道路设计线型
第2章 道路平面线型规划设计

第2章城市道路平面线形规划设计2.1城市道路平面规划设计的内容和要求道路线形指道路路幅中心线(又称中线)的立体形状,道路中线在平面上的投影形状称为平面线形。
城市道路平面线形规划可划分为总体规划、详细规划两个阶段。
总体规划阶段的城市道路平面线形规划主要是根据城市主要交通联系方向确定城市主要道路中心线的走向,并进一步确定城市路网;详细规划阶段的城市道路平面线形规划设计一般在上一层次已经确定的城市道路网规划基础上进行,需要进一步详细确定用地范围内各级道路主要特征点的坐标,曲线要素等内容,便于进一步的道路方案设计。
在城市道路规划设计中,经常会碰到山体、丘陵、河流和需要保留的建筑,有时还因地质条件差而需要避开不宜建设的地方,所以无论城市道路还是公路不可避免要发生转折,就需要在平面上设置曲线,所以平面线形由直线和曲线组合而成。
如果城市道路转折角度不大,可把转折点设在交叉口,使道路线形呈折线状,这样可以减少道路上的弯道,便于道路施工和管线埋设,也有利于道路两侧建筑的布置。
如果转折点必须设置在路段上,则需要根据车辆运行要求设置成曲线,曲线又可分为曲率半径为常数的圆曲线和曲率半径为变数的缓和曲线。
城市道路平面线形规划设计的主要任务为:根据道路网规划确定的道路走向、道路之间的方位关系,以道路中线为准,考虑地形、地物、城市建设用地的影响,根据行车技术要求确定道路用地范围内的平面线形,以及组成这些线形的直线、曲线和它们之间的衔接关系;对于小半径曲线,还应当考虑行车视距、路段的加宽和道路超高设置要求等。
在学习本章时,尽管公式较多,但道路平面线形设计的一些常用参数,往往是可以通过查阅规范取得的,只有在旧城改造中用地条件苛刻的情况下,才需要计算道路线形要素。
所以,掌握查阅设计规范、理解计算公式的基本原理和适用条件,将是学习本章的关键。
2.2 道路弯道平曲线规划设计2.2.1 曲线要素构成及基本作用在城市道路规划设计中,一般采用圆弧曲线连接直线路段,为了使线形平顺,连接方式必须是切点相连,道路圆曲线一般通过曲线要素来描述。
道路工程图—识读路线纵断面图

路线纵断面图的内容
包括图样和资料表两部分: 图样部分: 4 竖曲线:在设计线的变坡点,设置圆弧竖曲线,便 于车辆平稳行驶。分凸、凹两种曲线。
路线纵断面图
一、作用
表达路线的纵向设计线型(坡度、竖曲线)及路线 中心线处地面的高低起伏状况。
二、图示特点
用假想的铅垂面沿着路线中心线进行剖切,然后 展开绘制(即展开断面图);
纵向比例比横向比例放大10倍。
路线纵断面图的内容
包括图样和资料表两部分: 图样部分: 1 比例:水平1:2000或1:5000;垂直1:200或
H2 i H1 L
△H=H2-H1
其中, L称为坡
长, i上坡为正 ,下坡为负。
各级公路最大纵坡最小纵坡的规定
※最大纵坡
设计速度(KM/h)
120 100 80 60 40 30 20
最大纵坡(%)
3
4
5
6
7
8
9
原理:坡度太大,行车困难,上坡速度低,下坡危险, 限制纵坡对山区公路而言,可以缩短里程,减低造价。
离。
3.0 600
表示路线为上坡,坡度3.0%,坡 长600m
1.0 380
表示路线为下坡,坡度1.0%,坡 长380m
3.0
1.0 其中分格线“ ”表示两坡边坡点
600 380 位置,与图形部分变坡点里程一致
纵坡定义及计算
纵坡:路线的纵线坡度,为高差与水平距的 比值,用i表示。
i=(H2-H1)/L*100%
※最小纵坡
公路工程线形的类型

公路工程线形的类型公路工程线形的类型公路工程是现代交通基础设施建设的重要组成部分,它对于社会经济的发展和人民生活的改善具有重要意义。
而公路工程的线形设计就是公路的基础,它直接影响着公路的运营和使用效果。
公路工程的线形设计需要根据地理环境、交通需求及工程经济等因素进行综合考虑,以确保公路具有安全、高效和舒适的特点。
以下是公路工程线形的几种类型:1. 直线型线形直线型线形是最简单且最常见的一种线形类型。
它适用于地势平坦、交通需求不大的地区。
直线型线形的特点是直线段较长,道路宽度相对较窄,车辆行驶速度相对较低。
直线型线形适合用于乡村道路或低交通流量的城市道路。
2. 曲线型线形曲线型线形是在直线型线形的基础上加入了曲线段的一种类型。
曲线型线形主要用于山区、丘陵等地形复杂的区域。
曲线型线形能够适应地势的起伏变化,使得公路能够顺应自然地形,减小地质工程量。
同时,曲线型线形也能增加车辆行驶的舒适性,提高行车的安全性。
3. 折线型线形折线型线形是将直线段和曲线段相结合的一种线形类型。
它适用于交通流量较大、车速要求较高的区域。
折线型线形能够根据道路周围的环境条件和交通需求进行灵活调整,从而减少交通拥堵和事故发生的可能性。
折线型线形还能够缩短行驶距离,提高交通效率。
4. 环形线形环形线形是将圆形道路运用于公路设计的一种类型。
它适用于交通流量较大、道路交叉口较多的城市道路。
环形线形能够减少交通信号的设立,提高交通的流畅性和效率。
同时,环形线形还能够增加行车的安全性,减少交通事故的发生概率。
总结起来,公路工程线形的类型包括直线型线形、曲线型线形、折线型线形和环形线形。
不同的线形类型适用于不同的地理环境和交通需求。
设计公路线形时,需要综合考虑地理条件、交通流量和道路运行的安全性等因素,以确保公路具有安全、高效和舒适的特点。
道路平面线形设计方法

浅谈道路平面线形设计方法摘要:道路平面设计是复杂而又系统的,随着城市化进程的加快发展以及机动化水平的提高,道路的交通构成发生了巨大变化,同时人们对精神生活的要求也越来越高,对道路也有了更高的人性化要求。
面对这些挑战,道路设计工作者们需要与时俱进不断思考,设计出更适合于行车曲线的平面线形。
关键词:平面线形设计直线型曲线型设计方法特点公路是自然界中的人工构造物,其位置确定不仅受地形、地质、生态等建设条件的影响,而且修建以后又反作用于自然,对自然的地形、生态等会造成或多或少的破坏,同时路线位置还会对运行安全产生长期深远的影响。
公路线形设计是公路设计的核心,最终决定了公路的空间位置和反馈于驾驶员的视觉形态。
线形质量的好坏,直接影响公路运营的安全、经济、舒适、快捷功能的发挥。
1 直线型设计1.1直线型设计原理及方法工程技术人员根据道路的等级、路线走向、控制条件和技术要求,首先在实地或图上采用一系列连续的导线来控制公路的走向和基本位置,然后在路线的转弯处,为适应行车和地形的要求,采用不同的曲线或曲线组合来完成导线折线处的合理过渡,从而形成整个路线的平面线形。
即所谓的直线型设计方法。
直线用以控制路线的走向和方位,在路线布置和设计过程中起主导作用。
直线型设计方法通常有纸上定线和实地定线两种。
在我国公路建设早期,由于技术和现实条件等原因,不可能采用高水平的线形指标。
因此,直线型设计得到了广泛的应用和推广。
为我国公路建设的发展起到了很大的推动作用。
1.2直线型设计的特点传统道路线形即为直线回旋线圆曲线的硬性组合。
简单的运用直线与大半径圆曲线相结合,没有与地形地物条件相协调。
以直线为主体、先定导线后定曲线,布线过程中导向线控制了路线走向,圆曲线、缓和曲线是直线的配角,线形单调,线形的均衡性和连续性较差。
随着科学技术的进步,传统的直线型设计方法已难以满足高等级公路平面线形设计的要求。
近年来,曲线型设计方法日益被人们接受、采用。
道路平面线型概述

一、道路平面线型概述一、路线道路:路基、路面、桥梁、涵洞、隧道和沿线设施构成的三维实体。
路线:是指道路中线的空间位置。
平面图:路线在水平面上的投影。
纵断面图:沿道路中线的竖向剖面图,再行展开。
横断面图:道路中线上任意一点的法向切面。
路线设计:确定路线空间位置和各部分几何尺寸。
分解成三步:路线平面设计:研究道路的基本走向及线形的过程。
路线纵断面设计:研究道路纵坡及坡长的过程。
路线横断面设计:研究路基断面形状与组成的过程。
二、汽车行驶轨迹与道路平面线形(一)汽车行驶轨迹行驶中汽车的轨迹的几何特征:(1)轨迹连续:连续和圆滑的,不出现错头和折转;(2)曲率连续:即轨迹上任一点不出现两个曲率的值。
(3)曲率变化连续:即轨迹上任一点不出现两个曲率变化率的值。
(二)平面线形要素行驶中汽车的导向轮与车身纵轴的关系:现代道路平面线形正是由上述三种基本线形构成的,称为平面线形三要素。
二、直线一、直线的特点1、优点:①距离短,直捷,通视条件好。
②汽车行驶受力简单,方向明确,驾驶操作简易。
③便于测设。
2、缺点①线形难于与地形相协调②过长的直线易使驾驶人感到单调、疲倦,难以目测车间距离。
③易超速二、最大直线长度问题:《标准》规定:直线的最大与最小长度应有所限制。
德国:20V(m)。
美国:3mile(4.38km)我国:暂无强制规定景观有变化≧20V;<3KM景观单调≦ 20V公路线形设计不是在平面线形上尽量多采用直线,或者是必须由连续的曲线所构成,而是必须采用与自然地形相协调的线形。
采用长的直线应注意的问题:公路线形应与地形相适应,与景观相协调,直线的最大长度应有所限制,当采用长的直线线形时,为弥补景观单调的缺陷,应结合具体情况采取相应的技术措施。
(1)直线上纵坡不宜过大,易导致高速度。
(2)长直线尽头的平曲线,设置标志、增加路面抗滑性能(3)直线应与大半径凹竖曲线组合,视觉缓和。
(4)植树或设置一定建筑物、雕塑等改善景观。
浅谈道路工程设计中的重难点

浅谈道路工程设计中的重难点道路工程设计是指对道路的构筑、改建和改造工作的规划与设计,它是城市建设中不可或缺的一环。
在道路工程设计中,有许多重要且难以解决的问题需要工程师们不断进行思考和研究。
本文将围绕道路工程设计中的重难点展开讨论,并试图给出一些解决方法和建议。
道路工程设计中的重难点之一是道路线型设计。
道路线型设计是指对道路纵、横断面线型进行设计。
它直接关系到道路的安全性、通行性和舒适性。
在道路线型设计中,工程师们需要考虑道路的等级、交通量、车速、路基情况等因素,然后设计出合理的线型。
这一过程需要充分考虑车辆通行的舒适性和安全性,因此是一个复杂的工作。
解决这一问题的方法是借助先进的道路设计软件和技术,以及结合实地勘察和调研,充分考虑车辆通行的实际情况。
还需要充分运用交通工程学、土木工程学等相关学科的理论知识,从多方面进行综合分析,找出最佳的设计方案。
道路工程设计中的重难点之二是地质勘察和工程地质。
在道路工程设计中,地质情况是一个不容忽视的重要因素。
不同地质情况下的道路工程设计方案是完全不同的。
需要对道路所经过的地质情况进行详细的勘察和分析,以确保道路工程在地质条件下的安全性和可行性。
地质条件的复杂性往往给道路工程设计带来很大的挑战。
解决这一问题的方法是充分利用地质勘察技术和工程地质技术,对道路所经过的地质情况进行综合分析和评估,找出地质风险,合理规划和设计道路线型。
还需要充分了解周边的环境因素,如水文地质、气候等,以避免地质灾害对道路工程的影响。
道路工程设计中的重难点之四是环保设计。
随着环境保护意识的增强,道路工程设计中的环保问题日益受到重视。
在设计过程中,需要充分考虑到道路建设对周边环境的影响,采取有效的措施减少环境污染和生态破坏。
这包括道路线型设计、土石方工程、道路排水设计等方面。
解决这一问题的方法是充分运用环境工程学、生态学等学科的知识,从设计方案初期就充分考虑到环保要求,尽量减少道路建设对环境的影响。
道路工程平面线型设计

道路工程平面线型设计在平面线型设计中,汽车形式轨迹的特性,道路平面线型的要素以及直线的特点与运用等等都是我们需要掌握的特点,如何设计出一条合理且优秀的线型,相信看完今天的内容大家都会有自己的答案。
一、道路平面线型概述一、路线道路:路基、路面、桥梁、涵洞、隧道和沿线设施构成的三维实体。
路线:是指道路中线的空间位置。
平面图:路线在水平面上的投影。
纵断面图:沿道路中线的竖向剖面图,再行展开。
横断面图:道路中线上任意一点的法向切面。
路线设计:确定路线空间位置和各部分几何尺寸。
分解成三步:路线平面设计:研究道路的基本走向及线形的过程。
路线纵断面设计:研究道路纵坡及坡长的过程。
路线横断面设计:研究路基断面形状与组成的过程。
二、汽车行驶轨迹与道路平面线形(一)汽车行驶轨迹行驶中汽车的轨迹的几何特征:(1)轨迹连续:连续和圆滑的,不出现错头和折转;(2)曲率连续:即轨迹上任一点不出现两个曲率的值。
(3)曲率变化连续:即轨迹上任一点不出现两个曲率变化率的值。
(二)平面线形要素行驶中汽车的导向轮与车身纵轴的关系:现代道路平面线形正是由上述三种基本线形构成的,称为平面线形三要素。
二、直线一、直线的特点1.优点:①距离短,直捷,通视条件好。
②汽车行驶受力简单,方向明确,驾驶操作简易。
③便于测设。
2.缺点①线形难于与地形相协调②过长的直线易使驾驶人感到单调、疲倦,难以目测车间距离。
③易超速二. 最大直线长度问题:《标准》规定:直线的最大与最小长度应有所限制。
德国:20V(m)。
美国:3mile(4.38km)我国:暂无强制规定景观有变化≧20V;<3KM景观单调≦ 20V公路线形设计不是在平面线形上尽量多采用直线,或者是必须由连续的曲线所构成,而是必须采用与自然地形相协调的线形。
采用长的直线应注意的问题:公路线形应与地形相适应,与景观相协调,直线的最大长度应有所限制,当采用长的直线线形时,为弥补景观单调的缺陷,应结合具体情况采取相应的技术措施。
《道路工程》第3章-道路平面设计

4、关于城市道路
与公路不同,《城市道路设计规范》提供了设超 高最小半径,设超高推荐半径,不设超高最小半 径以及不设缓和曲线最小半径。当受地形条件限 制时,可采用设超高推荐半径值;当地形条件特 别困难时,可采用设超高最小半径值。
②同向曲线间最小长度:
在同向曲线间插入短直线容易产生把直线和两端的 曲线看成为反向曲线的错觉,当直线过短时甚至可能把 两个曲线看成一个曲线,容易造成司机的判断错误。
对于设计速度大于或等于60km/h的公路,同向曲线 之间直线的最小长度(以m计)以不小于设计速度(以 km/h 计)的6倍为宜。
③反向曲线间最小长度:
计算行车速度Km/h
80
60
50
40
30
20
设超高最小半径
250
150
100
70
40
20
设超高推荐半径
400
300
200
150
85
40
不设超高最小半径
1000
600
400
300
150
70
不设缓和曲线最小半径
2000
1000
700
500
四、缓和曲线
1、概述
缓和曲线是道路平面线形要素之一,它是设 置在直线与圆曲线之间或半径相差较大的两个转向 相同的圆曲线之间的一种曲率连续变化的曲线。 除四级路可不设缓和曲线外,其余各级公路 都应设置缓和曲线。 在现代高速公路上,有时缓和曲线所占的比 例超过了直线和圆曲线,成为平面线形的主要组成 部分。 在城市道路上,缓和曲线也被广泛地使用。
C型曲线 CC R1 d1 R2 d2 2 b1 b2 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.超高方式1. 1 绕路面内侧边缘旋转 ( 简称边轴旋转 )它是使旋转轴在路面内侧边缘保留在水平位置 ( 不考虑路线纵坡 ) 。
首先在超高缓和段起点之
时 , 迅速将外侧路肩横坡变为路拱横坡度。
然后逐渐抬高外侧路面与路
肩 , 使之达到与内侧路拱坡度一致的单向横坡。
继续旋转使整个断面达到超高横坡度为止。
( 见图
一 )
1. 2 绕路中线旋转 ( 简称中轴旋转 )它是使旋转轴在路面中线保留在水平位置 ( 不考虑路线纵坡 ) 。
首先在超高缓和段起点之时 , 迅速将外侧路肩横坡度变为路拱横坡度。
然后逐渐抬高外侧路面与路肩 , 使之达到与内侧路拱坡度一致的单向横坡。
继续旋转使整个断面达到超高横坡度为止。
( 见图
二 )
2.超高值计算2.1 计算 X0它是与路拱同坡度的单向超高点至超高缓和段起点距离的计算 , 无论超高方式如何它都是由路拱坡度变为与路拱坡度一致的单向
坡度。
2.2 计算超高值 ( 见附表 )在计算超高缓和段超高值时,分三种情况考虑:a. 当 ic<ig时在旋转过程中 , 由外侧路拱 -ig( 相对内
侧 ) 逐渐抬高至 ig, 变化率为 2 ig, 这时超高横坡未起作用 , 无论边轴旋转、中轴旋转 , 计算 hcx公式统为
b. 当 ic>ig时这时
超高旋转已进入超高横坡 , 计算 hcx公式为
c. 当 ic=ig时上述计
算 hcx公式都可采用 .例:江西省昌万公路某里程的缓和曲线为边轴旋转,已知: Lc=85 , b=9,a=1.5,ig=2% , ij=3%,ic=5%, 求 x=x0处的单向横坡的外侧边缘超高值 hcx。
XLc
原计算公式: hcx=a(ij-ig)+[aij+(a+b)ic]=0.243现计算公式:
根据两者计算公式
和结果可知,只有在 Hy 处的 hc相等外,其他任何处的 hcx都有误差。
式图中: b-- 路面宽度 ( m );a-- 路肩宽度 ( m );ig-- 路拱横坡 ;ij-- 路肩横坡 ;ic—超高横坡;Lc-- 超高缓和段长度 ( 或缓和曲线长度 )( m );X0-- 与路拱同坡度单向超高点至超高缓和起点距离 ( m );X -- 超高缓和段上任一点至起点的距离 ( m );hc-- 路基外缘最大超高值 (m);h ˊc-- 路中线最大超高值 ( m) ;h ˊˊc-- 路基内缘最大降低值 (m);hcx-- x 距离处路基外缘抬高值 (m);h ˊcx-- x 距离处路中线抬高值 (m);h ˊˊc x-- x 距离处路基内缘降低值 (m);ZH-- 第一缓和曲线起点(直缓);HY-- 第一缓和曲线终点(缓圆);Bj-- 路基加宽值 (m);Bjx--x 距离处路基加宽值 (m).。