专题28:综合性问题

合集下载

中考数学复习知识点总结与解题方法专题讲解28--- 三角形的存在性综合问题

中考数学复习知识点总结与解题方法专题讲解28--- 三角形的存在性综合问题

中考数学复习知识点总结与解题方法专题讲解专题28 三角形的存在性综合问题1、如图,如图1,在平面直角坐标系中,已知点A(﹣4,﹣1)、B (﹣2,1),将线段AB平移至线段CD,使点A的对应点C在x轴的正半轴上,点D在第一象限.(1)若点C的坐标(k,0),求点D的坐标(用含k的式子表示);(2)连接BD、BC,若三角形BCD的面积为5,求k的值;(3)如图2,分别作∠ABC和∠ADC的平分线,它们交于点P,请写出∠A、和∠P和∠BCD之间的一个等量关系,并说明理由.解:(1)∵点A(﹣4,﹣1)、B(﹣2,1),C(k,0),将线段AB平移至线段CD,∴点B向上平移一个单位,向右平移(k+4)个单位到点D,∴D(k+2,2);(2)如图1,过点B作BE⊥x轴于点E,过点D作DF⊥x轴于点F,∵A(﹣4,﹣1)、B(﹣2,1),C(k,0),D(k+2,2),∴BE=1,CE=k+2,DF=2,EF=k+4,CF=2,∵S四边形BEFD=S△BEC+S△DCF+S△BCD,∴=+,解得:k=2.(3)∠BPD=∠BCD+∠A;理由如下:过点P作PE∥AB,如图2所示:∴∠PBA=∠EPB,∵线段AB平移至线段CD,∴AB∥CD,∴PE∥CD,∠ADC=∠A,∠ABC=∠BCD,∴∠EPD=∠PDC,∴∠BPD=∠PBA+∠PDC,∵BP平分∠ABC,DP平分∠ADC,∴∠PBA=∠ABC,∠PDC=∠ADC,∴∠BPD=∠ABC+∠ADC=∠BCD+∠A.2、在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A'B'C.(1)如图1,当AB∥CB'时,设A'B'与CB相交于点D,求证△A'CD 是等边三角形;(2)如图2,设AC中点为E,A'B'中点为P,AC=a,连接EP.在旋转过程中,线段EP的长度是否存在最大值?如果存在,请求出这个最大值并说明此时旋转角θ的度数,如果不存在,请说明理由.(1)证明:∵AB∥CB',∴∠BCB'=∠ABC=30°,∵将△ABC绕顶点C顺时针旋转,∴∠ACA'=30°.又∵∠ACB=90°,∴∠A'CD=60°.又∵∠CA'B'=∠CAB=60°,∴△A'CD是等边三角形.(2)当θ=120°时,EP的长度最大,EP的最大值为a.解:如图,连接CP,当△ABC旋转到E、C、P三点共线时,EP最长,此时θ=∠ACA′=120°,∵∠B′=30°,∠A′CB′=90°,∴A′C=AC=A′B′=a,∵AC中点为E,A′B′中点为P,∠A′CB′=90°∴CP=A′B′=a,EC=a,∴EP=EC+CP=a+a=a.3、如图,等腰△ABC中,BA=BC,AO=3CO=6.动点F在BA上以每分钟5个单位长度的速度从B点出发向A点移动,过F作FE∥BC交AC边于E点,连结FO、EO.设F点移动的时间为t.(1)求A、B两点的坐标;(2)计算:当△EFO面积最大时,t的值;(3)在(2)的条件下,边BC上是否还存在一个点D,使得△EFD≌△FEO?若存在,请直接写出D点的坐标;若不存在,试说明理由.解:(1)∵CO=2,∴C(2,0).又∵AO=3OC=6,∴A(0,6),可设BO=x,且x>0;则:BC2=(2+x)2,AB2=AO2+OB2=36+x2;又∵BC=AB,∴(2+x)2=36+x2,故:x=8,∴B(﹣8,0);(2)过F点作FK⊥BC于K,可设F点移动的时间为t,且0<t<2,则:BF=5t,TO=FK=3t;∴AT=6﹣3t,又∵FE∥BC,∴△AFE∽△ABC,而AO⊥BC交EF于T,则:=,∴=,即:EF=10﹣5t,故:S△EFO=EF×TO=(10﹣5t)×3t,即:S△EFO=﹣(t﹣2)t=,∴当t=1时,△EFO的面积达到最大值;(3)在(2)的基础上,E、F分别是AC、AB的中点,若使D为BC的中点时,===,又∵==,∴FO=ED,EO=FD,EF=FE,∴△EFD≌△FEO(SSS),∵C(2,0),B(﹣8,0)∴D(﹣3,0).故:存在满足条件的D点,其坐标为(﹣3,0).4、如图,在平面直角坐标系xOy中,A(a,0),B(0,b),C(c,0).且满足:+(c+1)2+(b+2c)2=0.(1)求证:△ABC是直角三角形;(2)在y轴上是否存在点P,使得△ABP为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)在y轴上是否存在点D,使得∠BCD=45°?若存在,请求出点D的坐标;若不存在,请说明理由.(1)证明:∵+(c+1)2+(b+2c)2=0,≥0,(c+1)2≥0,(b+2c)2≥0,∴a﹣4=0,c+1=0,b+2c=0,解得,a=4,b=2,c=﹣1,∴BC2=12+22=5,AB2=22+42=20,AC2=25,∴BC2+AB2=AC2.∴△ABC是直角三角形;(2)解:AB==2,当BA=BP,点P在点B的上方时,OP=2+2,此时,点P的坐标为(0,2+2),当BA=BP,点P在点B的下方时,OP=2﹣2,此时,点P的坐标为(0,2﹣2),当AB=AP时,∵OA⊥BP,∴OP=OB=2,此时,点P的坐标为(0,2),当PA=PB时,设点P的坐标为(y,0),PB=2﹣x,PA=,则2﹣x=,解得,x=﹣3,此时,点P的坐标为(0,﹣3),综上所述,△ABP为等腰三角形时,点P的坐标为(0,2+2)或(0,2﹣2)或(0,2)或(0,﹣3);(3)解:假设存在点D,使得∠BCD=45°,点D的坐标为(0,b),作DH⊥BC于H,CD=,BD=2﹣b,在Rt△CDH中,∠BCD=45°,∴CH=DH=CD=,∴BH=﹣,在Rt△BHD中,BH2+DH2=BD2.即(﹣)2+()2=(2﹣b)2.解得,x1=(舍去),x2=,∴点D的坐标为(0,).5、已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)问题发现如图①,若点E、F分别是AB,AC的中点,连接DE,DF,EF,则线段DE与DF的数量关系是,线段DE与DF的位置关系是;(2)拓展探究如图②,若点E,F分别是AB,AC上的点,且BE=AF,连接DE,DF,EF,上述结论是否依然成立?若成立,请给出证明;若不成立,请说明理由;(3)解决问题当点E,F分别为AB,CA延长线上的点,且BE=AF=AB=2,连接DE,DF,EF,直接写出△DEF的面积.解:(1)结论:DE=DF,DE⊥DF.理由:连接AD,∵AB=AC,∠BAC=90°,BD=CD,∴AD⊥BC,∴AD=BD=CD,∴∠ADB=∠ADC=90°,∵AE=EB,AF=FC,∴DE⊥AB,DF⊥AC,∴DE=AB,DF=AC,∴DE=DF.∵∠DEA=∠EAF=∠DFA=90°,∴∠EDF=90°,∴DE⊥DF,故答案为:DE=DF,DE⊥DF.(2)结论成立,DE=DF;DE⊥DF.证明:如解图①,连接AD,∵AB=AC,∠BAC=90°,点D为BC的中点,∴,且AD平分∠BAC,∴∠BAD=∠CAD=45°,在△BDE和△ADF中,∴△BDE≌△ADF(SAS),∴DE=DF,∠BDE=∠ADF,∵∠BDE+∠ADE=90°,∴∠ADF+∠ADE=90°,即∠EDF=90°,即DE⊥DF;(3)如图③,连接AD,∵AB=AC,∴△ABC为等腰三角形,∵∠BAC=90°,点D为BC的中点,∴AD=BD,AD⊥BC,∴∠DAC=∠ABD=45°,∴∠DAF=∠DBE=135°,又∵AF=BE,∴△DAF≌△DBE(SAS),∴DF=DE,∠FDA=∠EDB,∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°,∴△DEF为等腰直角三角形,∵,∴AE=CF=2+4=6,在Rt△AEF中,EF2=AF2+AE2=22+62=40,∴,∴.6、在△ABC中,AB=AC,∠BAC=120°,以CA为边在∠ACB的另一侧作∠ACM=∠ACB,点D为射线BC上任意一点,在射线CM上截取CE=BD,连接AD、DE、AE.(1)如图1,当点D落在线段BC的延长线上时,∠ADE的度数为.(2)如图2,当点D落在线段BC(不含边界)上时,AC与DE交于点F,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;(3)在(2)的条件下,若AB=12,求CF的最大值.解:(1)如图1中,设AD交EC于点O,∵AB=AC,∠BAC=120°,∴∠B=∠ACB=30°,∵BA=CA,∠ACE=∠ACB=∠B,BD=CE,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,∴∠DAE=∠BAC=120°,∴∠ADE=∠AED=(180°﹣120°)=30°,故答案为30°.(2)(1)中的结论还成立.理由:如图2中,∵∠BAC=120°,AB=AC,∴∠B=∠ACB=30°,又∵∠ACM=∠ACB,∴∠B=∠ACM=30°,又∵CE=BD,∴△ABD≌△ACE(SAS),∴AD=AE,∠1=∠2,∴∠2+∠3=∠1+∠3=∠BAC=120°,即∠DAE=120°,又∵AD=AE,∴∠ADE=∠AED=30°.(3)∵AB=AC,AB=12,∴AC=12,∵∠ADE=∠ACB=30°且∠DAF=∠CAD,∴△ADF∽△ACD,∴,∴AD2=AF•AC,∴AD2=12AF,∴,∴当AD最短时,AF最短、CF最长,易得当AD⊥BC时,AF最短、CF最长,此时.,∴CF=AC﹣AF=12﹣3=9,∴CF的最大值为9.7、等腰直角△ABC和等腰直角△ACD,M、N分别在直线BC、CD上.(1)如图1所示,M、N分别在线段BC、CD上,若AM⊥MN,求证:AM=MN.(2)若M、N分别在线段BC、CD外(还在直线BC、CD上),根据题意,画出图形,那么(1)的结论是否依然成立,若成立,写出证明过程;若不成立,说明原因;(3)如图2,若AM=MN,求证:AM⊥MN.解:(1)延长DC,交AB的延长线于H,连接HM,∵AM⊥MN,∴∠NMC+∠AMB=90°,∵∠ABC=90°,∴∠BAM+∠AMB=90°,∴∠NMC=∠BAM,∵等腰直角△ABC和等腰直角△ACD,∴∠MCD=135°,∴∠BCH=45°,∴△BHC为等腰直角三角形,∴BC=BH,∵AB=BC,∴AB=BH,∴BC是AH的垂直平分线,∴AM=BH,∴∠BHM=∠BAM,∴∠NMC=∠BHM,∵∠NMC+∠MNC=45°,∠BHM+∠MHC=45°,∴∠MHC=∠MNC,∴HM=MN,∴AM=MN;(2)(1)的结论依然成立,第一种情况:如图3所示,延长DC,交AB的延长线于H,连接HM;由(1)可知,MC是AH的垂直平分线,∴AM=MH,∴∠BAM=∠BHM,∵AM⊥MN,∴∠NMC+∠AMB=90°,∵∠ABC=90°,∴∠BAM+∠AMB=90°,∴∠NMC=∠BAM,∴∠BHM=∠NMC,∵∠MHN=∠BHM+45°,∠MNH=∠NMC+45°,∴∠MHN=∠MNH,∴MN=MH,∴AM=MN;第二种情况:如图4所示,仿照第一种情况的证明方法,可以证明AM=MN;(3)如图2,延长DC,交AB的延长线于H,连接HM,由(1)可得BC是AH的垂直平分线,∴HM=AM=MN,∴∠MAB=∠MHB,∠MHC=∠MNC∵∠MHB+∠MHC=45°,∠MNC+∠NMC=45°,∴∠MHB=∠NMC,∵∠MHB=∠MAB,∴∠BAM=∠NMC,∵∠BAM+∠AMB=90°,∴∠AMB+∠NMC=90°,∴∠AMN=90°,∴AM⊥MN.8、如图,在Rt△ABC中,AC=BC,∠ACB=90°,D、E分别在AC、BC上,连接AE、BD交于点O,且CD=CE.(1)如图1,求证:AO=BO.(2)如图2,F是BD的中点,试探讨AE与CF的位置关系.(3)如图3,F、G分别是BD、AE的中点,若AC=,CE=,求△CGF 的面积.解:(1)如图1中,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴∠CAE=∠CBD,∵CA=CB,∴∠CAB=∠CBA,∴∠OAB=∠OBA,∴OA=OB.(2)如图2,设AE与CF的交点为M,在Rt△BCD中,点F是BD的中点,∴CF=BF,∴∠BCF=∠CBF,由(1)知,∠CAE=∠CBD,∴∠BCF=∠CAE,∴∠CAE+∠ACF=∠BCF+∠ACF=∠ACB=90°,∴∠AMC=90°,∴AE⊥CF;(3)如图3,设AE与CF的交点为M,∵AC=,∴BC=AC=,∵CE=,∴CD=CE=,在Rt△BCD中,根据勾股定理得,BD==,∵点F是BD中点,∴CF=DF=BD=,同理:EG=AE=,连接EF,过点F作FH⊥BC,∵∠ACB=90°,点F是BD的中点,∴FH=CD=,∴S△CEF=CE•FH=××=,由(2)知,AE⊥CF,∴S△CEF=CF•ME=×ME=ME,∴ME=,∴ME=,∴GM=EG﹣ME=﹣=,∴S△CFG=CF•GM=××=.9、如图,在平面直角坐标系中,点A在y轴上,点B、C在x轴上,∠ABO=30°,AB=2,OB=OC.(1)如图1,求点A、B、C的坐标;(2)如图2,若点D在第一象限且满足AD=AC,∠DAC=90°,线段BD交y轴于点G,求线段BG的长;(3)如图3,在(2)的条件下,若在第四象限有一点E,满足∠BEC =∠BDC.请探究BE、CE、AE之间的数量关系.解:(1)∵∠AOB=90°,∠ABO=30°,AB=2,∴OA=1,OB=,∴A(0,1),B(﹣,0),∵OB=OC,∴OC=,∴C(,0).(2)过点D作DM⊥y轴于点M,过点D作DN⊥x轴于点N,由题意,y轴是线段BC的垂直平分线,∴AB=AC,∴∠ABO=∠ACO=30°,∵∠DAC=90°,x轴⊥y轴,∴∠DAM=∠ACO=30°,又AD=AC,∠AMD=∠CAO,∴△AMD≌△COA(AAS),∴DM=AO,AM=CO,∵AO=1,CO=,∴DM=ON=1,AM=,∴D(1,+1),∴DN=+1,又BN=OB+ON=+1,∴DN=BN,∴△BND是等腰直角三角形,∴∠DBN=45°,∴△GBO是等腰直角三角形,∴BG=OB==;(3)由(2)可知:∠DBN=45°,∠DCB=30°+45°=75°,∴∠BDC=180°﹣45°﹣75°=60°,∵∠BEC=∠BDC,∴∠BEC=60°,延长EB至F,使BF=CE,连接AF,∵∠ABC=∠ACB=30°,∴∠BAC=120°,∴∠ACE+∠ABE=180°,∵∠ABF+∠ABE=180°,∴∠ABF=∠ACE,又∵AB=AC,BF=CE,∴△ABF≌△ACE(SAS),∴AF=AE,∠BAF=∠CAB,∴∠FAE=∠BAC=120°,∴FE=AE,∴BE+CE=BE+BF=FE=AE,即BE+CE=AE.11、已知:点B、C在∠MAN的边AM、AN上,AB=AC,点E,F在∠MAN 内部的射线AD上(1)特殊情况:如图1,当∠MAN=90°时,BE⊥AD于点E,CF⊥AD 于点F.求证:△ABE≌△CAF.(2)一般情况:如图2,当∠MAN为任意锐角时,若∠BED=∠CFD=∠MAN,则(1)式结论是否仍然成立?若成立,请证明,若不成立,请说明理由.证明:(1)如图①中,∵∠MAN=90°,∴∠BAE+∠CAF=90°,∵BE⊥AD,CF⊥AD,∴∠BEA=∠AFC=90°,∴∠BAE+∠EBA=90°,∴∠CAF=∠EBA,∵AB=AC,∴△BAE≌△ACF(AAS).(2)如图2,(1)中结论仍然成立,理由:如图②中,∵∠1=∠BAE+∠ABE,∠1=∠BAC,∴∠BAC=∠BAE+∠ABE,∵∠BAC=∠BAE+∠CAF,∴∠ABE=∠CAF,∵∠1=∠BAE+∠ABE,∠2=∠CAF+∠ACF,∠1=∠2,∴∠BAE=∠ACF,∵AB=AC,∴△BAE≌△ACF(ASA).11、(1)如图1,AD∥BC,AD=BC,AC与BD相交于点O,求证:△AOD≌△BOC;(2)如图2,过线段AB的两个端点作射线AM,BN,使AM∥BN.①作∠MAB,∠NBA的平分线交于点E,∠AEB是什么角?为什么?②过点E任作一条直线,交AM于点D,交BN于点C.证明:DE=CE;③试说明无论DC的两个端点在AM,BN上如何移动,只要DC经过点E,AD+BC的值就不变.解:(1)∵AD∥BC,∴∠D=∠B,∠A=∠C,∵AD=BC,∴△AOD≌△BOC(ASA);(2)①∵AM∥BN,∴∠MAB+∠ABN=180°,又AE,BE分别为∠MAB、∠NBA的平分线,∴∠BAE+∠ABE=(∠MAB+∠ABN)=90°,∴∠AEB=180°﹣∠BAE﹣∠ABE=90°,即∠AEB为直角;②延长AE,交BN于点F,∵AM∥BN,∴∠MAF=∠AFB,∵∠MAE=∠BAE,∴∠BAF=∠AFB,∴BA=FB,∵∠AEB为直角,∴AE=EF,∵∠DAE=∠EFC,∠AED=∠CEF,∴△DAE≌△CFE(ASA),∴ED=EC;③由②中结论可知,AB=BF,无论DC的两端点在AM、BN如何移动,只要DC经过点E,总有△DAE≌△CFE,总有AD=CF;所以总有AD+BC=2EF=AB.41/ 41。

专题28 解直角三角形(58题)(原卷版)--2024年中考数学真题分类汇编

专题28 解直角三角形(58题)(原卷版)--2024年中考数学真题分类汇编

专题28解直角三角形(58题)一、单选题1.(2024·吉林长春·中考真题)2024年5月29日16时12分,“长春净月一号”卫星搭乘谷神星一号火箭在黄海海域成功发射.当火箭上升到点A 时,位于海平面R 处的雷达测得点R 到点A 的距离为a 千米,仰角为θ,则此时火箭距海平面的高度AL 为()A .sin a θ千米B .sin aθ千米C .cos a θ千米D .cos aθ千米2.(2024·天津·2cos451- 的值等于()A .0B .1C .212-D 213.(2024·甘肃临夏·中考真题)如图,在ABC 中,5AB AC ==,4sin 5B =,则BC 的长是()A .3B .6C .8D .94.(2024·四川自贡·中考真题)如图,等边ABC 钢架的立柱CD AB ⊥于点D ,AB 长12m .现将钢架立柱缩短成DE ,60BED ∠=︒.则新钢架减少用钢()A .(243m-B .(243m-C .(2463m-D .(243m-5.(2024·四川德阳·中考真题)某校学生开展综合实践活动,测量一建筑物CD 的高度,在建筑物旁边有一高度为10米的小楼房AB ,小李同学在小楼房楼底B 处测得C 处的仰角为60︒,在小楼房楼顶A 处测得C 处的仰角为30︒.(AB CD 、在同一平面内,B D 、在同一水平面上),则建筑物CD 的高为()米A .20B .15C .12D .10+6.(2024·广东深圳·中考真题)如图,为了测量某电子厂的高度,小明用高1.8m 的测量仪EF 测得的仰角为45︒,小军在小明的前面5m 处用高1.5m 的测量仪CD 测得的仰角为53︒,则电子厂AB 的高度为()(参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈)A .22.7mB .22.4mC .21.2mD .23.0m7.(2024·内蒙古包头·中考真题)如图,在矩形ABCD 中,,E F 是边BC 上两点,且BE EF FC ==,连接,,DE AF DE 与AF 相交于点G ,连接BG .若4AB =,6BC =,则sin GBF ∠的值为()A .10B .10C .13D .238.(2024·黑龙江大兴安岭地·中考真题)如图,菱形ABCD 中,点O 是BD 的中点,AM BC ⊥,垂足为M ,AM 交BD 于点N ,2OM =,8BD =,则MN 的长为()A 5B 455C 355D 259.(2024·四川乐山·中考真题)如图,在菱形ABCD 中,60ABC ∠=︒,1AB =,点P 是BC 边上一个动点,在BC 延长线上找一点Q ,使得点P 和点Q 关于点C 对称,连接DP AQ 、交于点M .当点P 从B 点运动到C 点时,点M 的运动路径长为()A .36B 33C 32D 310.(2024·山东泰安·中考真题)如图,菱形ABCD 中,=60B ∠︒,点E 是AB 边上的点,4AE =,8BE =,点F 是BC 上的一点,EGF △是以点G 为直角顶点,EFG ∠为30︒角的直角三角形,连结AG .当点F 在直线BC 上运动时,线段AG 的最小值是()A .2B .432-C .23D .411.(2024·四川泸州·512-的美感.如图,把黄金矩形ABCD 沿对角线AC 翻折,点B 落在点B '处,AB '交CD 于点E ,则sin DAE ∠的值为()A 55B .12C .35D 25512.(2024·黑龙江大兴安岭地·中考真题)如图,在正方形ABCD 中,点H 在AD 边上(不与点A 、D 重合),90BHF ∠=︒,HF 交正方形外角的平分线DF 于点F ,连接AC 交BH 于点M ,连接BF 交AC 于点G ,交CD 于点N ,连接BD .则下列结论:①45HBF ∠=︒;②点G 是BF 的中点;③若点H 是AD 的中点,则sinNBC ∠BN =;⑤若12AH D H =,则112BND AHM S S =△△,其中正确的结论是()A .①②③④B .①③⑤C .①②④⑤D .①②③④⑤二、填空题13.(2024·黑龙江绥化·中考真题)如图,用热气球的探测器测一栋楼的高度,从热气球上的点A 测得该楼顶部点C 的仰角为60︒,测得底部点B 的俯角为45︒,点A 与楼BC 的水平距离50m AD =,则这栋楼的高度为m (结果保留根号).14.(2024·内蒙古赤峰·中考真题)综合实践课上,航模小组用无人机测量古树AB 的高度.如图,点C 处与古树底部A 处在同一水平面上,且10AC =米,无人机从C 处竖直上升到达D 处,测得古树顶部B 的俯角为45︒,古树底部A 的俯角为65︒,则古树AB 的高度约为米(结果精确到0.1米;参考数据:sin 650.906︒≈,cos 650.423︒≈,tan 65 2.145︒≈).15.(2024·湖北武汉·中考真题)黄鹤楼是武汉市著名的旅游景点,享有“天下江山第一楼”的美誉.在一次综合实践活动中,某数学小组用无人机测量黄鹤楼AB 的高度,具体过程如下:如图,将无人机垂直上升至距水平地面102m 的C 处,测得黄鹤楼顶端A 的俯角为45︒,底端B 的俯角为63︒,则测得黄鹤楼的高度是m .(参考数据:tan632︒≈)16.(2024·四川内江·中考真题)如图,在矩形ABCD 中,3AB =,5AD =,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么tan ∠=EFC .17.(2024·江苏盐城·中考真题)如图,小明用无人机测量教学楼的高度,将无人机垂直上升距地面30m 的点P 处,测得教学楼底端点A 的俯角为37︒,再将无人机沿教学楼方向水平飞行26.6m 至点Q 处,测得教学楼顶端点B 的俯角为45︒,则教学楼AB 的高度约为m .(精确到1m ,参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈)18.(2024·北京·中考真题)如图,在正方形ABCD 中,点E 在AB 上,AF D E ⊥于点F ,CG DE ⊥于点G .若5AD =,CG 4=,则AEF △的面积为.19.(2024·甘肃临夏·中考真题)如图,对折边长为2的正方形纸片ABCD ,OM 为折痕,以点O 为圆心,OM 为半径作弧,分别交AD ,BC 于E ,F 两点,则 EF的长度为(结果保留π).20.(2024·黑龙江齐齐哈尔·中考真题)如图,数学活动小组在用几何画板绘制几何图形时,发现了如“花朵”形的美丽图案,他们将等腰三角形OBC 置于平面直角坐标系中,点O 的坐标为(00),,点B 的坐标为(1)0,,点C 在第一象限,120OBC ∠=︒.将OBC △沿x 轴正方向作无滑动滚动,使它的三边依次与x 轴重合,第一次滚动后,点O 的对应点为O ',点C 的对应点为C ',OC 与O C ''的交点为1A ,称点1A 为第一个“花朵”的花心,点2A 为第二个“花朵”的花心;……;按此规律,OBC △滚动2024次后停止滚动,则最后一个“花朵”的花心的坐标为.21.(2024·黑龙江大兴安岭地·中考真题)矩形ABCD 中,3AB =,4BC =,将AB 沿过点A 的一条直线折叠,折痕交直线BC 于点P (点P 不与点B 重合),点B 的对称点落在矩形对角线所在的直线上,则PC 长为.22.(2024·山东泰安·中考真题)在综合实践课上,数学兴趣小组用所学数学知识测量大汶河某河段的宽度,他们在河岸一侧的瞭望台上放飞一只无人机,如图,无人机在河上方距水面高60米的点P 处测得瞭望台正对岸A 处的俯角为50︒,测得瞭望台顶端C 处的俯角为63.6︒,已知瞭望台BC 高12米(图中点A ,B ,C ,P 在同一平面内),那么大汶河此河段的宽AB 为米.(参考数据:3sin 405︒≈,9sin 63.610︒≈,6tan 505︒≈,tan 63.62︒≈)23.(2024·四川达州·中考真题)如图,在Rt ABC △中,90C ∠=︒.点D 在线段BC 上,45BAD ∠=︒.若4AC =,1CD =,则ABC 的面积是.24.(2024·贵州·中考真题)如图,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,连接AE ,AF .若4sin 5EAF ∠=,5AE =,则AB 的长为.25.(2024·广东深圳·中考真题)如图,在ABC 中,AB BC =,5tan 12B ∠=,D 为BC 上一点,且满足85BD CD =,过D 作DE AD ⊥交AC 延长线于点E ,则CEAC=.26.(2024·黑龙江绥化·中考真题)在矩形ABCD 中,4cm AB =,8cm BC =,点E 在直线AD 上,且2cm DE =,则点E 到矩形对角线所在直线的距离是cm .三、解答题27.(2024·内蒙古通辽·0322sin60(π)-+︒--.28.(2024·四川甘孜·中考真题)如图,一艘海轮位于灯塔P 的北偏东37︒方向,距离灯塔100海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45︒方向上的B 处.这时,B 处距离A 处有多远?(参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈)29.(2024·北京·中考真题)计算:()0582sin 302π-︒+-30.(2024·湖南长沙·中考真题)计算:()011(32cos 30π 6.84-+-︒-.31.(2024·广东深圳·中考真题)计算:()112cos 45 3.14124π-⎛⎫-⋅︒+-++ ⎪⎝⎭.32.(2024·黑龙江大兴安岭地·中考真题)先化简,再求值:22222111m m m m m m ⎛⎫-+÷- ⎪-+⎝⎭,其中cos60m =︒.33.(2024·吉林·中考真题)图①中的吉林省广播电视塔,又称“吉塔”.某直升飞机于空中A 处探测到吉塔,此时飞行高度873m AB =,如图②,从直升飞机上看塔尖C 的俯角37EAC ∠=︒,看塔底D 的俯角45EAD ∠=︒,求吉塔的高度CD (结果精确到0.1m ).(参考数据:sin 370.60︒=,cos370.80︒=,tan 370.75︒=)34.(2024·青海·018tan 452π︒+--.35.(2024·内蒙古呼伦贝尔·中考真题)计算:301tan6032(π2024)2-⎛⎫--+︒-+- ⎪⎝⎭.36.(2024·内蒙古呼伦贝尔·中考真题)综合实践活动中,数学兴趣小组利用无人机测量大楼的高度.如图,无人机在离地面40米的D 处,测得操控者A 的俯角为30︒,测得楼BC 楼顶C 处的俯角为45︒,又经过人工测量得到操控者A 和大楼BC 之间的水平距离是80米,则楼BC 的高度是多少米?(点A B C D ,,,都3 1.7≈)37.(2024·内蒙古通辽·中考真题)在“综合与实践”活动课上,活动小组测量一棵杨树的高度.如图,从C 点测得杨树底端B 点的仰角是30︒,BC 长6米,在距离C 点4米处的D 点测得杨树顶端A 点的仰角为45︒,求杨树AB 的高度(精确到0.1米,AB ,BC ,CD 在同一平面内,点C ,D 在同一水平线上.参考数据:3 1.73)≈.38.(2024·湖南·中考真题)某数学研究性学习小组在老师的指导下,利用课余时间进行测量活动.活动主题测算某水池中雕塑底座的底面积测量工具皮尺、测角仪、计算器等活动过程模型抽象某休闲广场的水池中有一雕塑,其底座的底面为矩形ABCD ,其示意图如下:测绘过程与数据信息①在水池外取一点E ,使得点C ,B ,E 在同一条直线上;②过点E 作GH CE ⊥,并沿EH 方向前进到点F ,用皮尺测得EF 的长为4米;③在点F 处用测角仪测得60.3CFG ∠=︒,45BFG ∠=︒,21.8AFG ∠=︒;④用计算器计算得:sin60.30.87︒≈,cos60.30.50︒≈,tan60.3 1.75︒≈.sin21.80.37︒≈,cos21.80.93︒≈,tan21.80.40︒≈.请根据表格中提供的信息,解决下列问题(结果保留整数):(1)求线段CE 和BC 的长度:(2)求底座的底面ABCD 的面积.39.(2024·贵州·中考真题)综合与实践:小星学习解直角三角形知识后,结合光的折射规律进行了如下综合性学习.【实验操作】第一步:将长方体空水槽放置在水平桌面上,一束光线从水槽边沿A 处投射到底部B 处,入射光线与水槽内壁AC 的夹角为A ∠;第二步:向水槽注水,水面上升到AC 的中点E 处时,停止注水.(直线NN '为法线,AO 为入射光线,OD 为折射光线.)【测量数据】如图,点A ,B ,C ,D ,E ,F ,O ,N ,N '在同一平面内,测得20cm AC =,45A ∠=︒,折射角32DON ∠=︒.【问题解决】根据以上实验操作和测量的数据,解答下列问题:(1)求BC 的长;(2)求B ,D 之间的距离(结果精确到0.1cm ).(参考数据:sin 320.52︒≈,cos320.84︒≈,tan 320.62︒≈)40.(2024·河南·中考真题)如图1,塑像AB 在底座BC 上,点D 是人眼所在的位置.当点B 高于人的水平视线DE 时,由远及近看塑像,会在某处感觉看到的塑像最大,此时视角最大.数学家研究发现:当经过A ,B 两点的圆与水平视线DE 相切时(如图2),在切点P 处感觉看到的塑像最大,此时APB ∠为最大视角.(1)请仅就图2的情形证明APB ADB ∠>∠.(2)经测量,最大视角APB ∠为30︒,在点P 处看塑像顶部点A 的仰角APE ∠为60︒,点P 到塑像的水平距离PH 为6m .求塑像AB 的高(结果精确到0.1m 3 1.73≈).41.(2024·天津·中考真题)综合与实践活动中,要用测角仪测量天津海河上一座桥的桥塔AB 的高度(如图①).某学习小组设计了一个方案:如图②,点,,C D E 依次在同一条水平直线上,36m,DE EC AB =⊥,垂足为C .在D 处测得桥塔顶部B 的仰角(CDB ∠)为45︒,测得桥塔底部A 的俯角(CDA ∠)为6︒,又在E 处测得桥塔顶部B 的仰角(CEB ∠)为31︒.(1)求线段CD 的长(结果取整数);(2)求桥塔AB 的高度(结果取整数).参考数据:tan310.6,tan60.1︒≈︒≈.42.(2024·四川乐山·中考真题)我国明朝数学家程大位写过一本数学著作《直指算法统宗》,其中有一道与荡秋千有关的数学问题是使用《西江月》词牌写的:平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?词写得很优美,翻译成现代汉语的大意是:有一架秋千,当它静止时,踏板离地1尺,将它往前推进10尺(5尺为一步),秋千的踏板就和某人一样高,这个人的身高为5尺.(假设秋千的绳索拉的很直)(1)如图1,请你根据词意计算秋千绳索OA 的长度;(2)如图2,将秋千从与竖直方向夹角为α的位置OA '释放,秋千摆动到另一侧与竖直方向夹角为β的地方OA '',两次位置的高度差PQ h =.根据上述条件能否求出秋千绳索OA 的长度?如果能,请用含α、β和h 的式子表示;如果不能,请说明理由.43.(2024·山东·中考真题)【实践课题】测量湖边观测点A 和湖心岛上鸟类栖息点P 之间的距离【实践工具】皮尺、测角仪等测量工具【实践活动】某班甲小组根据湖岸地形状况,在岸边选取合适的点B .测量A ,B 两点间的距离以及∠PAB 和PBA ∠,测量三次取平均值,得到数据:60AB =米,79PAB ∠=︒,64PBA ∠=︒.画出示意图,如图【问题解决】(1)计算A ,P 两点间的距离.(参考数据:sin640.90︒≈,sin790.98︒≈,cos790.19︒≈,sin370.60︒≈,tan370.75︒≈)【交流研讨】甲小组回班汇报后,乙小组提出了另一种方案:如图2,选择合适的点D ,E ,F ,使得A ,D ,E 在同一条直线上,且AD DE =,DEF DAP ∠=∠,当F ,D ,P 在同一条直线上时,只需测量EF 即可.(2)乙小组的方案用到了________.(填写正确答案的序号)①解直角三角形②三角形全等【教师评价】甲、乙两小组的方案都很好,对于实际测量,要根据现场地形状况选择可实施的方案.44.(2024·北京·中考真题)如图,在四边形ABCD 中,E 是AB 的中点,DB ,CE 交于点F ,DF FB =,AF DC .(1)求证:四边形AFCD 为平行四边形;(2)若90EFB ∠=︒,tan 3FEB ∠=,1EF =,求BC 的长.45.(2024·甘肃临夏·中考真题)乾元塔(图1)位于临夏州临夏市的北山公园内,共九级,为砼框架式结构,造型独特别致,远可眺太子山露骨风月,近可收临夏市城建全貌,巍巍峨峨,傲立苍穹.某校数学兴趣小组在学习了“解直角三角形”之后,开展了测量乾元塔高度AB 的实践活动.A 为乾元塔的顶端,AB BC ⊥,点C ,D 在点B 的正东方向,在C 点用高度为1.6米的测角仪(即 1.6CE =米)测得A 点仰角为37︒,向西平移14.5米至点D ,测得A 点仰角为45︒,请根据测量数据,求乾元塔的高度AB .(结果保留整数,参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈)46.(2024·安徽·中考真题)科技社团选择学校游泳池进行一次光的折射实验,如图,光线自点B 处发出,经水面点E 折射到池底点A 处.已知BE 与水平线的夹角36.9α=︒,点B 到水面的距离 1.20BC =m ,点A 处水深为1.20m ,到池壁的水平距离 2.50m AD =,点B C D ,,在同一条竖直线上,所有点都在同一竖直平面内.记入射角为β,折射角为γ,求sin sin βγ的值(精确到0.1,参考数据:sin 36.90.60︒≈,cos36.90.80︒≈,tan 36.90.75︒≈).47.(2024·浙江·中考真题)如图,在ABC 中,AD BC ⊥,AE 是BC 边上的中线,10,6,tan 1AB AD ACB ==∠=.(1)求BC 的长;(2)求sin DAE ∠的值.48.(2024·甘肃·中考真题)习近平总书记于2021年指出,中国将力争2030年前实现碳达峰、2060年前实现碳中和.甘肃省风能资源丰富,风力发电发展迅速.某学习小组成员查阅资料得知,在风力发电机组中,“风电塔筒”非常重要,它的高度是一个重要的设计参数.于是小组成员开展了“测量风电塔筒高度”的实践活动.如图,已知一风电塔筒AH 垂直于地面,测角仪CD ,EF 在AH 两侧, 1.6m CD EF ==,点C 与点E 相距182m (点C ,H ,E 在同一条直线上),在D 处测得简尖顶点A 的仰角为45︒,在F 处测得筒尖顶点A 的仰角为53︒.求风电塔筒AH 的高度.(参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈.)49.(2024·河北·中考真题)中国的探月工程激发了同学们对太空的兴趣.某晚,淇淇在家透过窗户的最高点P 恰好看到一颗星星,此时淇淇距窗户的水平距离4m BQ =,仰角为α;淇淇向前走了3m 后到达点D ,透过点P 恰好看到月亮,仰角为β,如图是示意图.已知,淇淇的眼睛与水平地面BQ 的距离 1.6m ==AB CD ,点P 到BQ 的距离 2.6m PQ =,AC 的延长线交PQ 于点E .(注:图中所有点均在同一平面)(1)求β的大小及tan α的值;(2)求CP 的长及sin APC ∠的值.50.(2024·四川广元·中考真题)计算:()2012024π32tan 602-⎛⎫-++︒- ⎪⎝⎭.51.(2024·四川广元·中考真题)小明从科普读物中了解到,光从真空射入介质发生折射时,入射角α的正弦值与折射角β的正弦值的比值sin sin αβ叫做介质的“绝对折射率”,简称“折射率”.它表示光在介质中传播时,介质对光作用的一种特征.(1)若光从真空射入某介质,入射角为α,折射角为β,且7cos 4α=30β=︒,求该介质的折射率;(2)现有一块与(1)中折射率相同的长方体介质,如图①所示,点A ,B ,C ,D 分别是长方体棱的中点,若光线经真空从矩形2121A D D A 对角线交点O 处射入,其折射光线恰好从点C 处射出.如图②,已知60α=︒,10cm CD =,求截面ABCD 的面积.52.(2024·内蒙古包头·中考真题)如图,学校数学兴趣小组开展“实地测量教学楼AB 的高度”的实践活动.教学楼周围是开阔平整的地面,可供使用的测量工具有皮尺、测角仪(皮尺的功能是直接测量任意可到达的两点间的距离;测角仪的功能是测量角的大小).(1)请你设计测量教学楼AB 的高度的方案,方案包括画出测量平面图,把应测数据标记在所画的图形上(测出的距离用,m n 等表示,测出的角用,αβ等表示),并对设计进行说明;(2)根据你测量的数据,计算教学楼AB 的高度(用字母表示).53.(2024·甘肃·中考真题)马家窑文化以发达的彩陶著称于世,其陶质坚固,器表细腻,红、黑、白彩共用,彩绘线条流畅细致,图案繁缛多变,形成了绚丽典雅的艺术风格,创造了一大批令人惊叹的彩陶艺术精品,体现了古代劳动人民的智慧.如图1的彩陶纹样呈现的是三等分圆周,古人用等边三角形三点定位的方法确定圆周的三等分点,这种方法和下面三等分圆周的方法相通.如图2,已知O 和圆上一点M .作法如下:①以点M 为圆心,OM 长为半径,作弧交O 于A ,B 两点;②延长MO 交O 于点C ;即点A ,B ,C 将O 的圆周三等分.(1)请你依据以上步骤,用不带刻度的直尺和圆规在图2中将O 的圆周三等分(保留作图痕迹,不写作法);(2)根据(1)画出的图形,连接AB ,AC ,BC ,若O 的半径为2cm ,则ABC 的周长为______cm .54.(2024·黑龙江牡丹江·中考真题)如图,某数学活动小组用高度为1.5米的测角仪BC ,对垂直于地面CD 的建筑物AD 的高度进行测量,BC CD ⊥于点C .在B 处测得A 的仰角=45ABE ∠︒,然后将测角仪向建筑物方向水平移动6米至FG 处,FG CD ⊥于点G ,测得A 的仰角58AFE ∠=︒,BF 的延长线交AD 于点E ,求建筑物AD 的高度(结果保留小数点后一位).(参考数据:sin580.85,cos580.53,tan58 1.60︒≈︒≈︒≈)55.(2024·广东·中考真题)中国新能源汽车为全球应对气候变化和绿色低碳转型作出了巨大贡献.为满足新能源汽车的充电需求,某小区增设了充电站,如图是矩形PQMN 充电站的平面示意图,矩形ABCD 是其中一个停车位.经测量,60ABQ ∠=︒, 5.4m AB =, 1.6m CE =,GH CD ⊥,GH 是另一个车位的宽,所有车位的长宽相同,按图示并列划定.根据以上信息回答下列问题:(结果精确到0.1m 3 1.73≈)(1)求PQ 的长;(2)该充电站有20个停车位,求PN 的长.56.(2024·广东广州·中考真题)2024年6月2日,嫦娥六号着陆器和上升器组合体(简称为“着上组合体”)成功着陆在月球背面.某校综合实践小组制作了一个“着上组合体”的模拟装置,在一次试验中,如图,该模拟装置在缓速下降阶段从A 点垂直下降到B 点,再垂直下降到着陆点C ,从B 点测得地面D 点的俯角为36.87︒,17AD =米,10BD =米.(1)求CD 的长;(2)若模拟装置从A 点以每秒2米的速度匀速下降到B 点,求模拟装置从A 点下降到B 点的时间.(参考数据:sin 36.870.60︒≈,cos36.870.80︒≈,tan 36.870.75︒≈)57.(2024·青海·中考真题)如图,某种摄像头识别到最远点A 的俯角α是17︒,识别到最近点B 的俯角β是45︒,该摄像头安装在距地面5m 的点C 处,求最远点与最近点之间的距离AB (结果取整数,参考数据:sin170.29︒≈,cos170.96︒≈,tan170.31︒≈).58.(2024·陕西·中考真题)问题提出(1)如图1,在ABC 中,15AB =,30C ∠=︒,作ABC 的外接圆O .则 ACB 的长为________;(结果保留π)问题解决(2)如图2所示,道路AB 的一侧是湿地.某生态研究所在湿地上建有观测点D ,E ,C ,线段AD AC ,和BC 为观测步道,其中点A 和点B 为观测步道出入口,已知点E 在AC 上,且AE EC =,60DAB ∠=︒,120ABC ∠=︒,1200m AB =,900m AD BC ==,现要在湿地上修建一个新观测点P ,使60DPC ∠=︒.再在线段AB 上选一个新的步道出入口点F ,并修通三条新步道PF PD PC ,,,使新步道PF 经过观测点E ,并将五边形ABCPD 的面积平分.请问:是否存在满足要求的点P 和点F ?若存在,求此时PF 的长;若不存在,请说明理由.(点A ,B ,C ,P ,D 在同一平面内,道路AB 与观测步道的宽、观测点及出入口的大小均忽略不计,结果保留根号)。

2020年中考数学压轴题-专题28几何证明综合复习(判定四边形形状)(解析版)

2020年中考数学压轴题-专题28几何证明综合复习(判定四边形形状)(解析版)

专题28 几何证明综合复习(判定四边形形状)教学重难点1.培养学生通过探索和证明,发展推理意识和能力2.通过证明举例的学习和实践,懂得演绎推理的一般规则,并掌握规范表达的格式;了解证明之前进行分析的基本思路;3.体会用“分析综合法”探求解题思路;4.学习添置辅助线的基本方法,会添置常见的辅助线;5.会用文字语言、图形语言、符号语言三种数学语言进行证明说理。

【说明】:本部分为知识点方法总结性梳理,目的在于让学生能从题目条件和所证明结论,去寻找证明思路,用时大概 5-8 分钟左右。

【知识点、方法总结】:中考几何题证明思路总结几何证明题重点考察的是学生的逻辑思维能力,能通过严密的" 因为"、"所以 " 逻辑将条件一步步转化为所要证明的结论。

这类题目出法相当灵活,不像代数计算类题目容易总结出固定题型的固定解法,而更看重的是对重要模型的总结、常见思路的总结。

所以本文对中考中最常出现的若干结论做了一个较为全面的思路总结。

一、证明两线段相等1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

10.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

、证明两角相等1.两全等三角形的对应角相等。

2.同一三角形中等边对等角。

3.等腰三角形中,底边上的中线(或高)平分顶角。

4.两条平行线的同位角、内错角或平行四边形的对角相等。

5.同角(或等角)的余角(或补角)相等。

6.同圆(或圆)中,等弦(或弧)所对的圆心角相等;7.相似三角形的对应角相等;8.等于同一角的两个角相等。

专题28 动点综合问题(共32题)(原卷版)-2023年中考数学真题分项汇编(全国通用)

专题28 动点综合问题(共32题)(原卷版)-2023年中考数学真题分项汇编(全国通用)

专题28动点综合问题(32题)1.(2023·四川遂宁·统考中考真题)如图,在ABC 中,1068AB BC AC ===,,,点P 为线段AB 上的动点,以每秒1个单位长度的速度从点A 向点B 移动,到达点B 时停止.过点P 作PM AC ⊥于点M 、作PN BC ⊥于点N ,连接MN ,线段MN 的长度y 与点P 的运动时间t (秒)的函数关系如图所示,则函数图象最低点E 的坐标为()A .()55,B .246,5⎛⎫ ⎪⎝⎭C .3224,55⎛⎫ ⎪⎝⎭D .32,55⎛⎫ ⎪⎝⎭2.(2023·广东深圳·统考中考真题)如图1,在Rt ABC △中,动点P 从A 点运动到B 点再到C 点后停止,速度为2单位/s ,其中BP 长与运动时间t (单位:s )的关系如图2,则AC 的长为()A .1552B .427C .17D .533.(2023·黑龙江绥化·统考中考真题)如图,在菱形ABCD 中,60A ∠=︒,4AB =,动点M ,N 同时从A 点出发,点M 以每秒2个单位长度沿折线A B C --向终点C 运动;点N 以每秒1个单位长度沿线段AD 向终点D 运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间为x 秒,AMN 的面积为y 个平方单位,则下列正确表示y 与x 函数关系的图象是()....(2023·黑龙江齐齐哈尔统考中考真题)如图,在正方形ABCD 同时出发,沿射线AB 的方向匀速运动,且速度的大小相等,连接动的路程为(0x x ≤≤,下列图像中能反映S A ....5.(2023·河南·统考中考真题)如图1,点从等边三角形ABC 的顶点A 出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B .设点运动的路程为x ,PB PC,图2是点P 运动时关系图象,则等边三角形ABC 的边长为(A .6B .3C .43236.(2023·四川乐山·统考中考真题)如图,在平面直角坐标系xOy 中,直线2y x =--与x 轴、y 轴分别交于A 、B 两点,C 、D 是半径为1的O 上两动点,且2CD =,P 为弦CD 的中点.当C 、D 两点在圆上运动时,PAB 面积的最大值是()A .8B .6C .4D .37.(2023·河北·统考中考真题)如图是一种轨道示意图,其中ADC 和ABC 均为半圆,点M ,A ,C ,N 依次在同一直线上,且AM CN =.现有两个机器人(看成点)分别从M ,N 两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M A D C N →→→→和N C B A M →→→→.若移动时间为x ,两个机器人之间距离为y ,则y 与x 关系的图象大致是()A .B .C .D .A.10B.910C 9.(2023·山东滨州·统考中考真题)已知点P是等边AP BP CP为边的三角形中,最小内角的大小为(段,,A.14︒B.16︒C 10.(2023·甘肃武威·统考中考真题)如图1,正方形→匀速运动,运动到点C时停止.设点发沿AB BC象如图2所示,则点M的坐标为()4,23B.()4,4A.()11.(2023·浙江绍兴·统考中考真题)如图,在∥交AC于点E;过点D作DF∥DE AB的面积,则一定能求出(上的点,2DM ME=.若已知CMNA.AFE△的面积C .BCN △的面积D .DCE △的面积12.(2023·安徽·统考中考真题)如图,E 是线段AB 上一点,ADE V 和BCE 是位于直线AB 同侧的两个等边三角形,点,P F 分别是,CD AB 的中点.若4AB =,则下列结论错误..的是()A .PA PB +的最小值为33B .PE PF +的最小值为23C .CDE 周长的最小值为6D .四边形ABCD 面积的最小值为33二、填空题13.(2023·四川达州·统考中考真题)在ABC 中,43AB =,60C ∠=︒,在边BC 上有一点P ,且12BP AC =,连接AP ,则AP 的最小值为___________.14.(2023·浙江宁波·统考中考真题)如图,在Rt ABC △中,90C ∠=︒,E 为AB 边上一点,以AE 为直径的半圆O 与BC 相切于点D ,连接AD ,3,35BE BD ==.P 是AB 边上的动点,当ADP △为等腰三角形时,AP 的长为_____________.15.(2023·四川凉山·统考中考真题)如图,边长为2的等边ABC 的两个顶点A B 、分别在两条射线OM ON 、上滑动,若OM ON ⊥,则OC 的最大值是_________.16.(2023·四川泸州·统考中考真题)如图,E ,F 是正方形ABCD 的边AB 的三等分点,P 是对角线AC 上17.(2023·河南·统考中考真题)以点D,M,N为顶点的三角形是直角三角形时,18.(2023·湖南·统考中考真题)如图,在矩形B C D A→→→运动.运动过程中,线段CB'19.(2023·广西·统考中考真题)如图,在边长为,的中点,则N分别是EF AF20.(2023·山东·统考中考真题)如图,在四边形点E在线段BC上运动,点21.(2023·四川内江·统考中考真题)出入相补原理是我国古代数学的重要成就之一,最早是由三国时期数学家刘徽创建.“将一个几何图形,任意切成多块小图形,几何图形的总面积保持不变,等于所分割成的小图形的面积之和”是该原理的重要内容之一、如图,在矩形ABCD 中,5AB =,12AD =,对角线AC 与BD交于点O ,点E 为BC 边上的一个动点,EF AC ⊥,EG BD ⊥,垂足分别为点F ,G ,则EF EG +=___________.22.(2023·山东烟台·统考中考真题)如图1,在ABC 中,动点P 从点A 出发沿折线AB BC CA →→匀速运动至点A 后停止.设点P 的运动路程为x ,线段AP 的长度为y ,图2是y 与x 的函数关系的大致图象,其中点F 为曲线DE 的最低点,则ABC 的高CG 的长为_______.23.(2023·新疆·统考中考真题)如图,在ABCD Y 中,6AB =,8BC =,120ABC ∠=︒,点E 是AD 上一动点,将ABE 沿BE 折叠得到A BE ' ,当点A '恰好落在EC 上时,DE 的长为______.24.(2023·四川眉山·统考中考真题)如图,在平面直角坐标系xOy 中,点B 的坐标为()86-,,过点B 分别作x 轴、y 轴的垂线,垂足分别为点C 、点A ,直线26y x =--与AB 交于点D .与y 轴交于点E .动点M 在线段BC 上,动点N 在直线26y x =--上,若AMN 是以点N 为直角顶点的等腰直角三角形,则点M 的坐标为________25.(2023·四川自贡·统考中考真题)如图,直线段AB 上一动点,点H 是直线BE DF +取最小值时,3BH 三、解答题26.(2023·重庆·统考中考真题)如图,ABC 是边长为4的等边三角形,动点E ,F 分别以每秒1个单位长度的速度同时从点A 出发,点E 沿折线A B C →→方向运动,点F 沿折线A C B →→方向运动,当两者相遇时停止运动.设运动时间为t 秒,点E ,F 的距离为y .(1)请直接写出y 关于t 的函数表达式并注明自变量t 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,写出点E ,F 相距3个单位长度时t 的值.27.(2023·辽宁大连·统考中考真题)如图1,在平面直角坐标系xOy 中,直线y x =与直线BC 相交于点A ,(),0P t 为线段OB 上一动点(不与点B 重合),过点P 作PD x ⊥轴交直线BC 于点D .OAB 与DPB 的重叠面积为S .S 关于t 的函数图象如图2所示.(1)OB 的长为_______________;OAB 的面积为_______________.(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围.28.(2023·河北·统考中考真题)在平面直角坐标系中,设计了点的两种移动方式:从点(,)x y 移动到点(2,1)x y ++称为一次甲方式:从点(,)x y 移动到点(1,2)x y ++称为一次乙方式.例、点P 从原点O 出发连续移动2次;若都按甲方式,最终移动到点(4,2)M ;若都按乙方式,最终移动到点(2,4)N ;若按1次甲方式和1次乙方式,最终移动到点(3,3)E .(1)设直线1l 经过上例中的点,M N ,求1l 的解析式;并直接..写出将1l 向上平移9个单位长度得到的直线2l 的解析式;(2)点P 从原点O 出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点(,)Q x y .其中,按甲方式移动了m 次.①用含m 的式子分别表示,x y ;②请说明:无论m 怎样变化,点Q 都在一条确定的直线上.设这条直线为3l ,在图中直接画出3l 的图象;(3)在(1)和(2)中的直线123,,l l l 上分别有一个动点,,A B C ,横坐标依次为,,a b c ,若A ,B ,C 三点始终在一条直线上,直接写出此时a ,b ,c 之间的关系式.29.(2023·黑龙江·统考中考真题)如图,在平面直角坐标系中,菱形AOCB 的边OC 在x 轴上,60AOC ∠=︒,OC 的长是一元二次方程24120x x --=的根,过点C 作x 轴的垂线,交对角线OB 于点D ,直线AD 分别交x 轴和y 轴于点F 和点E ,动点M 从点O 以每秒1个单位长度的速度沿OD 向终点D 运动,动点N 从点F 以每秒2个单位长度的速度沿FE 向终点E 运动.两点同时出发,设运动时间为t 秒.(1)求直线AD 的解析式.(2)连接MN ,求MDN △的面积S 与运动时间t 的函数关系式.(3)点N 在运动的过程中,在坐标平面内是否存在一点Q .使得以A ,C ,N ,Q 为项点的四边形是矩形.若存在,直接写出点Q 的坐标,若不存在,说明理由.30.(2023·江苏苏州·统考中考真题)某动力科学研究院实验基地内装有一段笔直的轨道AB ,长度为1m 的金属滑块在上面做往返滑动.如图,滑块首先沿AB 方向从左向右匀速滑动,滑动速度为9m /s ,滑动开始前滑块左端与点A 重合,当滑块右端到达点B 时,滑块停顿2s ,然后再以小于9m /s 的速度匀速返回,直到滑块的左端与点A 重合,滑动停止.设时间为()s t 时,滑块左端离点A 的距离为()1m l ,右端离点B 的距离为()2m l ,记12,d l l d =-与t 具有函数关系.已知滑块在从左向右滑动过程中,当 4.5s t =和5.5s 时,与之对应的d 的两个值互为相反数;滑块从点A 出发到最后返回点A ,整个过程总用时27s (含停顿时间).请你根据所给条件解决下列问题:(1)滑块从点A 到点B 的滑动过程中,d 的值________________;(填“由负到正”或“由正到负”)(2)滑块从点B 到点A 的滑动过程中,求d 与t 的函数表达式;(3)在整个往返过程中,若18d =,求t 的值.31.(2023·天津·统考中考真题)在平面直角坐标系中,O 为原点,菱形ABCD 的顶点(3,0),(0,1),(23,1)A B D ,矩形EFGH 的顶点1130,,3,,0,222E F H ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.①如图②,当边E F ''与AB 相交于点M 、边G H ''与BC 相交于点N ,且矩形E F G H ''''与菱形为五边形时,试用含有t 的式子表示S ,并直接写出t 的取值范围:②当2311334t ≤≤时,求S 的取值范围(直接写出结果即可).32.(2023·江西·统考中考真题)综合与实践问题提出:某兴趣小组开展综合实践活动:在Rt ABC △中,90C ∠=︒,D 为AC 上一点,P 以每秒1个单位的速度从C 点出发,在三角形边上沿C B A →→匀速运动,到达点边作正方形DPEF 设点P 的运动时间为s t ,正方形DPEF 的而积为S ,探究S 与t 的关系(1)初步感知:如图1,当点P 由点C 运动到点B 时,①当1t =时,S =_______.②S 关于t 的函数解析式为_______.(2)当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,并绘制成如图2所示的图象请根据图象信息,求S 关于t 的函数解析式及线段AB 的长.(3)延伸探究:若存在3个时刻123,,t t t (123t t t <<)对应的正方形DPEF 的面积均相等.①12t t +=_______;②当314t t =时,求正方形DPEF 的面积.。

专题28 语言综合运用新情境新题型(练习)-2024年高考语文二轮复习(新教材新高考) (原卷版)

专题28 语言综合运用新情境新题型(练习)-2024年高考语文二轮复习(新教材新高考) (原卷版)

每处不超过 15 个字。(6 分)
15.请在文中横线处填入恰当的成语。(3 分)



16.请以“文化产品”为开头将上面画线句重组,句中使用设问并体现因果关系。可适当增删词语,但句
子要保持连贯。(3 分)
五、阅读下面的文字,完成各题。
4 月 23 日“世界读书日”即将到来,复兴中学记者团计划在校刊上推出一篇以“快时代的读书文化”为主题
统的“毛细血管”,口袋公园无疑是城市居民精神上的一片绿洲。
18. 请在文中横线处填入恰当的成语。


1
9.下面是某城市“儿童游戏”主题口袋公园建造的初步构思框架,请你把这个构思写成一段话,要求内容
完整,逻辑合理,表述准确,不超过 70 个字。
八、阅读下面的文字,完成 21-22 题 “天上人间诸景备”的大观园是《红楼梦》中女儿们的栖息之地。大观园的水系历来是研究者的一个

),不如聚焦自身思想的创新,让机器当好人类的“秘书”。在人工智能这个“竞争
者”面前,如果缺乏创新,一味跟风模仿,文化产品就会同质化、低端化、很可能败下阵来。文化从业者
应该意识到,创新引领文化产业高质量发展,才能让自己的创作有不可替代的价值。
14.请在文中括号里补写恰当的语句,使它与上下文语意连贯、内容贴切,整段文字结构完整、逻辑严密,



六、阅读下面图文材料,完成小题。 圭表是我国古代的一种天文仪器,主要用来标识四季、测定节气。“表”指的是竖直立在平地上的杆
子或石柱,“圭”则是和表互相垂直平放着的尺。 根据下图简要说明圭表测量的原理,不得超过 50 字。
七、
口袋公园,①
就是占地面积少、规模小的城市开放空间,也称袖珍公园。一些形状不规则的土

2012年全国中考数学试题分类解析汇编专题28:概率统计综合

2012年全国中考数学试题分类解析汇编专题28:概率统计综合

2012年全国中考数学试题分类解析汇编(159套63专题)专题28:概率统计综合一、选择题1.(2012江苏淮安3分)下列说法正确的是【】A、两名同学5次成绩的平均分相同,则方差较大的同学成绩更稳定。

B、某班选出两名同学参加校演讲比赛,结果一定是一名男生和一名女生CD【答案】【考点】【分析】ABCD故选C。

2. (ABCD【答案】【考点】【分析】根据概率的意义,随机事件,调查方法的选择,概率公式对各选项作出判断:A:某种彩票的中奖率为1%,是中奖的频率接近1%,所以买100张彩票可能中奖,也可能没中奖,所以A选项的说法错误;B、从装有10个红球的袋子中,摸出的应该都是红球,则摸出1个白球是不可能事件,所以B选项的说法正确;C、为了解一批日光灯的使用寿命,可采用抽样调查的方式,而不应采用普查的方式,所以C选项的说法正确;D、掷一枚普通的正六面体骰子,共有6种等可能的结果,则出现向上一面点数是2的概率是16,所以D选项的说法正确。

故选A。

3. (2012湖北十堰3分)下列说法正确的是【】A.要了解全市居民对环境的保护意识,采用全面调查的方式B.若甲组数据的方差S2甲 =0.1,乙组数据的方差S2乙 =0.2,则甲组数据比乙组稳定C.随机抛一枚硬币,落地后正面一定朝上D.若某彩票“中奖概率为1%”,则购买100张彩票就一定会中奖一次【答案】B。

【考点】调查方式的选择,方差的意义,随机事件,概率的意义。

【分析】根据调查方式的选择,方差的意义,随机事件,概率的意义进行逐一判断即可得到答案A、了解全市居民的环保意识,范围比较大,因此采用抽样调查的方法比较合适,本答案错误;B、甲组的方差小于乙组的方差,故甲组稳定正确;C、随机抛一枚硬币,落地后可能正面朝上也可能反面朝上,故本答案错误;D、买100张彩票不一定中奖一次,故本答案错误。

故选B。

4. (2012湖南岳阳3分)下列说法正确的是【】A.随机事件发生的可能性是50% B.一组数据2,2,3,6的众数和中位数都是2C.为了了解岳阳5万名学生中考数学成绩,可以从中抽取10名学生作为样本D.若甲组数据的方差S甲2=0.31,乙组数据的方差S乙2=0.02,则乙组数据比甲组数据稳定【答案】D。

人教A版高中地理必修二第一章《人口》综合题专题训练 (28)(含答案解析)

人教A版高中地理必修二第一章《人口》综合题专题训练 (28)(含答案解析)

高中地理必修二第一章《人口》综合题专题训练 (28)一、综合题(本大题共20小题,共400.0分)1.随着社会经济的发展,我国人口迁移日渐频繁,老龄化现象也日趋严重。

阅读图文材料,回答问题。

材料一2016年我国部分地区户籍人口与常住人口统计图。

材料二老龄化带来的巨大养老压力已经成为我国面临的重大问题。

表格是2014年我国部分省区常住人口老龄化数据。

省区65岁以上人口比重/%省区65岁以上人口比重/%重庆13.25安徽10.53四川12.76辽宁10.22江苏12.25广西9.29天津11.46浙江9.2山东10.98河南8.93上海10.64北京8.58湖南10.57广东7.24党的十八大五中全会指出,为促进人口均衡发展,坚持计划生育的基本国策,完善人口发展战略,全面实施一对夫妇可生育两个孩子政策,积极开展应对人口老龄化行动。

(1)由于人口迁移导致常住人口与户籍人口不一致。

分析我国人口迁移的空间特点,并分析人口迁移对迁出地区造成的影响。

(2)据材料,分析我国人口老龄化的特点及其原因。

(3)比较四川省和广东省常住人口老龄化程度的差异,并分析其中的原因。

(4)有人认为,我国全面实施“二孩政策”,就是放弃坚持30多年的计划生育基本国策,鼓励多生多育,你是否认同这样的观点?请说明理由。

2.阅读图文材料,完成下列要求。

波斯湾是阿拉伯海西北伸入亚洲大陆的一个海湾,位于伊朗高原和阿拉伯半岛之间。

伊朗波斯湾沿岸南段为山地,岸线平直,海岸陡峭;西北段为狭长海岸平原,岸线较曲折,多小港湾。

波斯湾海底是世界最大的石油宝库,目前多通过海运输出。

下图示意波斯湾地理位置。

(1)伊朗波斯湾沿岸西北部海域水深较浅,解释其原因。

(2)与伊朗波斯湾沿岸南段相比较,推测西北段人口密度的大小并说明原因。

(3)简述波斯湾石油多通过海运输出的优点。

3.阅读图文材料,完成下列要求。

维多利亚市位于温哥华岛的南端,周边地区森林茂密、河湖众多,城市秀美宁静,素有“花园城市”之称。

中考复习函数专题28 二次函数中的三角形问题(学生版)

中考复习函数专题28 二次函数中的三角形问题(学生版)

专题28 二次函数中的三角形问题知识对接考点一、二次函数中的三角形问题考点分析:二次函数与三角形的综合解答题一般涉及到这样几个方面:1.三角形面积最值问题2.特殊三角形的存在问题包括等腰等边和直角三角形。

这类题目一般出现在压轴题最后两道上,对知识的综合运用要求比较高。

考点二、解决此类题目的基本步骤与思路1.抓住目标三角形,根据动点设点坐标2.根据所设未知数去表示三角形的底和高,一般常用割补法去求解三角形的面积从而得出面积的关系式3. 根据二次函数性质求出最大值.4.特殊三角形问题首先要画出三角形的大概形状,分类讨论的去研究。

例如等腰三角形要弄清楚以哪两条边为要,直角三角形需要搞清楚哪个角作为直角都需要我们去分类讨论。

要点补充:1.简单的直角三角形可以直接利用底乘高进行面积的表示2.复杂的利用“补”的方法构造矩形或者大三角形,整体减去部分的思想3.利用“割”的方法时,一般选用横割或者竖割,也就是做坐标轴的垂线。

4.利用点坐标表示线段长度时注意要用大的减去小的。

5.围绕不同的直角进行分类讨论,注意检验答案是否符合要求。

6.在勾股定理计算复杂的情况下,灵活的构造K字形相似去处理。

要点补充:一、单选题1.如图,直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s (阴影部分),则s与t的大致图象为()A .B .C .D .2.定义:若抛物线的顶点与x 轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为“美丽抛物线”.如图,直线l :13y x b =+经过点10,4M ⎛⎫ ⎪⎝⎭一组抛物线的顶点()111B y ,,()222,B y ,()333,B y ,…(),n n B n y (n 为正整数),依次是直线l 上的点,这组抛物线与x 轴正半轴的交点依次是:()11,0A x ,()22,0A x ,()33,0A x ,…()11,0n n A x ++(n 为正整数).若()101x d d =<<,当d 为( )时,这组抛物线中存在美丽抛物线A .512或712B .512或1112C .712或1112D .7123.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若抛物线经过图中的三个格点,则以这三个格点为顶点的三角形称为抛物线的“内接格点三角形”.以O 为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线OB 的两个交点之间的距离为形的三个顶点,则满足上述条件且对称轴平行于y 轴的抛物线条数是A .16B .15C .14D .134.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y轴的抛物线与网格对角线OM的两个交点为A,B,其顶点为C,如果△ABC是该抛物线的内接格点三角形,A,B,C的横坐标x A,x B,x C满足x A<x C<x B,那么符合上述条件的抛物线条数是()A.7B.8C.14D.165.如图,在矩形纸片ABCD中,AB=3,BC=2,沿对角线AC剪开(如图△);固定△ADC,把△ABC沿AD方向平移(如图△),当两个三角形重叠部分的面积最大时,移动的距离AA′等于()A.1B.1.5C.2D.0.8或1.26.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.7.如图,正三角形ABC和正三角形ECD的边BC,CD在同一条直线上,将ABC向右平移,直到点B 与点D 重合为止,设点B 平移的距离为x ,=2BC ,4CD =.两个三角形重合部分的面积为Y ,现有一个正方形FGHI 的面积为S ,已知sin 60Y S=︒,则S 关于x 的函数图像大致为( )A .B .C .D .8.以下说法正确的是( )A .三角形的外心到三角形三边的距离相等B .顺次连接对角线相等的四边形各边中点所得的四边形是菱形C .分式方程11222x x x -=---的解为x =2 D .将抛物线y =2x 2-2向右平移1个单位后得到的抛物线是y =2x 2-39.二次函数2(1)22y m x mx m =+-+-的图象与x 轴有两个交点()1,0x 和()2,0x ,下列说法:△该函数图象过点(1,1)-;△当0m =时,二次函数与坐标轴的交点所围成的三角形面积是△若该函数的图象开口向下,则m 的取值范围为21m -<<-;△当0m >,且21x --时,y 的最大值为(92)m +.正确的是( )A .△△△B .△△△C .△△△D .△△△△ 10.以下四个命题:△如果三角形的三个内角的度数比是3:4:5,那么这个三角形是直角三角形;△在实数-7.54-π,)2中,有4个有理数,2个无理数;△的圆柱等高,如果这个圆锥的侧面展开图是半圆,那么它的母线长为43; △二次函数221y ax ax =-+,自变量的两个值x 1,x 2对应的函数值分别为y 1,y 2,若|x 1-1|>|x 2-1|,则a (y 1-y 2)>0.其中正确的命题的个数为( )A .1个B .2个C .3个D .4个二、填空题11.定义[a ,b ,c ]为二次函数y =ax 2+bx +c (a ≠0)的特征数,下面给出特征数为[2m ,1-m ,-1-m ]的函数的一些结论:△当m ≠0时,点(1,0)一定在函数的图象上;△当m >0时,函数图象截x 轴所得的线段长度大于32;△当m <0时,函数在14x >时,y 随x 的增大而减小;△当m >0,若抛物线的顶点与抛物线与x 轴两交点组成的三角形为等腰直角三角形,则13m =,正确的结论是________.(填写序号)12.如图,在第一象限内作与x 轴的夹角为30°的射线OC ,在射线OC 上取点A ,过点A作AH △x 轴于点H ,在抛物线y =x 2(x >0)上取一点P ,在y 轴上取一点Q ,使得以P ,O ,Q 为顶点的三角形与△AOH 全等,则符合条件的点A 有____个.13.如图,直线l :1134y x =+经过点M(0,14),一组抛物线的顶点B 1(1,y 1),B 2(2,y 2),B 3(3,y 3)…B n (n ,y n )(n 为正整数)依次是直线l 上的点,这组抛物线与x 轴正半轴的交点依次是:A 1(x 1,0),A 2(x 2,0),A 3(x 3,0)…,A n+1(x n+1,0)(n 为正整数),设x 1=d (0<d <1)若抛物线的顶点与x 轴的两个交点构成的三角形是直角三角形,则我们把这种抛物线就称为:“美丽抛物线”.则当d (0<d <1)的大小变化时美丽抛物线相应的d 的值是__.14.如图,抛物线与x 轴交于1,0A 、()3,0B -两点,与y 轴交于点()0,3C ,设抛物线的顶点为D .坐标轴上有一动点P ,使得以P 、A 、C 为顶点的三角形与BCD △相似.则点P 的坐标______.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年江苏省各地中考数学模拟优质试题分项版解析汇编专题28:综合性问题一、选择题1.【苏州市吴江区一模】在平面直角坐标系中,一次函数y=x的图象、反比例函数y=1.1 x图象以及二次函数y=x2-6x的对称轴围成一个封闭的平面区域(含边界),从该区域内所有格点(横、纵坐标均为整数的点称为格点)中任取3个,则该3点恰能作为一个三角形的三个顶点的概率是()A.12B.35C.710D.910二、填空题1.【江阴市要塞片二模】如图,平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与y2=2 3 x(x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则DEBC= .2.【秦淮市二模】如图,P为△ABC内一点,∠BAC=30°,∠ACB=90°,∠BPC=120°.若BP PAB的面积为.3.【江阴市青阳片一模】如图,平面直角坐标系中,分别以点A(-2,3),B(3,4)为圆心,以1、2为半径作⊙A、⊙B,M、N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值等于.4.【仪征市一模】如图,点A是双曲线y=4x在第一象限上的一动点,连接AO并延长交另一分支于点B,以AB为斜边作等腰Rt△ABC,点C在第二象限,随着点A的运动,点C 的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为.三、解答题1.【昆山市一模】如图,已知函数y=2x和函数y=kx的图象交于A、B两点,过点A作AE⊥x轴于点E,若△AOE的面积为4,p是坐标平面上的点,且以点B、O、E、P为顶点的四边形是平行四边形,求满足条件的P点坐标.2.【泰兴市二模】如图,平面直角坐标系中O为坐标原点,直线y=34x+6与x轴、y轴分别交于A、B两点,C为OA中点;(1)求直线BC解析式;(2)动点P从O出发以每秒2个单位长度的速度沿线段OA向终点A运动,同时动点Q从个单位长度的速度向终点B运动,过点Q作QM∥AB交x轴C出发沿线段CB以每秒2于点M,若线段PM的长为y,点P运动时间为t(s),求y于t的函数关系式;(3)在(2)的条件下,以PC为直径作⊙N,求t为何值时直线QM与⊙N相切.3.【南京市鼓楼区二模】△ABC中,AB=AC=10,BC=12,矩形DEFG中,EF=4,FG>12.(1)如图①,点A是FG的中点,FG∥BC,将矩形DEFG向下平移,直到DE与BC重合为止.要研究矩形DEFG与△ABC重叠部分的面积,就要进行分类讨论,你认为如何进行分类,写出你的分类方法(无需求重叠部分的面积).(2)如图②,点B与F重合,E、B、C在同一直线上,将矩形DEFG向右平移,直到点E 与C重合为止.设矩形DEFG与△ABC重叠部分的面积为y,平移的距离为x.①求y与x的函数关系式,并写出自变量的取值范围;②在给定的平面直角坐标系中画出y与x的大致图象,并在图象上标注出关键点坐标.4.【无锡市崇安区一模】已知:二次函数y=ax2+bx+6(a≠0)的图象与x轴交于A、B两点(点A在点B的左侧),点A、点B的横坐标是方程x2-4x-12=0的两个根.(1)求出该二次函数的表达式及顶点坐标;(2)如图,连接A C、BC,点P是线段OB上一个动点(点P不与点O、B重合),过点P 作PQ∥AC交BC于点Q,当△CPQ的面积最大时,求点P的坐标.5.【无锡市崇安区一模】已知:如图①,在矩形ABCD中,AB=5,AD=203,AE⊥BD,垂足是E.点F是点E关于AB的对称点,连接AF、BF.(1)求AE和BE的长;(2)若将△ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度).当点F分别平移到线段A B、AD上时,直接写出相应的m的值.(3)如图②,将△ABF绕点B顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF为△A′BF′,在旋转过程中,设A′F′所在的直线与直线AD交于点P,与直线BD交于点Q.是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由.6.【南京市建邺区一模】问题提出如图①,已知直线l与线段AB平行,试只用直尺作出AB的中点.初步探索如图②,在直线l的上方取一个点E,连接E A、EB,分别与l交于点M、N,连接M B、NA,交于点D,再连接ED并延长交AB于点C,则C就是线段AB的中点.推理验证利用图形相似的知识,我们可以推理验证AC=C B.(1)若线段A、B、C、d长度均不为0,则由下列比例式中,一定可以得出b=d的是A.a cb d=B.a ab d=C.a db a=D.a dc b=(2)由MN∥AB,可以推出△EFN∽△ECB,△EMN∽△EAB,△MND∽△BAD,△FND∽△CA D.所以,有()()()()FN MN FN CB AB AC ====,所以,AC=C B.拓展研究如图③,△ABC中,D是BC的中点,点P在AB上.(3)在图③中只用直尺作直线l∥B C.(4)求证:l∥B C.8.【江阴市青阳片一模】(1)数学爱好者小森偶然阅读到这样一道竞赛题:一个圆内接六边形ABCDEF,各边长度依次为 3,3,3,5,5,5,求六边形ABCDEF的面积.小森利用“同圆中相等的弦所对的圆心角相等”这一数学原理,将六边形进行分割重组,得到图③.可以求出六边形ABCDEF的面积等于.(2)类比探究:一个圆内接八边形,各边长度依次为2,2,2,2,3,3,3,3.求这个八边形的面积.请你仿照小森的思考方式,求出这个八边形的面积.9.【盐城市滨海县一模】如图,在矩形ABCD中,AB=9,AD=12.动点E从点B出发,沿线段BC(不包括端点B、C)以每秒2个单位长度的速度,匀速向点C运动;动点F从点C出发,沿线段CD(不包括端点C、D)以每秒1个单位长度的速度,匀速向点D运动;点E、F同时出发,同时停止.连接AF并延长交BC的延长线于点M,再把AM沿AD翻折交CD延长线于点N,连接MN.设运动时间为t秒.(1)当t为何值时,△ABE∽△ECF;(2)在点E运动的过程中是否存在某个时刻使AE⊥AN?若存在请求出t的值,若不存在请说明理由;(3)在运动的过程中,△AMN的面积是否变化?如果改变,求出变化的范围;如果不变,求出它的值.10.【高邮市二模】(1)如图1,4条直线l1、l2、l3、l4是一组平行线,相邻2条平行线的距离都是2cm,正方形ABCD的4个顶点A、B、C、D分别在l1、l3、l4、l2上,求该正方形的面积;(2)如图2,把一张矩形卡片ABCD放在每格宽度为18mm的横格纸中,恰好四个顶点都在横格线上,已知∠1=36°,求长方形卡片的周长.(精确到1mm)(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)11.【高邮市二模】数学课上,老师和同学们对矩形纸片进行了图形变换的以下探究活动:(1)如图1,若连接矩形ABCD的对角线A C、BD相交于点O,则Rt△ADC可由Rt△ABC 经过旋转变换得到,这种旋转变换的旋转中心是点、旋转角度是°;(2)如图2,将矩形纸片ABCD沿折痕EF对折、展平.再沿折痕GC折叠,使点B落在EF上的点B′处,这样能得到∠B′G C.求∠B′GC的度数.(3)如图3,取AD边的中点P,剪下△BPC,将△BPC沿着射线BC的方向依次进行平移变换,每次均移动BC的长度,得到了△CDE、△EFG和△GHI(如图4).若BH=BI,BC=a,则:①证明以B D、BF、BH为三边构成的新三角形的是直角三角形;②若这个新三角形面积小于a的最大整数值.12.【扬州市宝应县一模】如图,抛物线y=ax2+bx-4a经过A(-1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标;(3)在(2)的条件下,连接BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标.13.【扬州市江都市一模】二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(-3,0)、B (1,0)两点,与y轴交于点C(0,-3m)(其中m>0),顶点为D.(1)用含m的代数式分别表示A、B、c;(2)如图,当m取何值时,△ADC为直角三角形?14.【南京市高淳区一模】(1)如图1,将直角的顶点E放在正方形ABCD的对角线AC上,使角的一边交CD于点F,另一边交CB或其延长线于点G,求证:EF=EG;(2)如图2,将(1)中的“正方形ABCD”改成“矩形ABCD”,其他条件不变.若AB=m,BC=n,试求EFEG的值;(3)如图3,将直角顶点E放在矩形ABCD的对角线交点,EF、EG分别交CD与CB于点F、G,且EC平分∠FEG.若AB=2,BC=4,求EG、EF的长.15.【南京市建邺区二模】如图1,在四边形ABCD的AB边上任取一点E(点E不与点A、点B重合),分别连接E D、EC,可以把四边形ABCD分成3个三角形.如果其中有2个三角形相似,我们就把点E叫做四边形ABCD的AB边上的相似点;如果这3个三角形都相似,我们就把点E叫做四边形ABCD的AB边上的强相似点.(1)若图1中,∠A=∠B=∠DEC=50°,说明点E是四边形ABCD的AB边上的相似点;(2)①如图2,画出矩形ABCD的AB边上的一个强相似点.(要求:画图工具不限,不写画法,保留画图痕迹或有必要的说明.)②对于任意的一个矩形,是否一定存在强相似点?如果一定存在,请说明理由;如果不一定存在,请举出反例.(3)在梯形ABCD中,AD∥BC,AD<BC,∠B=90°,点E是梯形ABCD的AB边上的一个强相似点,判断AE与BE的数量关系并说明理由.16.【苏州市一模】如图①,一个Rt△DEF直角边DE落在AB上,点D与点B重合,过A 点作二射线AC与斜边EF平行,己知AB=12,DE=4,DF=3,点P从A点出发,沿射线AC 方向以每秒2个单位的速度运动,Q为AP中点,设运动时间为t秒(t>0)•(1)当t=5时,连接QE,PF,判断四边形PQEF的形状;(2)如图②,若在点P运动时,Rt△DEF同时沿着BA方向以每秒1个单位的速度运动,当D点到A点时,两个运动都停止,M为EF中点,解答下列问题:①当D、M、Q三点在同一直线上时,求运动时间t;②运动中,是否存在以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切?若存在,求出此时的运动时间t;若不存在,说明理由.如图所示,在平面直角坐标系中,矩形ODEF的对角线OE在y轴上,将矩形ODEF横坐标原点O按逆时针方向旋转60°后,得到矩形OCAB,点E的对应点为点A,点F的对应点为x轴上点B,已知抛物线y=ax2+bx+2经过点A、D、E三点.(1)请直接写出点A和点D的坐标,点A(,)和点D(,);(2)求该抛物线的函数表达式;(3)若点P是x轴的上方抛物线上一动点,那么在x轴的上方是否存在另一点Q,使得以点O、B、P、Q为顶点的平行四边形的面积是矩形ABOC面积的2倍?若存在,请求出点Q的坐标;若不存在,请说明理由.17.【徐州市二模】如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0≤t≤2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ、CP,若AQ⊥CP,求t的值;(3)M是PQ的中点,请直接写出点M运动路线的长.18.【仪征市一模】如图,在▱ABCD中,过A、C、D三点的⊙O交AB于点E,连接DE、CE,∠CDE=∠BCE.(1)求证:AD=CE;(2)判断直线BC与⊙O的位置关系,并说明理由;(3)若BC=3,DE=6,求BE的长.19.【仪征市一模】如图,把△OAB放置于平面直角坐标系xOy中,∠OAB=90°,OA=2,AB=32,把△OAB沿x轴的负方向平移2OA的长度后得到△DCE.(1)若过原点的抛物线y=ax2+bx+c经过点B、E,求此抛物线的解析式;(2)若点P在该抛物线上移动,当点p在第一象限内时,过点p作PQ⊥x轴于点Q,连接OP.若以O、P、Q为定点的三角形与以B、C、E为定点的三角形相似,直接写出点P的坐标;(3)若点M(﹣4,n)在该抛物线上,平移抛物线,记平移后点M的对应点为M′,点B 的对应点为B′.当抛物线向左或向右平移时,是否存在某个位置,使四边形M′B′CD的周长最短?若存在,求出此时抛物线的解析式;若不存在,请说明理由.20.【常州市武进区一模】如图,矩形ABCD中,AB=2,AD=4,动点E在边BC上,与点B、C不重合,过点A作DE的垂线,交直线CD于点F.设DF=x,EC=y.(1)求y关于x的函数关系式,并写出x的取值范围.(2)当CF=1时,求EC的长.(3)若直线AF与线段BC延长线交于点G,当△DBE与△DFG相似时,求DF的长.21.【宿迁市泗阳县一模】如图,直线y x轴交于点A,与y轴交于点B,动点P从点A开始沿折线AB﹣BO以1cm/s的速度运动到点O.设点P运动的时间为t(s),△PAO面积为S(cm2).(坐标轴的单位长度为cm)(1)当点P在线段AB上运动到与点O距离最小时,求S的值;(2)在整个运动过程中,求S与t之间的函数表达式;(3)当点P运动几秒后,△PAO面积为2cm2?22.【江阴市要塞片二模】在复习《反比例函数》一课时,同桌的小明和小芳有一个问题观点不一致.小明认为如果两次分别从1~6六个整数中任取一个数,第一个数作为点P(m,n)的横坐标,第二个数作为点P(m,n)的纵坐标,则点P(m,n)在反比例函数y=12x的图象上的概率一定大于在反比例函数y=6x的图象上的概率,而小芳却认为两者的概率相同.你赞成谁的观点?(1)试用列表或画树状图的方法列举出所有点P(m,n)的情形;(2)分别求出点P(m,n)在两个反比例函数的图象上的概率,并说明谁的观点正确.23.【江阴市要塞片二模】半径为2cm的与⊙O边长为2cm的正方形ABCD在水平直线l的同侧,⊙O与l相切于点F,DC在l上.(1)过点B作的一条切线BE,E为切点.①填空:如图1,当点A在⊙O上时,∠EBA的度数是;②如图2,当E,A,D三点在同一直线上时,求线段OA的长;(2)以正方形ABCD的边AD与OF重合的位置为初始位置,向左移动正方形(图3),至边BC与OF重合时结束移动,M,N分别是边BC,AD与⊙O的公共点,求扇形MON的面积的范围.24.【江阴市要塞片二模】如图,在平面直角坐标系中,直线l平行x轴,交y轴于点A,第一象限内的点B在l上,连结OB,动点P满足∠APQ=90°,PQ交x轴于点C.(1)当动点P与点B重合时,若点B的坐标是(2,1),求PA的长.(2)当动点P在线段OB的延长线上时,若点A的纵坐标与点B的横坐标相等,求PA:PC的值.(3)当动点P在直线OB上时,点D是直线OB与直线CA的交点,点E是直线CP与y 轴的交点,若∠ACE=∠AEC,PD=2OD,求PA:PC的值.25.【盐城市大丰市一模】将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].(1)如图①,对△ABC作变换[60°得△AB′C′,则S△AB′C′:S△ABC= ;直线BC与直线B′C′所夹的锐角为度;(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC作变换[θ,n]得△AB′C′,使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;(3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=1,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB′C′为平行四边形,求θ和n的值.26.【铜山县】在矩形ABCD中,点P在AD上,AB=2,AP=1.将直角尺的顶点放在P处,直角尺的两边分别交AB,BC于点E,F,连接EF(如图①).(1)当点E与点B重合时,点F恰好与点C重合(如图②),求PC的长;(2)探究:将直尺从图②中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中,请你观察、猜想,并解答:①tan∠PEF的值是否发生变化?请说明理由;②直接写出从开始到停止,线段EF的中点经过的路线长.27.【苏州市吴江区一模】如图所示,已知点C(-3,m),点D(m-3,0).直线CD交y轴于点A.作CE与X轴垂直,垂足为E,以点B(-1,0)为顶点的抛物线恰好经过点A、C.(1)则∠CDE= ;(2)求抛物线对应的函数关系式;(3)设P(x,y)为抛物线上一点(其中-3<x<1-或-1<x<1,连结BP并延长交直线CE于点N,记N点的纵坐标为yN,连结CP并延长交X轴于点M.①试证明:EM•(EC+yN)为定值;②试判断EM+EC+yN是否有最小值,并说明理由。

相关文档
最新文档