单片机原理及接口技术实验报告

合集下载

单片机原理及接口技术实验

单片机原理及接口技术实验
许多传感器的信号无法直接处理,需要单片机进行 模拟信号采集和处理。
编程器
编程器用于单片机芯片的编程、下载和烧录等操作,
单片机应用基础
LED灯的实现
使用单片机可以实现LED灯的控制,灯闪烁、颜色 变换、灯光强度调节等等。
按键的实现
通过按键可以让单片机执行不同的程序,也可以设 置定时、计数器等预处理程序。
继电器的实现
单片机可以通过控制继电器实现自动化控制。
Hale Waihona Puke 传感器的应用常用单片机中的一种,具备可靠的运行环境和丰 富的资源库,被广泛应用在自动化和控制领域。
PIC 1 6 F 8 8 6
性价比高,主频高,具有更好的存储功耗控制功 能。
AT 8 9C 5 1
兼容性强,GPIO口和通信口的数字和模拟信号 可以进行快速转换。
S TM 3 2 F 1 0 3C 8 T 6
高性能,功耗低,支持USB通信和CAN总线协议, 灵活的GPIO模块。
1
汇编语言
汇编语言编程灵活但难度较大。
2
C语言
C语言编程更容易理解和实现,提高了软件设计的效率。
3
BAS IC语言
BAS IC语言的可读性和语法简单,易于上手。
单片机的编程工具
Keil
Keil是单片机嵌入式开发的 集成环境,具有脚手架和工 具链,支持多种编程语言。
IAR Em b ed d ed W o rk b en c h
内部中断接口
内部中断源可以是软件触发,如程序计时器超时中断等。
中断嵌套
多重中断处理是用硬件或者软件来控制相对优先级而实现的。
单片机的调试和调试工具
调试是程序开发过程中必不可少的一步,可以通过软件仿真、硬件调试等方式实现。

单片机原理及应用实验二报告

单片机原理及应用实验二报告

单片机原理及应用实验二报告实验二:单片机IO口的输入输出实验一、实验目的:1.理解并掌握单片机IO口的输入输出原理;2.掌握基础的输入输出编程技巧;3.熟悉单片机实验的基本流程和实验报告格式。

二、实验器材:1.STM32F103C8T6开发板2.LED灯3.电阻(220Ω)4.面包板、杜邦线等。

三、实验原理:单片机的IO口是实现与外部器件进行通信的重要接口,通过编程,我们可以控制IO口的状态(低电平或高电平)来实现对外部器件的控制或检测。

IO口的输入输出原理主要有两种:1.三态输出方式:通过设置IO口的DDR寄存器来将IO口设置为输出模式(推挽输出),并通过设置IO口的ODR寄存器来控制IO口的输出状态为低电平或高电平;2.上拉输入方式:通过设置IO口的DDR寄存器来将IO口设置为输入模式,同时设置IO口的CR寄存器的PUPD位为上拉使能,通过读取IO口的IDR寄存器可以获取IO口的输入状态。

四、实验步骤:1.连接电路:将STM32F103C8T6开发板的VDD和VSS(即5V和GND)分别连接到面包板的3V3和GND,将LED的阳极(长脚)连接到STM32F103C8T6开发板的PA0引脚,将LED的阴极(短脚)通过一个220Ω的电阻连接到GND。

2. 打开Keil uVision5软件,创建一个新的工程,并选择适合的芯片型号(STM32F103C8T6)。

3.编写代码实现将PA0引脚设置为输出模式,并控制LED的亮灭。

五、实验代码:```c#include "stm32f10x.h"void GPIO_Configuration(void)GPIO_InitTypeDef GPIO_InitStructure;RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);int main(void)GPIO_Configuration(;while (1)GPIO_SetBits(GPIOA, GPIO_Pin_0); // 点亮LEDGPIO_ResetBits(GPIOA, GPIO_Pin_0); // 关闭LED}```六、实验结果与分析:七、实验心得:本次实验主要学习了单片机IO口的输入输出原理,了解了三态输出方式和上拉输入方式,并通过实际编写代码的方式,在STM32F103C8T6开发板上实现了控制LED的亮灭。

单片机原理与接口技术实践报告

单片机原理与接口技术实践报告

单片机原理与接口技术实践报告一、引言单片机是一种集成电路,在一个芯片上集成了中央处理器、存储器和各种输入输出设备,广泛应用于电子设备中。

单片机的原理和接口技术是学习和应用单片机的基础知识,本实践报告将从单片机的原理和接口技术两个方面展开讨论。

二、单片机的原理单片机的工作原理是基于计算机的运算方式,通过存储器存储程序和数据,并通过中央处理器执行程序来实现功能。

单片机的核心是中央处理器,它包括运算器、控制器和时钟电路。

运算器负责进行数据处理和运算,控制器负责控制程序的执行,时钟电路提供时序信号。

单片机也包括存储器、输入输出设备等外部组件。

三、单片机的接口技术1.数字口接口技术数字口接口用于单片机与数字量输入输出设备之间的通信。

数字口的输入和输出是0和1两种状态,可用于读取开关信号、接收传感器信号等。

数字口接口的编程涉及设置引脚状态、读取引脚状态等操作。

2.模拟口接口技术模拟口接口用于单片机与模拟量输入输出设备之间的通信。

模拟口的输入和输出是连续的模拟信号,可用于读取电压、控制电压等。

模拟口接口的编程涉及模拟口初始化、模拟口读取和写入等操作。

3.串口接口技术串口接口用于单片机与外部设备进行串行通信,常用于与计算机或其他外部设备的数据交互。

串口接口的编程涉及波特率设置、发送和接收数据等操作。

4.并口接口技术并口接口用于单片机与外部设备进行并行通信,常用于与打印机、液晶显示器等设备的连接。

并口接口的编程主要包括数据传输和控制信号的设置。

四、实践案例为了更好地理解单片机原理和接口技术,我们进行了以下实践案例:通过串口接口将单片机与计算机进行通信。

1.硬件连接首先,将单片机的串口通信引脚与计算机的串口通信引脚连接。

确保连接正确,避免引脚短路或断路等问题。

2.软件编程使用单片机的开发环境,编写串口通信的程序。

首先,设置串口通信的波特率、数据位、校验位等参数。

然后,编写发送和接收数据的程序,实现单片机与计算机之间的数据交互。

单片机原理及接口技术实验报告

单片机原理及接口技术实验报告

单片机原理及接口技术实验报告一、引言单片机(Microcontroller)是一种集成为了处理器、存储器和各种接口电路的微型计算机系统。

它具有体积小、功耗低、成本低等优点,广泛应用于嵌入式系统、自动化控制、电子设备等领域。

本实验旨在深入了解单片机的原理和接口技术,并通过实验验证相关理论。

二、实验目的1. 理解单片机的基本原理和结构。

2. 掌握单片机与外部器件的接口技术。

3. 进一步培养实际操作能力和解决问题的能力。

三、实验仪器与材料1. 单片机开辟板2. 电脑3. 串口线4. LED灯5. 蜂鸣器6. 数码管7. 按键开关8. 电阻、电容等元件四、实验内容与步骤1. 单片机原理实验1.1 单片机的基本结构单片机由中央处理器(CPU)、存储器(RAM、ROM)、输入输出接口(I/O)、定时器/计数器、串行通信接口等组成。

通过学习单片机的基本结构,我们可以了解各个部份的功能和作用。

1.2 单片机的工作原理单片机的工作原理是指单片机在不同工作模式下的内部状态和运行规律。

通过学习单片机的工作原理,我们可以更好地理解单片机的工作过程,为后续的实验操作提供基础。

2. 单片机接口技术实验2.1 LED灯接口实验将LED灯与单片机相连,通过控制单片机的输出口电平,控制LED灯的亮灭。

通过实验,我们可以学习到单片机的输出接口的使用方法。

2.2 蜂鸣器接口实验将蜂鸣器与单片机相连,通过控制单片机的输出口电平和频率,控制蜂鸣器的声音。

通过实验,我们可以学习到单片机的输出接口的使用方法。

2.3 数码管接口实验将数码管与单片机相连,通过控制单片机的输出口电平和数据,显示不同的数字。

通过实验,我们可以学习到单片机的输出接口和数码管的使用方法。

2.4 按键开关接口实验将按键开关与单片机相连,通过检测单片机的输入口电平,实现按键的功能。

通过实验,我们可以学习到单片机的输入接口的使用方法。

五、实验结果与分析1. 单片机原理实验结果通过学习单片机的基本结构和工作原理,我们深入了解了单片机的内部组成和工作过程,为后续的接口技术实验打下了基础。

单片机原理及其接口技术实验报告

单片机原理及其接口技术实验报告

单片机原理及其接口技术实验报告实验1 Keil C51的使用(汇编语言)一.实验目的:初步掌握Keil C51(汇编语言)和ZY15MCU12BD型综合单片机实验箱的操作和使用,能够输入和运行简单的程序。

二.实验设备:ZY15MCU12BD型综合单片机实验箱一台、具有一个RS232串行口并安装Keil C51的计算机一台。

三.实验原理及环境:在计算机上已安装Keil C51软件。

这个软件既可以与硬件(ZY15MCU12BD型综合单片机实验箱)连接,在硬件(单片机)上运行程序;也可以不与硬件连接,仅在计算机上以虚拟仿真的方法运行程序。

如果程序有对硬件的驱动,就需要与硬件连接;如果没有硬件动作,仅有软件操作,就可以使用虚拟仿真。

四:实验内容:1.掌握软件的开发过程:1)建立一个工程项目选择芯片确定选项。

2)加入C 源文件或汇编源文件。

3)用项目管理器生成各种应用文件。

4)检查并修改源文件中的错误。

5)编译连接通过后进行软件模拟仿真。

6)编译连接通过后进行硬件仿真。

2.按以上步骤实现在P1.0输出一个频率为1Hz的方波。

3.在2的基础上,实现同时在P1.0和P1.1上各输出一个频率同为1Hz但电平状态相反的方波。

五:程序清单:ORG 0000HAGAIN:CPL P1.0MOV R0,#10 ;延时0.5秒LOOP1:MOV R1,#100LOOP2:MOV R2,#250DJNZ R2,$DJNZ R1,LOOP2DJNZ R0,LOOP1SJMP AGAINEND六:实验步骤:1.建立一个工程项目选择芯片确定选项如图1-1所示:①Project→②New Project→③输入工程名test→④保存工程文件(鼠标点击保存按钮)图1-1创建工程名弹出下一界面。

如图1-2所示:①选CPU厂家(Atmel)→②选CPU型号(89C51), ③选好后确定图1-2选厂家,选CPU 型号接着选晶振频率及生成HEX 文件等。

单片机与接口技术实验报告冒泡排序实验

单片机与接口技术实验报告冒泡排序实验

单片机与接口技术实验报告--冒泡排序实验单片机与接口技术实验报告--冒泡排序实验一、实验目的本实验旨在通过单片机实现冒泡排序算法,加深对单片机和接口技术的理解和实践操作能力,提高程序设计和调试的能力。

二、实验设备实验设备包括:单片机开发板、计算机、串口通信设备、LED指示灯等。

三、实验原理冒泡排序是一种简单的排序算法,它重复地遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。

遍历数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。

这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

四、实验步骤1、硬件连接:将单片机开发板与计算机通过串口通信设备连接,并连接LED指示灯。

2、编写程序:在计算机上使用单片机开发环境编写冒泡排序算法程序,并通过串口通信发送到单片机。

3、调试程序:在单片机上运行程序,观察LED指示灯的变化,对程序进行调试和修改。

4、测试结果:对不同的输入数据进行测试,观察LED指示灯的变化,验证程序的正确性。

五、实验结果通过本实验,我们成功地在单片机上实现了冒泡排序算法,并能够根据不同的输入数据进行正确的排序。

同时,通过LED指示灯的显示,我们可以直观地观察到排序的过程。

六、实验总结通过本次实验,我们深入了解了冒泡排序算法的原理和实现方法,同时也提高了对单片机和接口技术的理解和实践操作能力。

在实验过程中,我们遇到了一些问题,比如如何正确地连接硬件,如何编写和调试程序等,但在老师的指导下,我们都成功地解决了问题。

我们也意识到自己在某些方面还有不足,比如对单片机的了解还不够深入,对程序的调试能力还有待提高等。

在今后的学习和实践中,我们将更加努力,提高自己的能力和水平。

单片机的原理及应用实验报告

单片机的原理及应用实验报告

单片机的原理及应用实验报告一、引言单片机(Microcontroller Unit,简称MCU)是集成了微处理器核心、存储器、输入输出接口及其他外围设备的一种特殊集成电路芯片。

它具有存储能力、运算能力和控制能力,广泛应用于各种电子设备和系统中。

本实验旨在探究单片机的工作原理,并通过实际应用实验来进一步理解其使用技术与方法。

二、实验目的1.了解单片机的基本结构和工作原理;2.学习如何使用单片机进行控制和数据处理;3.掌握单片机的简单编程技巧;4.探索和实现基本的单片机应用。

三、实验仪器和材料•单片机开发板•USB数据线•LED灯•电阻、电容等基本电子元件四、实验步骤1.硬件连接步骤:–将单片机开发板连接到电脑上,通过USB数据线进行供电和通信。

–将LED灯接入单片机的IO引脚。

–连接其他所需的电子元件,如电阻、电容等。

2.单片机编程步骤:–打开开发环境,使用C语言编写所需的程序。

–确定需要使用的IO引脚和控制方式。

–编译并下载程序到单片机开发板上。

3.实验运行步骤:–按照程序设计的要求,进行相应的操作和观察。

–通过观察LED灯的亮灭、闪烁等情况,验证单片机的控制和运算能力。

五、实验结果与分析在实验过程中,我们成功地编程控制了单片机开发板上的LED灯。

通过修改程序代码中的控制参数,我们可以实现LED灯的不同状态,例如常亮、闪烁、呼吸灯等效果。

这验证了单片机的控制和运算能力。

六、实验总结通过本实验,我们对单片机的原理和应用有了初步的了解。

单片机作为一种功能强大的集成电路芯片,在各种电子设备和系统中都有广泛的应用。

掌握单片机的编程技巧和使用方法对于电子领域的学习和研究都是至关重要的。

七、参考文献无以上是本次实验的实验报告,通过本次实验,我们深入理解了单片机的原理和应用,并成功完成了LED灯的控制实验。

希望通过这次实验的学习,能够对单片机的应用有更深入的认识,并为未来的学习和研究打下基础。

《单片机与接口技术》实验报告[精选五篇]

《单片机与接口技术》实验报告[精选五篇]

《单片机与接口技术》实验报告[精选五篇]第一篇:《单片机与接口技术》实验报告《单片机与接口技术》实实验报告SUNES59PA班班级:____________________ 学学号:____________________ 姓姓名:____________________ 得得分:____________________ 指指导:____________________ 日日期:____________________合肥工业大学宣城校区实验一XXXXXXXXXXXXX一、实验目的二、实验设备三、实验内容四、实验步骤五、实验现象六、实验程序(必须带注释)第二篇:《单片机与接口技术》实验报告1实验六D/A转换(脱机:HW10)一、实验目的(1)了解D/A转换芯片DAC0832的性能及编程方法;(2)了解单片机系统中扩展D/A转换芯片的基本方法。

二、实验内容利用DAC0832芯片输出一个从0V开始逐渐升至5V再降至0V 的可变电压。

三、实验步骤四、实验现象解释五、实验程序第三篇:单片机接口技术与实验课程总结《单片机接口技术与实验》课程总结姓名:史慧学号:年级:专业:电气工程及其自动化1226409016 2009级2011年秋季学期实验一1.功能要求本实验要求向芯片中写入 10 个字节,然后再读出显示。

2.硬件设计思路P2引脚连接8LED灯,显示读出的数据。

3.软件程序流程其中CS是控制芯片是否被选中的,也就是说只有片选信号为预先规定的使能信号时(高电位或低电位),对此芯片的操作才有效。

这就允许在同一总线上连接多个SPI设备成为可能。

接下来就负责通讯的3根线了。

通讯是通过数据交换完成的,这里先要知道SPI是串行通讯协议,也就是说数据是一位一位的传输的。

这就是SCLK时钟线存在的原因,由SCK提供时钟脉冲,SDI,SDO则基于此脉冲完成数据传输。

数据输出通过 SDO线,数据在时钟上升沿或下降沿时改变,在紧接着的下降沿或上升沿被读取。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单片机原理及接口技术实验报告任课教师班级姓名日期实验一构建单片机最小系统和实验环境熟悉一、单片机最小系统的组成原理图二、单片机的工作原理:1.运算器运算器包括算术逻辑运算单元ALU、累加器ACC、寄存器B、暂存器TMP、程序状态字寄存器PSW、十进制调整电路等。

它能实现数据的算术逻辑运算、位变量处理和数据传送操作。

(1)算术逻辑单元ALUALU在控制器根据指令发出的内部信号控制下,对8位二进制数据进行加、减、乘、除运算和逻辑与、或、非、异或、清零等运算。

它具有很强的判跳、转移、丰富的数据传送、提供存放中间结果以及常用数据寄存器的功能。

MCS-51中位处理具有位处理功能,特别适用于实时逻辑控制。

(2)累加器ACC累加器ACC是8位寄存器,是最常用的专用寄存器,它既可存放操作数,又可存放运算的中间结果。

MCS—51系列单片机中许多指令的操作数来自累加器ACC。

累加器非常繁忙,在与外部存储器或I/O接口进行数据传送时,都要经过A来完成。

(3)寄存器B寄存器B是8位寄存器,主要用于乘、除运算。

乘法运算时,B中存放乘数,乘法操作后,高8位结果存于B寄存器中。

除法运算时,B中存放除数,除法操作后,余数存于寄存器B中。

寄存器B也可作为一般的寄存器用。

(4)程序状态字PSW程序状态字是8位寄存器,用于指示程序运行状态信息。

其中有些位是根据程序执行结果由硬件自动设置的,而有些位可由用户通过指令方法设定。

PSW中各标志位名称及定义如下:CY():进(借)位标志位,也是位处理器的位累加器C。

在加减运算中,若操作结果的最高位有进位或有借位时,CY由硬件自动置1,否则清“0”。

在位操作中,CY作为位累加器C 使用,参于进行位传送、位与、位或等位操作。

另外某些控制转移类指令也会影响CY位状态(第三章讨论)。

AC():辅助进(借)位标志位。

在加减运算中,当操作结果的低四位向高四位进位或借位时此标志位由硬件自动置1,否则清“0”。

F0():用户标志位,由用户通过软件设定,决定程序的执行方式。

RS1(),RS0():寄存器组选择位。

用于设定当前通用寄存器组的组,其对应关系如下:01组108~0FH10组210~17H11组318~1FHOV():溢出标志位。

它反映运算结果是否溢出,溢出时OV=1;否则OV=0。

OV可作为条件转移指令中的条件。

:未定义位。

P():奇偶标志位。

P=1,表示ACC中1的个数为奇数;否则P=0。

P也可以作为条件转移指令中的条件。

二、控制器控制器包括定时控制逻辑(时钟电路、复位电路),指令寄存器,指令译码器程序计数器PC,堆栈指针SP,数据指针寄存器DPTR以及信息传送控制部件等。

1.时钟电路MCS—51系列单片机芯片内部有一个高增益反相放大器,输入端为XTAL1,输出端为XTAL2,一般在XTAL1与XTAL2之间接石英晶体振荡器和微调电容,从而构成一个稳定的自激振荡器,就是单片机的内部时钟电路,如图(A)所示。

时钟电路产生的振荡脉冲经过二分频以后,才成为单片机的时钟信号。

电容C1和C2为微调电容,可起频率稳定、微调作用,一般取值在5~30pf之间,常取30pf。

晶振的频率范围是~12MHz ,典型值取6 MHz。

XTAL1接地,XTAL2接外部震荡器,外接信号应是高电平持续时间大于20ns的方波,且脉冲频率应低于12 MHZ。

如图(B)所示。

(A)内部时钟电路(B)外部振荡源2.复位电路对于使用6MHZ的晶振的单片机,复位信号持续时间应超过4μs才能完成复位操作。

产生复位信号的电路有上电自动复位电路和按键手动复位电路两种方式。

上电自动复位是通过外部复位电路的电容充电来实现的,该电路通过电容充电在RST 引脚上加了一个高电平完成复位操作。

上电自动复位电路如图(a)所示。

按键手动复位电路。

按键手动复位是通过按键实现人为的复位操作,按键手动复位电路如图(b)所示。

复位后内部暂存器的状态如下:PC0000H TCON00HACC00H TL000HPSW00H TH000HSP07H TL100HDPTR0000H TH100HP0~P3FFH SCON00HIP××000000B SBUF不定IE0×000000B PCON0×××0000BTMOD00H3.指令寄存器和指令译码器指令寄存器中存放指令代码,CPU执行指令时,由程序存储器中读取的指令代码送入指令存储器,经译码器后由定时与控制电路发出相应的控制信号,完成指令所指定的操作。

4.程序计数器PCPC是一个16位计数器,其内容为单片机将要执行的指令机器码所在存储单元的地址。

PC 具有自动加1的功能,从而实现程序的顺序执行。

由于PC不可寻址的,因此用户无法对它直接进行读写操作,但可以通过转移、调用、返回等指令改变其内容,以实现程序的转移。

PC的寻址范围为64KB,即地址空间为0000~0FFFFH。

5堆栈指针SPSP为8位寄存器,用于指示栈顶单元地址。

所谓堆栈是一种数据结构,它只允许在其一端进行数据删除和数据插入操作的线性表。

数据写入堆栈叫入栈(PUSH),数据读出堆栈叫出栈(POP)。

堆栈的最大特点是“后进先出”的数据操作原则。

MCS-51系统复位后,SP 初始化为07H。

6. 数据指针DPTR数据指针DPTR为16位寄存器,它是MCS—51中唯一的一个16位寄存器。

编程时,既可按16位寄存器使用,也可作为两个8位寄存器分开使用。

DPH 为DPTR的高八位寄存器,DPL 为DPTR的低八位寄存器。

DPTR通常在访问外部数据存储器时作为地址指针使用,寻址范围为64KB。

三、存储单元数据传输ORG 0000HJMP MAINORG 1000HMAIN:MOV R0,#40HMOV R1,#41HMOV @R0,#30HMOV @R1,#31HMOV 50H,@R0MOV 51H,@R1END由以上观察结果容易看出,程序运行正确。

P1.01P1.12P1.23P1.34P1.45P1.56P2.1(A9)22P2.2(A10)23P2.3(A11)24P2.4(A12)25P2.5(A13)26P2.6(A14)27P2.7(A15)28PSEN 29ALE/PROG30EA/Vpp 31P0.7(AD7)32P0.6(AD6)33P0.5(AD5)34P0.4(AD4)35P0.3(AD3)36P0.2(AD2)37P0.1(AD1)38P0.0(AD0)39Vcc 40P1.67P1.78RST9(RXD)P3.010(TXD)P3.111(INT0)P3.212(INT1)P3.313(T0)P3.414(T1)P3.515(WR)P3.616(RD)P3.717XTAL218XTAL119P2.0(A8)21GND 2089C52U42DS35DS36DS37DS38DS39DS40DS41VCCDS4212345678510R111510R112510R113510R114510R115510R116510R117510R118JMP MAINMOV A,#0FEHMOV P1,A调用延时子程序A内的数据循环左移二、实验仿真图三、实验程序ORG 0000H 程序开始LJMP MAIN 转移到主函数ORG 0100HMAIN: MOV A,#0feH 主函数MAINLOOP:MOV P1,ALCALL DELAY 调用子函数DELAYRL A A的内容向左环移1位MOV P1,ALCALL DELAYJMP LOOPDELAY:MOV R5,#0FFH DELAY子函数D1:MOV R6,#0FFHD2: DJNZ R6,D2DJNZ R5,D1RETEND四、思考题1、在单片机系统中,74HC138通常用来产生片选信号,请读者考虑一下,应如何处理答:74HC138是3--8线译码器,有3个管脚, 2个接地,一个高则选中,直接用单片机的I/O即可。

五、实验总结通过本实验进一步熟悉了集成环境软件和熟悉Keil C51集成环境软件的使用方法,本实验中8个指示灯,循环点亮,瞬间只有一个灯亮,跑马灯具有广泛的应用,例如老虎机和彩灯都是这个原理的应用,可见本实验非常实用。

实验三 8255控制交通灯实验一、实验原理D034D133D232D331D430D529D628D727PA04PA13PA22PA31PA440PA539PA638PA737PB018PB119PB220PB321PB422PB523PB624PB725PC014PC115PC216PC317PC413PC512PC611PC710RD 5WR 36A09A18RESET 35CS68255U36D0D1D2D3D4D5D6D7WRRD RSTA0A1PC5PC6PC7PC2PC3PC4PC0PC1DS35DS36DS37DS38DS39DS40DS4112345678VCCDS42A0A1CSCS1(0F000H)510R111510R112510R113510R114510R115510R116510R117510R118三、实验仿真图三、实验程序WORK_ADR EQU 0003HPA_ADR EQU 0000HORG 0000HLJMP MAINORG 1000HMAIN: MOV SP,#30HMOV DPTR,#WORK_ADRMOV A,#80H ;PA口工作在方式零,且为输出状态 MOVX @DPTR,AMOV A,#09HMOV DPTR,#PA_ADRMOVX @DPTR,A ;东西南北初始化均为红灯LCALL DELAY1LOOP: CLR AMOV DPTR,#PA_ADR ;南北红灯,东西绿灯MOV A,#21HMOVX @DPTR,ALCALL DELAY1MOV R3,#3 ;南北红灯,东西黄灯闪烁三次LOOP1: MOV A,#11HMOVX @DPTR,ACALL DELAY2MOV A,#01HMOVX @DPTR,ACALL DELAY2DJNZ R3,LOOP1;LCALL DELAY1MOV A,#0CH ;东西红灯,南北绿灯MOVX @DPTR,ALCALL DELAY1MOV R3,#3 ;东西红灯,南北黄灯闪烁三次LOOP2: MOV A,#08HMOVX @DPTR,ACALL DELAY2MOV A,#0AHMOVX @DPTR,ACALL DELAY2DJNZ R3,LOOP2LJMP LOOPDELAY1: MOV R5,#100 ;延时10秒D0: MOV R6,#100D1: MOV R7,#248D2: DJNZ R7,D2DJNZ R6,D1DJNZ R5,D0RETDELAY2: MOV R0,#0FFHD11:MOV R1,#0AAHD22:DJNZ R1,D22DJNZ R0,D11RETEND四、实验总结通过本实验我了解了8255芯片的工作原理,熟悉了其初始化编程方法以及输入、输出程序设计技巧,学会使用8255并行接口芯片实现各种控制功能,另外熟悉了8255内部结构和与单片机的接口逻辑并熟悉8255芯片的3种工作方式以及控制字格式。

相关文档
最新文档