a米,宽为b米的长方形空地设计成花园,现有如下两种方案供选择. 方案一:如图1,在空地上横、竖各铺一条宽为4米的石子路,其余空地种植花草.方案二:如图2,在长方形空地中留一个四分之一圆和一个半圆区域种植花草,其余空地铺筑成石子路.(1)分别表示这两种方案中石子路(图中阴影部分)的面积(若结果中含有π,则保留)(2)若a=30,b=20,该校希望多种植物美化校园,请通过计算选择其中一种方案(π取3.14).【答案】(1)解:方案一:∵石子路宽为4,∴S石子路面积=4a+4b-16,方案二:设根据图象可知S石子路面积=S长方形-S四分之一圆-S半圆=ab- πb2- π( b)2=ab- πb2(2)解:已知a=30,b=20,故方案一:S石子路面积=184m2, S植物=600-184=416m2;方案二:S石子路面积=129m2,则S植物=600-129=471m2.故答案为:择方案二,植物面积最大为471m2。
代数式技巧及练习题含答案

运算的时候很多同学容易用错,例如: amn am an 等等.
10.已知 a+b+c=1, a2 b2 c2 2c 3 ,则 ab 的值为( ).
A.1
B.-1
C.2
【答案】B
【解析】
D.-2
【分析】
将 a+b+c=1 变形为 a+b=1- c,将 a2 b2 c2 2c 3 变形为 a2 b2 2 c2 2c 1,然
12.下列说法正确的是()
A.若 A、B 表示两个不同的整式,则 A 一定是分式 B
B. a4 2 a4 a2
xy C.若将分式 x y 中,x、y 都扩大 3 倍,那么分式的值也扩大 3 倍
D.若 3m 5, 3n 4 则 32mn 5 2
【答案】C 【解析】 【分析】 根据分式的定义、幂的乘方、同底数幂相除、分式的基本性质解答即可. 【详解】
故选 C.
D.178
2.下列计算正确的是( )
A.a2+a3=a5
B.a2•a3=a6
C.(a2)3=a6
【答案】C
【解析】
试题解析:A.a2 与 a3 不是同类项,故 A 错误;
B.原式=a5,故 B 错误;
D.原式=a2b2,故 D 错误;
故选 C.
考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.
A. 若 A、B 表示两个不同的整式,如果 B 中含有字母,那么称 A 是分式.故此选项错误. B
B. a4 2 a4 a8 a4 a4 ,故故此选项错误.
xy
C. 若将分式
中,x、y 都扩大 3 倍,那么分式的值也扩大 3 倍,故此选项正确.
x y
D. 若 3m 5,3n 4 则 32mn 3m 2 3n 25 4 25 ,故此选项错误. 4
代数式练习题及答案

代数式练习题及答案代数式练习题及答案代数是数学中的一个重要分支,它研究的是数的运算和代数式的性质。
代数式是由数、字母和运算符号组成的表达式,它可以用来表示数的关系和运算。
在学习代数的过程中,练习题是必不可少的一环,通过解答练习题,可以帮助我们巩固知识,提高解题能力。
本文将介绍一些常见的代数式练习题及其答案。
一、简单的代数式求值题1. 求代数式a + b + c,其中a = 2,b = 3,c = 4。
答案:a + b + c = 2 + 3 + 4 = 9。
2. 求代数式3a - 2b,其中a = 5,b = 7。
答案:3a - 2b = 3 × 5 - 2 × 7 = 15 - 14 = 1。
3. 求代数式(a + b) × c,其中a = 2,b = 3,c = 4。
答案:(a + b) × c = (2 + 3) × 4 = 5 × 4 = 20。
二、代数式的展开和化简题1. 展开代数式(x + y)^2。
答案:(x + y)^2 = x^2 + 2xy + y^2。
2. 化简代数式2x + 3x - 4x。
答案:2x + 3x - 4x = x。
3. 展开代数式(a - b)^2。
答案:(a - b)^2 = a^2 - 2ab + b^2。
三、代数式的因式分解题1. 将代数式x^2 - 4x + 4分解因式。
答案:x^2 - 4x + 4 = (x - 2)^2。
2. 将代数式x^2 - 9分解因式。
答案:x^2 - 9 = (x - 3)(x + 3)。
3. 将代数式x^2 + 4x + 4分解因式。
答案:x^2 + 4x + 4 = (x + 2)^2。
四、代数式的方程求解题1. 解方程2x + 3 = 7。
答案:2x + 3 = 7,化简得2x = 4,再除以2得x = 2。
2. 解方程3(x - 4) = 15。
答案:3(x - 4) = 15,化简得3x - 12 = 15,再加上12得3x = 27,最后除以3得x = 9。
人教版初中数学代数式知识点训练附答案

人教版初中数学代数式知识点训练附答案一、选择题1.下列计算正确的是( )A .a•a 2=a 2B .(a 2)2=a 4C .3a+2a =5a 2D .(a 2b )3=a 2•b 3【答案】B【解析】本题考查幂的运算.点拨:根据幂的运算法则.解答:2123a a a a +⋅== ()22224a a a ⨯== 325a a a += ()3263a b a b = 故选B .2.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;已知按一定规律排列的一组数:250、251、252、、299、2100,若250=a ,用含a 的式子表示这组数的和是( )A .2a 2-2aB .2a 2-2a -2C .2a 2-aD .2a 2+a【答案】C【解析】【分析】由等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2,得出规律:2+22+23+…+2n =2n+1-2,那么250+251+252+…+299+2100=(2+22+23+…+2100)-(2+22+23+…+249),将规律代入计算即可.【详解】解:∵2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…∴2+22+23+…+2n =2n+1-2,∴250+251+252+…+299+2100=(2+22+23+...+2100)-(2+22+23+ (249)=(2101-2)-(250-2)=2101-250,∵250=a ,∴2101=(250)2•2=2a 2,∴原式=2a 2-a .故选:C .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n=2n+1-2.3.下列运算正确的是()A.3a3+a3=4a6B.(a+b)2=a2+b2C.5a﹣3a=2a D.(﹣a)2•a3=﹣a6【答案】C【解析】【分析】依次运用合并同类型、完全平方公式、幂的乘法运算即可.【详解】A.3a3+a3=4a3,故A错误;B.(a+b)2=a2+b2+2ab,故B错误;C.5a﹣3a=2a,故C正确;D.(﹣a)2•a3=a5,故D错误;故选C.【点睛】本题考查了幂的运算与完全平方公式,熟练掌握幂运算法则与完全平方公式是解题的关键.4.已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=()A.7500 B.10000 C.12500 D.2500【答案】A【解析】【分析】用1至199的奇数的和减去1至99的奇数和即可.【详解】解:101+103+10 5+107+…+195+197+199=22 119919922++⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭=1002﹣502,=10000﹣2500,=7500,故选A.【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.5.下列运算,错误的是( ).A .236()a a =B .222()x y x y +=+C .01)1=D .61200 = 6.12×10 4 【答案】B【解析】【分析】【详解】A. ()326a a =正确,故此选项不合题意;B.()222 x y x 2y xy +=++,故此选项符合题意;C. )011=正确,故此选项不合题意; D. 61200 = 6.12×104正确,故此选项不合题意;故选B.6.若352x y a b +与2425y x a b -是同类项.则( )A .1,2x y =⎧⎨=⎩B .2,1x y =⎧⎨=-⎩C .0,2x y =⎧⎨=⎩D .3,1x y =⎧⎨=⎩ 【答案】B【解析】【分析】根据同类项的定义列出关于m 和n 的二元一次方程组,再解方程组求出它们的值.【详解】 由同类项的定义,得:32425x y x y =-⎧⎨=+⎩,解得21x y =⎧⎨=-⎩:. 故选B .【点睛】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.7.观察等式:232222+=-;23422222++=-;2345222222+++=-⋅⋅⋅已知按一定规律排列的一组数:502、512、522、⋅⋅⋅、992、1002.若502a =,用含a 的式子表示这组数的和是( )A .222a a -B .2222a a --C .22a a -D .22a a +【答案】C【解析】【分析】根据题意,一组数:502、512、522、⋅⋅⋅、992、1002的和为250+251+252+…+299+2100==a +(2+22+…+250)a ,进而根据所给等式的规律,可以发现2+22+…+250=251-2,由此即可求得答案.【详解】250+251+252+…+299+2100=a +2a +22a + (250)=a +(2+22+…+250)a ,∵232222+=-,23422222++=-,2345222222+++=-,…,∴2+22+…+250=251-2,∴250+251+252+…+299+2100=a +(2+22+…+250)a=a +(251-2)a=a +(2 a -2)a=2a 2-a ,故选C.【点睛】本题考查了规律题——数字的变化类,仔细观察,发现其中哪些发生了变化,哪些没有发生变化,是按什么规律变化的是解题的关键.8.下列运算正确的是( )A .a 5﹣a 3=a 2B .6x 3y 2÷(﹣3x )2=2xy 2C .2212a 2a-= D .(﹣2a )3=﹣8a 3 【答案】D【解析】【分析】直接利用单项式除以单项式以及积的乘方运算法则、负指数幂的性质分别化简得出答案.【详解】A 、a 5﹣a 3,无法计算,故此选项错误;B 、6x 3y 2÷(﹣3x )2=6x 3y 2÷9x 2=23xy 2,故此选项错误; C 、2a ﹣2=22a,故此选项错误; D 、(﹣2a )3=﹣8a 3,正确.故选D .【点睛】此题主要考查了单项式除以单项式以及积的乘方运算、负指数幂的性质,正确掌握相关运算法则是解题关键.9.下列各运算中,计算正确的是( )A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b2【答案】B【解析】试题解析:A、2a•3a=6a2,故此选项错误;B、(3a2)3=27a6,正确;C、a4÷a2=a2,故此选项错误;D、(a+b)2=a2+2ab+b2,故此选项错误;故选B.【点睛】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式乘以单项式等知识,正确化简各式是解题关键.10.计算的值等于()A.1 B.C.D.【答案】C【解析】【分析】直接利用幂的乘方运算法则、积的乘方运算法则将原式变形进而得出答案.【详解】原式===.故选C.【点睛】此题主要考查了幂的乘方运算以及积的乘方运算,正确将原式变形是解题关键.11.若55+55+55+55+55=25n,则n的值为()A.10 B.6 C.5 D.3【答案】D【解析】【分析】直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.【详解】解:∵55+55+55+55+55=25n ,∴55×5=52n ,则56=52n ,解得:n =3.故选D .【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.12.下列说法正确的是()A .若 A 、B 表示两个不同的整式,则A B 一定是分式 B .()2442a a a ÷=C .若将分式xy x y+中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍 D .若35,34m n ==则2532m n -= 【答案】C【解析】【分析】 根据分式的定义、幂的乘方、同底数幂相除、分式的基本性质解答即可.【详解】A. 若 A 、B 表示两个不同的整式,如果B 中含有字母,那么称A B 是分式.故此选项错误. B. ()244844a a a a a ÷=÷=,故故此选项错误.C. 若将分式xy x y+中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍,故此选项正确. D. 若35,34m n ==则()22253332544m n m n -=÷=÷=,故此选项错误. 故选:C【点睛】本题考查的是分式的定义、幂的乘方、同底数幂相除、分式的基本性质,熟练掌握各定义、性质及运算法则是关键.13.下列计算正确的是( )A .2571a a a -÷=B .()222a b a b +=+C .2222+=D .()235a a =【答案】A【解析】 分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A 、2571a a a-÷=,正确; B 、(a+b )2=a 2+2ab+b 2,故此选项错误;C 、2+2,无法计算,故此选项错误;D 、(a 3)2=a 6,故此选项错误;故选:A .点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.14.已知:()()22x 1x 32x px q +-=++,则p ,q 的值分别为( ) A .5,3B .5,−3C .−5,3D .−5, −3【答案】D【解析】【分析】 此题可以将等式左边展开和等式右边对照,根据对应项系数相等即可得到p 、q 的值.【详解】由于()()2x 1x 3+-=2x 2-6x+x-3=2 x 2-5x-3=22x px q ++, 则p=-5,q=-3,故答案选D.【点睛】本题考查了多项式乘多项式的法则,根据对应项系数相等求解是关键.15.如图,是一个运算程序的示意图,若开始输入x 的值为81,则第2018次输出的结果是( )A .3B .27C .9D .1【答案】D【解析】【分析】根据运算程序进行计算,然后得到规律从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.【详解】第1次,13×81=27, 第2次,13×27=9, 第3次,13×9=3, 第4次,13×3=1, 第5次,1+2=3,第6次,13×3=1, …,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2018是偶数,∴第2018次输出的结果为1.故选D .【点睛】本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.16.已知单项式2m 13a b -与n 7a b -互为同类项,则m n +为( )A .1B .2C .3D .4【答案】D【解析】【分析】根据同类项的概念求解.【详解】解:Q 单项式2m 13a b -与7a b n -互为同类项, n 2∴=,m 11-=,n 2∴=,m 2=.则m n 4+=.故选D .【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.17.下列运算正确的是( )A .236(2)8x x -=-B .()22122x x x x -+=-+C .222()x y x y +=+D .()()22224x y x y x y -+--=-- 【答案】A【解析】解:A . (-2x 2)3=-8x 6,正确;B . -2x (x +1)=-2x 2-2x ,故B 错误;C . (x +y )2=x 2+2xy +y 2,故C 错误;D . (-x +2y )(-x -2y )=x 2-4y 2,故D 错误;故选A .18.计算1.252 017×2?01945⎛⎫ ⎪⎝⎭的值是( ) A .45 B .1625 C .1 D .-1【答案】B【解析】【分析】根据同底数幂的乘法底数不变指数相加,可得积的乘方,根据积的乘方等于乘方的积,可得答案.【详解】原式=1.252017×(45)2017×(45)2 =(1.25×45)2012×(45)2 =1625. 故选B .【点睛】本题考查了积的乘方,利用同底数幂的乘法底数不变指数相加得出积的乘方是解题关键.19.在很小的时候,我们就用手指练习过数数,一个小朋友按如图所示的规则练习数数,数到2019时对应的指头是( )(说明:数1、2、3、4、5对应的指头名称依次为大拇指、食指、中指、无名指、小指)A.食指B.中指C.小指D.大拇指【答案】B【解析】【分析】根据题意,观察图片,可得小指、大拇指所表示的数字的规律,及其计数的顺序,进而可得答案.【详解】解:∵大拇指对的数是1+8n,小指对的数是5+8n.食指、中指、无名指对的数介于它们之间.=⨯+,又∵2019是奇数,201925283∴数到2019时对应的指头是中指.故选:B.【点睛】此题主要考查了数字变化类,只需找出大拇指和小指对应的数的规律即可.关键规律为:大拇指对的数是1+8n,小指对的数是5+8n.食指、中指、无名指对的数介于它们之间.20.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.12 B.14 C.16 D.18【答案】C【解析】【分析】观察第1个、第2个、第3个图案中的三角形个数,从而可得到第n个图案中三角形的个数为2(n+1),由此即可得.【详解】∵第1个图案中的三角形个数为:2+2=4=2×(1+1);第2个图案中的三角形个数为:2+2+2=6=2×(2+1);第3个图案中的三角形个数为:2+2+2+2=8=2×(3+1);……∴第n个图案中有三角形个数为:2(n+1)∴第7个图案中的三角形个数为:2×(7+1)=16,故选C.【点睛】本题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以第 403 个图形中边长为 1 的小正方形的个数为 2019 个.
故选:D.
【点睛】
此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.
8.计算 (5 1)2017 ( 7 )2018 的结果是( )
7
36
A. 7 36
B. 7 36
C.- 1
【答案】A
【解析】
【分析】
根据积的乘方的逆用进行化简运算即可.
本题考查了多项式乘多项式,熟练掌握其运算方法: (a b)( p q) ap aq bp bq 是
解题的关键.
3 13.若 3m 5 , 3n 4 ,则 2mn 等于( )
A. 25
B.6
4
【答案】A
C.21
D.20
【解析】
【分析】
根据幂的运算法则转化式子,代入数值计算即可.
【详解】
则 x2 y2 60 ,
∵S 阴影=S△AEC+S△AED
= 1 (x y) x 1 (x y) y
2
2
= 1 (x y) (x y) 2
= 1 (x2 y2) 2
= 1 60 2
=30. 故选 A. 【点睛】 此题主要考查了平方差公式的应用,读懂图形和熟练掌握平方差公式是解此题的关键.
C.2 个
D.3 个
【答案】C
【解析】
【分析】
根据完全平方式的定义,黄金分割的定义,平行四边形的判定,菱形的判定即可一一判
断;
【详解】
①错误.x2+kx+25 是一个完全平方式,则 k 的值等于±10 ②正确.一组对边平行,一组
对角相等,可以推出两组对角分别相等,即可判断是平行四边形;
③错误.顺次连接平行四边形的各边中点,构成的四边形是平行四边形;
解:∵ 3m 5 , 3n 4 ,
∴ 32mn 32m 3n (3m )2 3n 52 4 25 , 4
故选:A.
【点睛】
本题考查了同底数幂的除法和幂的乘方的逆用,熟练掌握同底数幂的除法和幂的乘方的运
算法则是解题的关键.
14.下列说法正确的是()
A.若 A、B 表示两个不同的整式,则 A 一定是分式 B
B. a4 2 a4 a2
xy C.若将分式 x y 中,x、y 都扩大 3 倍,那么分式的值也扩大 3 倍
D.若 3m 5, 3n 4 则 32mn 5 2
【答案】C 【解析】 【分析】 根据分式的定义、幂的乘方、同底数幂相除、分式的基本性质解答即可. 【详解】
A. 若 A、B 表示两个不同的整式,如果 B 中含有字母,那么称 A 是分式.故此选项错误. B
【详解】
D. 36 7
(5 1)2017 ( 7 )2018
7
36
( 36)2017 ( 7 )2018
7
36
( 36 7 )2017 7 7 36 36
(1)2017 7 36
7 36
故答案为:A.
【点睛】
本题考查了积的乘方的逆用问题,掌握积的乘方的逆用是解题的关键.
9.在长方形
A.400
B.401
C.402
D.图形有 9 个边长为 1 的小正方形,第 2 个图形有 9+5=14 个边长为 1 的小正方
形,第 3 个图形有 9+5×2=19 个边长为 1 的小正方形,…由此得出第 n 个图形有 9+5×(n-
1)=5n+4 个边长为 1 的小正方形,由此求得答案即可.
6.下列运算或变形正确的是( )
A. 2a 2b 2(a b)
B. a2 2a 4 (a 2)2
C. 3a2 4a3 12a5 D. 2a2 3 6a6
【答案】C 【解析】 【分析】 根据合并同类项,完全平方公式,同底数幂的乘法以及幂的乘方与积的乘方计算法则解 答. 【详解】 A、原式中的两项不是同类项,不能合并,故本选项错误; B、原式=(a-1)2+2,故本选项错误; C、原式=12a5,故本选项正确; D、原式=8a6,故本选项错误;
15.如图,大正方形与小正方形的面积之差是 60,则阴影部分的面积是 ( )
A.30 【答案】A 【解析】
B.20
C.60
D.40
【分析】
设大正方形的边长为 x,小正方形的边长为 y,表示出阴影部分的面积,结合大正方形与小 正方形的面积之差是 60 即可求解. 【详解】
设大正方形的边长为 x,小正方形的边长为 y,
∵4x4 4x2 x6=(2x+x3)2, ∴A= x6,不符合题意,
∵4x4 4x28x3=(2x2+2x)2,
∴A=8x3,不符合题意.
故选 B.
【点睛】
本题主要考查完全平方式的定义,熟练掌握完全平方公式,是解题的关键.
4.一种微生物的直径约为 0.0000027 米,用科学计数法表示为( )
A. 2.7 106
内,若两张边长分别为 和 ( )的正方形纸片按图 1,图 2 两种
方式放置(图 1,图 2 中两张正方形纸片均有部分重叠),长方形总未被这两张正方形纸
片覆盖的部分用阴影表示,若图 1 中阴影部分的面积为 ,图 2 中阴影部分的面积和为
,则关于 , 的大小关系表述正确的是( )
A.
B.
C.
D.无法确定
B. 2.7 107
C. 2.7106
D. 2.7 107
【答案】A
【解析】
【分析】
绝对值小于 1 的正数科学记数法所使用的是负指数幂,指数由原数左边起第一个不为 0 的
数字前面的 0 的个数所决定.
【详解】 解:0.0000027 的左边第一个不为 0 的数字 2 的前面有 6 个 0,所以指数为-6,由科学记数
3.如果多项式 4x4 4x2 A 是一个完全平方式,那么 A 不可能是( ).
A.1
B.4
C.x6
D.8x3
【答案】B
【解析】
【分析】
根据完全平方式的定义,逐一判断各个选项,即可得到答案.
【详解】
∵4x4 4x21=(2x+1)2,
∴A=1,不符合题意,
∵4x4 4x2 4 不是完全平方式,
∴A=4,符合题意,
【详解】
解:∵2+22=23-2;
2+22+23=24-2;
2+22+23+24=25-2;
…
∴2+22+23+…+2n=2n+1-2, ∴250+251+252+…+299+2100 =(2+22+23+…+2100)-(2+22+23+…+249) =(2101-2)-(250-2) =2101-250, ∵250=a, ∴2101=(250)2•2=2a2, ∴原式=2a2-a. 故选:C. 【点睛】 本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现 的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n=2n+1-2.
=(AB-a)(AD-a-b)
∵AD<a+b,
∴ - <0,
故
选 A.
【点睛】
此题主要考查此题主要考查整式的运算,解题的关键是熟知整式的乘法法则.
10.下列运算正确的是( )
A. 2a 3a 5a 2 B.(a 2b)2 a2 4b2
C. a2 a3 a6
D. (ab2 )3 a3b6
【答案】A
【解析】
【分析】
利用面积的和差分别表示出 , ,利用整式的混合运算计算他们的差即可比较.
【详解】
=(AB-a)·a+(CD-b)(AD-a)
=(AB-a)·a+(AD-a)(AB-b)
=(AB-a)(AD-b)+(CD-b)(AD-a)=(AB-a)(AD-b)+(AB-b)(AD-a)
∴ - =(AB-a)(AD-b)+(AB-b)(AD-a)-(AB-a)·a-(AD-a)(AB-b)
16.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有 3 个菱形,第②个图形中一共有 7 个菱形,第③个图形中一共有 13 个菱形,…,按此规律 排列下去,第⑥个图形中菱形的个数为( )
()
A.2a2-2a
B.2a2-2a-2
C.2a2-a
D.2a2+a
【答案】C
【解析】
【分析】
由等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2,得出规律:2+22+23+…+2n=2n+1-2,那
么 250+251+252+…+299+2100=(2+22+23+…+2100)-(2+22+23+…+249),将规律代入计算即可.
A. x2 与 x3 不能合并,故该选项错误;
B. x2 x3 x5 ,故该选项错误;
C. x6 x3 x3 ,计算正确,故该选项符合题意;
D. x3 2 x6 ,故该选项错误.
故选 C. 【点睛】 此题主要考查了合并同类项,同底数的乘除法以及幂的乘方的运算,熟练掌握运算法则是 解决此题的关键.
法的定义得到答案为 2.7 106 .
故选 A. 【点睛】
本题考查了绝对值小于 1 的正数科学记数法表示,一般形式为 a 10n .