发动机原理第三章
第三章起动机

第三章起动机概述一、发动机起动方式发动机靠外力起动,常用起动方式有:1、人力起动(手摇或绳拉,小功率发动机)2、电力起动机起动(简称起动机起动,电动机带动,现代汽车发动机广泛应用)3、汽油机起动(小型汽油机带动,大功率柴油机)4、压缩空气起动(压缩空气冲入气缸,大型柴油机组如轮船、电站)二、起动机功用、组成与工作过程电力起动机简称起动机。
1、起动机功用:起动发动机(将蓄电池的电能转换为机械能-电磁转矩,驱动发动机飞轮旋转)。
2、起动机组成:一般由三部分组成(1)直流电动机:产生转矩。
普遍采用串激(励)式直流电动机。
(2)传动机构(啮合机构):传递动力和切断动力(起动时将起动机转矩传给发动机曲轴,起动后断开发动机向发电机的逆向动力传递)。
(3)控制装臵(操纵机构):控制起动机驱动齿轮与发动机飞轮的啮合与分离以及电动机电路的通断(对于某些汽油发动机还兼有短路点火线圈附加电阻的作用)。
三、起动机的种类1、起动机分类随着起动机结构与性能的不断发展,出现了多种结构型式。
(1)按总体结构①普通起动机:无特殊结构和装臵(电磁式电动机即磁场由电产生,起动机与驱动齿轮之间直接通过单向离合器传动即传动机构无减速装臵)。
汽车起动机普遍使用。
如EQ1090配用的QD124、QD1212型,CA1090配用的QD1215型和桑塔纳轿车配用的QD1225型起动机。
②永磁起动机:以永久磁铁作磁极,取消磁场线圈。
结构简化、体积小、重量轻。
近年出现的新型起动机。
③减速起动机:在起动机与驱动齿轮之间增设了一组减速齿轮,即传动机构设有减速装臵。
具有结构尺寸小、重量轻、起动可靠等优点(可采用小型高速、低转矩电动机,质量和体积比普通起动机减小30%-35%),在轿车上的应用日渐增多。
(3)按传动机构驱动齿轮啮入方式①惯性啮合式:依靠驱动齿轮自身旋转的惯性力啮入飞轮齿环。
结构简单,但工作可靠性较差,现很少采用。
②电枢移动式(电磁啮合式):靠磁极产生的电磁力使电枢作轴向移动,带动固定在电枢轴上的驱动齿轮啮入飞轮齿环。
发动机原理与汽车理论发动机原理基础知识

10
燃烧过程
11
结论:膨胀
发动机的实际膨胀过程与压缩过程很相似,也是一 个复杂的热力过程(吸热量大于放热量、吸热量等于 放热量、吸热量小于放热量)。总体来说,缸内气体 的吸热量大于放热量。 膨胀过程不仅有散热损失和漏气损失,还有补燃损 失。 膨胀过程终了b点的压力和温度越低,说明气体膨胀 和热量利用越充分。
发动机原理与汽车理论 发动机原理基础知识
2
课程内容概述
第一章 发动机原理基础知识 第二章 发动机的换气过程 第三章 汽油机的燃料与燃烧 第四章 柴油机的燃料与燃烧 第五章 燃气发动机的燃料与燃烧 第六章 发动机的特性 第七章 汽车的动力性 第八章 汽车的制动性 第九章 汽车的使用经济性 第十章 汽车的操纵稳定性 第十一章 汽车的舒适性 第十二章 汽车的通过性 第十三章 汽车性能的合理使用
原子数,单:k=1.67,双:cvk=1.4,三:k=1.3。
根据热力学公式和循环平均压力可求出混合加热循环的平均 压力为:
pt
k 1
p1
k 1
1
k
1t
影响因素
定容加热循环。
由4个热力过程组成:(ρ=1)
循环净功为W 。
将ρ=1代入混合加热循环计算式中。
定容加热循环的热效率为:
t
1
1
k 1
定容加热循环的平均压力为: pt
k p1
1 k 1
1t
影响因素
18
4.理想循环的影响因素
(1)压缩比ε。ε提高,循环热效率ηt和平均压力pt提高。因 为ε提高,可以提高压缩终了的温度和压力,在定容加热量一定 时,缸内最高压力提高,使膨胀功增加。
(2)压力升高比λ和预胀比ρ。在定容加热循环中,压力升高比 λ增加,循放加热量增加(在ε一定时),使循环净功W0和循环放 热量Q2均相应增加, 所以循环热效率不变,但循环平均压力提高; 在混合加热循环中(在ε和总加热量一定时) ,λ提高,预胀比 ρ减小,循环热效率和平均压力提高。
汽车发动机原理课后习题答案

第二章发动机的性能指标1。
研究理论循环的目的是什么?理论循环与实际循环相比,主要作了哪些简化?答:目的:1.用简单的公式来阐明内燃机工作过程中各基本热力参数间的关系,明确提高以理论循环热效率为代表的经济性和以平均有效压力为代表的动力性的基本途径2.确定循环热效率的理论极限,以判断实际内燃机经济性和工作过程进行的完善程度以及改进潜力3。
有利于分析比较发动机不同循环方式的经济性和动力性简化:1.以空气为工质,并视为理想气体,在整个循环中工质的比热容等物理参数为常数,均不随压力、温度等状态参数而变化2.将燃烧过程简化为由外界无数个高温热源向工质进行的等容、等压或混合加热过程,将排气过程即工质的放热视为等容放热过程3.把压缩和膨胀过程简化成理想的绝热等熵过程,忽略工质与外界的热交换及其泄露等的影响 4.换气过程简化为在上、下止点瞬间开和关,无节流损失,缸内压力不变的流入流出过程。
2.简述发动机的实际工作循环过程.四冲程发动机的实际循环由进气、压缩、燃烧、膨胀、排气组成3.排气终了温度偏高的原因可能是什么?有流动阻力,排气压力>大气压力,克服阻力做功,阻力增大排气压力增大,废气温度升高.负荷增大Tr增大;n升高Tr增大,∈+,膨胀比增大,Tr减小.4。
发动机的实际循环与理论循环相比存在哪些损失?试述各种损失形成的原因。
答:1.传热损失,实际循环中缸套内壁面、活塞顶面、气缸盖底面以及活塞环、气门、喷油器等与缸内工质直接接触的表面始终与工质发生着热交换2.换气损失,实际循环中,排气门在膨胀行程接近下止点前提前开启造成自由排气损失、强制排气的活塞推出功损失和自然吸气行程的吸气功损失3.燃烧损失,实际循环中着火燃烧总要持续一段时间,不存在理想等容燃烧,造成时间损失,同时由于供油不及时、混合气准备不充分、燃烧后期氧不足造成后燃损失以及不完全燃烧损失4。
涡流和节流损失实际循环中活塞的高速运动使工质在气缸产生涡流造成压力损失。
航发原理第三章

航发原理第三章涡轮喷气发动机的工作原理航空发动机知识发动机性能计算发动机设计是一个复杂的过程,需考虑应用对象、重量、成本、体积、寿命及噪音等诸多限制因素,需进行发动机设计点下的一些参数优化选择,继而进行发动机总体性能计算。
发动机设计点的性能将取决于设计状态下各部件的热力过程。
本章将介绍发动机主要工作过程参数对发动机单位性能参数的影响及设计点发动机性能计算方法。
航空发动机知识涡轮喷气发动机的主要单位性能参数发动机最重要的两个单位性能参数:1. 单位推力定义:Fs=F/qm ;2. 单位燃油定义:耗油率sfc=3600qmf/F。
发动机推力F通常由用户给定,提高Fs可降低流量qm,这意味着将减少发动机的重量和最大迎风面积,因此该参数对发动机总体性能影响十分重要。
如假定尾喷管完全膨胀(p9=p0),且忽略燃气与空气流量的差别,即qm=qmg , 则有单位推力:Fs=V9-V0航空发动机知识发动机主要工作过程参数概念在发动机工作过程中,用来描述气流沿程流动状态变化的参数,如P0、P1、pc 、T0、T1、T3* 。
.. 等参数称为发动机的工作过程参数。
其中压气机压比pc和涡轮前温度T3*是发动机的主要工作参数,也是设计时需要选择的重要参数。
航空发动机知识工作参数对单位性能的影响首先研究一下循环功。
若把压气机和进气道作为一个总的压缩过程,则每千克气体输入功为:Wc C p (T2* T0 ) C pT0 (p11) / hc其中:hc 为压缩过程的总效率,p=P2*/P0为总增压比。
若把涡轮和尾喷管作为一个总的膨胀过程(不计燃烧引起的总压损失),则每千克气体输出功:' ' * Wp C p (T3* T9 ) C p T3 (1 1 p' 1 ')h p其中hp 为膨胀过程的总效率。
航空发动机知识循环功与工作过程参数之间的关系发动机循环功代表发动机可以使用的能量(可用能量), 可以表示为:W循环功1 1 ' * W p Wc C pT3 1 ' 1 h p C pT0 p 1 hc ' p ' , T3* T0 , C p (1 1若取:e p1p1 '') C p (1 1p1)e 1 a hch p 则循环功:W循环功C pT0 ( 1) hc e(1)航空发动机知识循环功影响参数分析e 1 a hch p W循环功C pT0 ( 1) hc e 影响发动机循环功W的主要参数是压比p、温比, =1.02-1.04。
发动机原理第三章 内燃机的换气过程

➢惯性进气
进气迟闭角:从进气下止点
河
到进气门关闭为止的曲轴转
南 理
角。
工
大
学
四冲程内燃机的换气过程
河 南 理 工 大 学
上止点
下止点
河 南 理 工 大 学
四冲程内燃机的换气过程
气门叠开现象和气门定时
气门叠开 配气相位 气门定时 扫气现象
进、排气提前角和迟闭角:
排气提前角:30~80°CA
南
理
工
TS ,Ta ,c , ρs
大
学
§3-3 提高充气效率的措施
➢ 减小进气系统阻力 ➢ 合理选择配气定时 ➢ 有效利用进气管的动态效应 ➢ 有效利用排气管的波动效应
河 南 理 工 大 学
一、减少进气系统阻力
一)进气门:阻力最大
气门的流通能力——时面值或角面值
Af
dt
1 6n
Af
d
=6nt
pa ps pa
流动阻力和转速关系
pa
v 2
2
和v
进气阻力的主要措施: 进气管长度、转弯半径、
管道内表面粗糙度;气流速度;增压中冷
和 r : ,Vc , r ,c
r c 燃烧恶化
河 南
汽油机: =6~12 r =0.05~0.16
理 工
非增压柴油机: =14~18 r =0.03~0.06
用电磁阀将高压共轨内油量进行合理分配控制油 压柱塞位置控制气门升程。
为精确控制气门升程 设置气门位移传感器
油压式可变配气机构的特点:
➢控制自由度高,提高进排气效 率气门的丰满系数接近1;
➢主要缺点:存在气门落座速度
河 南
发动机原理(第三章2节)

• 发动机特性
发动机性能参数(F, 随飞行条件(Ma,H)以及发动机 发动机性能参数 ,SFC)随飞行条件 随飞行条件 , 以及发动机 油门位置的变化关系。 油门位置的变化关系。
• 重要意义
飞机的飞行性能与发动机特性密切相关。 飞机的飞行性能与发动机特性密切相关。
• 特性包括
– 油门特性:给定飞行条件和调节规律,性能随油门位置 油门特性:给定飞行条件和调节规律, 的变化; 的变化; – 速度特性:给定油门、调节规律和飞行高度,性能随飞 速度特性:给定油门、调节规律和飞行高度, 行马赫数的变化; 行马赫数的变化; – 高度特性:给定油门、调节规律和飞行速度,性能随飞 高度特性:给定油门、调节规律和飞行速度, 行高度的变化; 行高度的变化; – 过渡状态特性:启动、加速、减速等过程性能变化。 过渡状态特性:启动、加速、减速等过程性能变化。
2. 可变几何面积 的转速特性
• 尾喷管临界截面 积A8可调 调大A 调大 8共同工作 线下移 ∆SM↑ ↑ 增压比 ↓ 涡轮前温度 ↓ 排气速度 ↓ 推力 ↓
2. 可变几何面积 的转速特性
• 压气机之间级放气
放气使 • ∆SM↑ ↑ 被放掉的气体: 被放掉的气体 • 消耗了压缩功 消耗了压缩功; • 不参与涡轮作功 单位涡 不参与涡轮作功,单位涡 轮功↑ 涡轮前温度↑ 轮功↑, 涡轮前温度↑ • 增压比 ↓ • 排气燃气流量↓ 排气燃气流量↓
1.加速过程 加速过程
• 加速过程
– 慢车状态 → 最大状态 – 巡航状态 → 最大状态
转速迅速增加的过程 2π n • 加速性 ω = 60 推力迅速增加的能力 用完成加速过程所需时间 J d (ω ) = ( P η − P ) / ω t m k dt 表示加速性
汽车发动机原理课后简答题答案

第一章1.内燃机动力性能和经济性能指标为什么要分为指示指标和有效指标两大类?表示动力性能的指标有哪些?它们的物理意义是什么?它们之间的关系是什么?表示经济性能的指标有哪些?它们的物理意义是什么?它们之间的关系是什么?答:指示指标是以工质对活塞所做的功为基础的,它不考虑动力输出过程中机械摩擦和附件消耗等外来因的影响,可以直接反映由燃烧到热工转换的工作循环进行的好坏:有效指标是以曲轴对外输出的功率为基础,代表了发动机整机的性能。
表示动力性能的指标:平均指示压力p mi是发动机单位气缸工作容积的指示功平均指示功率P i发动机单位时间所做的指示功,P i=p mi V s in30τ平均有效压力p me发动机单位气缸工作容积输出的有效功有效功率P e发动机指示功率减去机械损失功率对外输出的功率,P e=P i−P m有效扭矩发动机工作时,由功率输出轴输出的扭矩转速n和活塞平均速度C m:提高发动机转速,即增加单位时间内做工的次数,从而使发动机体积小、重量轻和功率增加。
转速增加活塞平均速度也增加,他们之间的关系:C m=Sn30表示经济性能的指标:指示热效率ηi是实际循环指示功与所消耗的燃料热量之比。
指示燃油消耗率b i单位指示功的耗油量,与指示热效率之间的关系:b i=3.6×106ηi×Hμ有效热效率ηe发动机有效功与所消耗燃料热量的比值有效燃油消耗率b e与P e的关系:b e=BP e ×106,与ηe的关系ηe=3.6×106b e×Hμ2.怎样求取发动机的指示功率、有效功率、平均指示压力和平均有效压力?指示功率P i=p mi V s in30τb i=BP i×106 P i=P e+P m有效功率P e=P i−P m P e=T tq n9550P e=p me V s in30τb e=BP e×106平均指示压力p mi=W iV s P i=p mi V s in30τ平均有效压力p me=30P eτV s in p me=0.1047T tqτiV s×30×10−33.机械效率的定义是什么?机械效率是有效功率和指示功率的比值,ηm=P eP i =p mep mi=1−P mP i=1−p mmp mi4.压缩比的定义是什么?压缩比等于气缸总容积与燃烧室容积的比值。
赵英勋汽车概论-第三章汽车发动机

4.细滤器
机油细滤器用来过滤机油中直径0.001mm以上的细小杂质,这种滤 清器对机油的流动阻力较大,故多做成分流式,它与主油道并联,只有 少量的机油通过它滤清后又回到油底壳。
二、润滑系统工作原理 1. 润滑作用机理
润滑油
轴承
轴
2.润滑系统原理
§3-7 冷却系统
功用
把发动机工作时受热零件吸收的部分热量及时散发出去, 使工作中的发动机得到适度冷却,保持发动机在最适宜的 温度下工作。
功用:连接活塞和连杆小头,并把活塞承受的气 体压力传递给连杆。
活塞销连接方式 形式:全浮式(工作时自由转动)、半浮式。
活塞销
全浮式:活 塞销能在连 杆衬套和活 塞销座中自 由摆动,使 磨损均匀。
连杆
半浮式: 活塞中部 与连杆小 头采用紧 固螺栓连 接,活塞 销只能在 两端销座 内作自由 摆动。多 用于小轿
保证气缸与活塞间的密封性,防止漏气,并把活塞顶
部吸收的大部分热量传给气缸壁,再由冷却水将其带
走。
气环
切口
气环密封原理 将2~3道气环的切口相互错开形成“迷宫式”封气装置。
气环断面形状及泵油作用
油环
功用 ❖ 布油(活塞上行) ❖ 刮油 ❖ 密封(辅助作用)
活塞环
油环的刮油作用
油环形状
3. 活塞销
空气供给系统
汽油供给系统
电子控制系统
电控汽油喷射系统的工作原理
3.汽油喷射式燃油供给系统主要部件
喷油器
喷油器
电磁线圈
分配器
柱塞针阀
汽油喷射式燃油供给系统主要部件
电动汽油泵
汽油喷射式燃油供给系统主要部件 燃油压力调节器和燃油分配管
二、柴油机燃油供给系统
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超音速飞机选择小涵 道比涡扇发动机 亚音速飞机选择大涵 道比涡扇发动机
分开排气涡扇发动机
对应一定风扇压比 随涵道比增加,存 在有使耗油率达最 低的最佳涵道比。 外涵风扇增压比与 涵道比恰当组合, 可获得最低耗油率 (图5.20)
25
六、 加力对单位性能参数的影响
1. 加力推力与加力温度的关系
民用飞机/发动机的性能要求
对民用飞机/发动机而言,经济性一直是最主要的评估指标。近年 来环保要求日益变得重要,加上安全性、可靠性、维修性等要求 使飞机和发动机设计中需考虑的因素变得非常复杂。 即便对于经济性而言,使用不同的经济性评价指标也会对飞机和 发动机的优化设计构成不同的影响。
典型民用飞机要求和任务剖面
1
k 1 k
)
; 令e
k 1 k
1 c pT0 ( e)(1 ) e
6
单位推力、耗油率
Fs 2CpT0 (e 1)( 2 1) C0 C0 e e 2 2CpT0 (e 1)( 1) C0 C0 e
3600CpT0 sfc b H f Tt 4 T0 e
根据飞机对发动机推力需求确定通过发动机的空气流 量和特征尺寸
2
设计点热力计算的方法
根据给定条件和所选择的设计参数, 沿发动机流程部件,利用各部件气动 热力学关系式计算出各截面的气流参 数、发动机的单位推力和耗油率
具体步骤及公式(自学) 第5.4节:燃气涡轮发动机设计点热力计算
第 二 节
发动机设计点热力计算 结果分析
军用飞机/发动机的性能要求
对于超声速军用飞机/发动机而言,需要在很多的飞行条件下进行 优化,如待机和侦察、超声速突防、跨声速作战等。 不同飞行条件对发动机提出不同要求,如巡航经济性、不加力推 力、加速性等。 飞机在和平时期的值班循环比设计飞行任务循环所占比重更大, 因此和平时期的使用影响也需要在设计中予以考虑。 一些更高的要求如:在有限长度的跑道或被破坏的跑道上的短距 起降要求、红外和雷达隐身要求、提升空战能力和减小敌方地空 导弹发射窗口的超声速巡航要求,使得军用飞机/发动机的匹配变 得更为复杂。
Sfc=3600q1/HfFs
q1 Fs
存在有使耗油率达最低的 最经济增压比c.ec
c.opt
c
c.opt c.ec
提高的压气机增压比
单位推力下降 可提高热效率,降低耗 油率
亚音速运输机追求低 耗油率,增压比应尽 可能高 超音速战斗机追求高 单位推力,增压比选 择应往最佳值方向靠 近
F404
7134 1.89 4840 ~0.8 0.34 3
F100
12478 2.03 7475 0.703 0.81 3
AЛ -31Ф
12260 1.96 7720 0.765 0.65 4
高压压气机级数
总压比 涡轮前温度K 推重比 装备的飞机 飞机推重比
7
25 1589 7.58 F-18 ~0.95
将发动机作 为飞机的一 个子系统, 以飞机完成 飞行任务的 优劣作为设 计方案的设 计目标。
为什么要开展飞/发一体化设计
开展航空发动机设计和研制时,首先需要确定包括发动机性能、 安装尺寸和重量、稳定性、寿命、安全性、经济性、适用性、维 修性等一系列的设计要求。 由于发动机产品的各项设计要求之间联系紧密且相互制约,需要 在飞机飞行任务和评价指标驱动的设计决策过程中,由飞机使用 部门(特别是军方用户)、飞机设计部门和发动机设计部门经过 多轮次的协调,共同研究确定。 在西方国家,这一过程通常划分为招标申请(RFP)、联合概念 定义(JCDP)、联合定义(JDP)三个阶段。
(C9II/C9I)opt =1.0
考虑能量传递过程中损失时:
(C9II/C9I)opt 0.8
最佳风扇压比
风扇增压比对Fs和sfc的影响
19
设计涵道比对最佳风扇增压比的影响
设计涵道比越大,最佳 风扇增压比越小
设计涵道比对最佳风扇增压比的影响
大涵道比(B>5)风扇发动机一般为单级风扇设计 为平衡高、低压转子压缩功的负荷,低压转子设 计有若干级增压级
q1 Fs c.opt
高单位推力有利于减小 发动机径向尺寸,提高 发动机的推重比
c
c 对耗油率的影响
耗油率取决于循环加热量和单位 推力 当c 从较小值开始增加时,单位 推力增加、加热量下降使油气比 下降,使耗油率迅速下降; 在最佳增压比附近,单位推力变 化平缓,油气比下降使耗油率继 续下降; 在c 继续增加,单位推力严重降 低,使耗油率上升
在加力燃烧室再次 喷油燃烧使气流温 度Ttab达 2000 ~ 2100K 涡轮出口温度Tt5 800 ~ 1100K ab = Ttab /Tt5
C9 ab n
1 1 kk 2CpTtab [1 ( ) ] ptab p0
C9 n C0 0
1 2CpTt 5 [1 ( ) pt 5 p0
超音速飞机涡扇发动机 总体发展趋势
军用超音速战斗机为追求尽可能 高的单位推力和推重比
• 一高、一中、一低 (高涡轮前温度、中等总增压比、低 涵道比)
为追求更高功重比和更低耗油率
涡桨和涡轴发动机设计向更高增 压比和更高涡轮前温度发展
33
第三代超音速战斗机用 典型发动机数据
发动机型号
最大状态推力daN 最大状态耗油率kg/daN· h 中间状态推力daN 中间状态耗油率kg/daN· h 涵道比 风扇级数
民用飞机的要求包括航程、商载、平衡场长、爬升末端推力、一 发不工作时爬升梯度、排放和噪声、飞机性能增长空间等。其主 要评价指标有初始投资、直接运营成本、每座公里(或百公里) 成本、燃油消耗量和每座公里(或百公里)燃油消耗量、购买成 本、寿命周期成本、起飞总重等。
设计循环参数 对涡桨和涡轴发动机的影响
设计循环参数:压气机增压比、涡轮前温度
Tt4一定,提高增压比
可有效改善发动机热效率, 降低耗油率
但过高的增压比使单位功率 降低
增压比一定,提高涡轮前温度
可增加循环有效功 有效提高单位输出功率并降 低耗油率
30
民用大涵道比涡扇发动机 总体发展趋势
F =1时,内涵完全不向外涵传递能量,内 涵排气速度高,余速损失大,推进效率低
随F增加,内涵向外涵传递能量增加,内 涵喷管流速降低,外涵喷管流速增加 当F很高时,以致循环功几乎全部用于外 涵气流加速,外涵排气速度高,余速损失 大,推进效率再次降低 不考虑能量传递过程中损失时:
最佳风扇压比所对应的排气速度比
飞行速度一定时单 位推力与有效功成 正比 耗油率与加热量成 正比, 与 单位推力 成反比
理想循环功
Lid q1ti c p (Tt 4 Tt 3 )ti Tt 4 Tt 3 c pT0 ( )(1 T0 T0 Tt 4 T0 Tt 3 T0 Lid
k 1 k
9
32 1728 7.32 F-15 1.07
9
22~23 1665 8.17 Su-27 1.1 34
涡轴涡桨发动机循环参数的发展趋势
在给定的技术水平条件下,由于尺寸效应和冷却损失等 (实心曲线)的影响,当循环参数高到一定程度时,进 一步提高循环参数对涡轴发动机性能影响不明显。
第三节 发动机/飞机一体化设计概念
k 1 k
]
加力加热比
加力比 F=F a b /F正 比于加力温度
Fab Ttab F ab F Tt 5
加力加热比对性能的影响
结论:
加力排气速度增加,推力增加; 加力使循环热效率下降, 耗油率加大, 经济性变差 (原因:加热在低压条件下进行) 加力温度越高,推力越大,循环热效率越低,耗 油率越高 一定加力温度下,涡轮前温度越高,加力推力越 大,加力耗油率越低。主燃烧室多加热有利于性 能提高; 存在有使加力单位推力达最大和加力耗油率达最 低的最佳增压比
涡喷发动机单位推力、耗油率 与热力循环参数关系
Fs C9 C0 循环有效功: C92 C02 Le 2 Fs 2 Le C02 C0 耗油率: 3600 f 3600q1 sfc Fs H f Fs q1 Cp (Tt 4 Tt 3 ) / b
5
当气流在尾喷管出口达到完全膨胀时:
k 1 k
7
二、 内涵总增压比c 对单位性能的影响
C FI CL CH
Pt 3 Pt 2
c对单位推力的影响
Fs 2 Le C C0
2 0
单位推力取决于循环有效 功,而循环有效功主要决 定于循环加热量和热效率 c太低,热效率低,放 热量所占比重大 c太高,加热量低,损 失所占比重大 存在有使单位推力达最大 的最佳增压比c.opt
提高 Tt4 的同时,相应提高压缩部 件总增压比
涡轮前温度随年代变化及对推重比的影响
14
分开排气大涵道比涡扇发动机
提高涡轮前温度Tt4有利于:
设计更高的总增压比,有利于热效
率提高,改善经济性; 允许将更多的能量传给更多的外涵 气流,加大设计涵道比,增加发动 机总推力,提高推进效率。
第 三 章
航空燃气涡轮发动机 设计点热力计算
第一节 设计点热力计算的目的及方法
在给定飞行条件和大气条件下
选择发动机工作过程(循环)参数