勾股定理
勾股定理的内容

勾股定理的内容勾股定理,又称勾股定理,是古代数学中的一个重要定理。
在直角三角形中,直角三角形的两条直角边的平方和等于斜边的平方。
其数学表达形式为:a^2 + b^2 = c^2其中a、b、c分别代表直角三角形的两条直角边和斜边。
起源与发展勾股定理虽然现在被称为勾股定理,但最早是在《周髀算经》中发现的,成为世界上最早的几何著作之一。
据传,勾股定理是周公提出的,故得名“周公定理”。
后来被《算经》作者张丘建列入《增衍之术》中,并首次用文字表达了这一定理。
在中国古代,勾股定理的应用非常广泛,不仅用于地测和农业,还被运用在建筑和军事领域。
随着数学的发展,勾股定理也在世界各地广泛传播,并成为数学中的重要定理之一。
数学证明勾股定理的证明有多种方法,其中最著名的是毕达哥拉斯的证明。
毕达哥拉斯定理利用几何形状和平行移动来证明直角三角形的两个边的平方和等于斜边的平方。
这一证明方法被后人发扬光大,成为数学学科中的一个经典证明。
应用场景勾股定理在现代生活中的应用也非常广泛。
例如,在建筑领域中,利用勾股定理可以计算建筑物的结构稳定性;在工程设计中,可以测量距离和角度;在电子领域中,可以应用于信号传输和数据处理等方面。
总的来说,勾股定理是数学中的一个重要定理,不仅对几何学有重要意义,还在现代科学技术中有着广泛的应用。
结语通过对勾股定理的介绍,我们可以看到它在数学史上的重要地位和广泛应用。
了解勾股定理不仅有助于我们理解数学知识的深层含义,还可以帮助我们应用数学知识解决现实生活中的问题。
在学习数学的过程中,我们应该对勾股定理有更多的了解和探索,进一步探索数学世界的奥秘。
勾股定理

板块一 勾股定理1.勾股定理的内容:如果直角三角形的两直角边分别是a 、b ,斜边为c ,那么a 2+b 2=c 2.即直角三角形中两直角边的平方和等于斜边的平方。
注:勾——最短的边、股——较长的直角边、 弦——斜边。
CAB cba勾股定理3.勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
即 222,,ABC AC BC AB ABC ∆+=∆在中如果那么是直角三角形。
4.勾股数:满足a 2 +b 2=c 2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用勾股数:3、4、5; 5、12、13;7、24、25;8、15、17。
板块一、勾股定理【例1】 下列说法正确的是( )A. 若a b c ,,是ABC ∆的三边,则222a b c +=B. 若a b c ,,是Rt ABC ∆的三边,则222a b c +=C. 若 a b c ,,是Rt ABC ∆的三边,90A ∠=︒,则222a b c +=D. 若 a b c ,,是Rt ABC ∆的三边,90C ∠=︒,则222a b c +=【例2】 在Rt ABC ∆中, 90C ∠=︒,(1)如果34a b ==,,则c = ; (2)如果68a b ==,,则c = ; (3)如果512a b ==,,则c = ; (4)如果1520a b ==,,则c = .【例3】 若一个直角三角形三边的长分别是三个连续的自然数,则这个三角形的周长为【例4】 一个直角三角形的三边为三个连续偶数,则它的三边长分别为 .【例5】 已知直角三角形的两边长分别为3、4,求第三边长.【例6】 已知直角三角形两边x ,y 的长满足240x -,则第三边长为______________.【例7】 一个直角三角形中,两直角边长分别为3和4,下列说法正确的是( )A .斜边长为25B .三角形周长为25C .斜边长为5D .三角形面积为20【例8】 如果梯子的底端距离墙根的水平距离是9m ,那么15m 长的梯子可以达到的高度为【例9】 如图,梯子AB 斜靠在墙面上,AC BC AC BC ⊥=,,当梯子的顶端A 沿AC 方向下滑x 米时,梯足B 沿CB 方向滑动y 米,则x 与y 的大小关系是( ) A .x y = B .x y > C .x y < D .不确定CA【例10】 如图,一个长为10米的梯子,斜靠在墙上,梯子的顶端距离地面的垂直距离为8米,如果梯子的顶端下滑1米,那么,梯子底端的滑动距离 米(填“大于”、“等于”、“小于”)68【例11】 三角形的三边长分别为6,8,10,它的最短边上的高为( )A. 6B. 4.5C. 2.4D.8【例12】 若ABC ∆的三边a b c ,,满足条件:222338102426a b c a b c +++=++,则这个三角形最长边上的高为【例13】 如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )A. 1倍B. 2倍C. 3倍D. 4倍【例14】 如图,一根高8米的旗杆被风吹断倒地,旗杆顶端A 触地处到旗杆底部B 的距离为6米,则折断点C到旗杆底部B 的距离为CBA【例15】 已知,如图所示,折叠长方形的一边AD ,使点D 落在BC 边的点F 处,•如果8cm AB =,10cm BC =,求EC 的长.【例16】 如图,有一个直角三角形纸片,两直角边6cm 8cm AC BC ==,,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,那么CD 的长为多少?EDCBA【例17】 如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC 中,边长为无理数的边数是( )A. 0B. 1C. 2D. 3CBA【例18】 如图所示,在ABC ∆中,三边a b c ,,的大小关系是( )cbaCBAA. a b c <<B. c a b <<C. c b a <<D. b a c <<【例19】 设,,,a b c d 都是正数。
勾股定理

勾股定理勾股定理,又称商高定理,西方称毕达哥拉斯定理或毕氏定理(英文:Pythagorean theorem或Pythagoras's theorem)是一个基本的几何定理,相传由古希腊的毕达哥拉斯首先证明。
据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。
在中国,相传于商代就由商高发现,记载在一本名为《周髀算经》的古书中。
而三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释。
法国和比利时称为驴桥定理,埃及称为埃及三角形。
直角边的平方和等于斜边的平方勾股定理指出:直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。
也就是说,设直角三角形两直角边为a和b,斜边为c,那么A2+ b2= c2勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。
一种证明方法的图示:左右两正方形面积相等,各扣除四块蓝色三角形后面积仍相等勾股定理勾股定理的美妙证明证明[广西梁卷明的证法]:如图1,分别以AC、CB、BA为边长作正方形ACNM、正方形CBSQ、正方形BAPR,则易知⊿ABC≌⊿RBS,从而点Q 必在SR上,又把梯形ABNM沿BR方向平移,使点B与点R重合,则梯形ABNM平移至梯形PRQT的位置;显然⊿RSB≌⊿PTA, 如图2,再把⊿RSB沿BA方向平移,使点B与点A重合,则⊿RSB必与⊿PTA重合!故有:正方形ACNM的面积+正方形CBSQ的面积=正方形BAPR的面积,即得: a的平方 + b的平方 = c的平方.勾股定理【梁卷明证法】勾股定理 - 勾股数组勾股数组是满足勾股定理a2+ b2= c2的正整数组(a,b,c),其中的a,b,c称为勾股数。
例如(3,4,5)就是一组勾股数组。
任意一组勾股数(a,b,c)可以表示为如下形式:a = m−n,b = 2mn,c = m + n,其中勾股定理。
勾股定理公元前500-200年,《周髀算经》的图解《勾股圆方图》勾股定理 - 参考资料勾股定理 - 历史上的勾股定理定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2;即直角三角形两直角边的平方和等于斜边的平方。
勾股定理及其证明

勾股定理及其证明勾股定理是数学中的一个重要定理,它描述了直角三角形中的边与斜边之间的关系。
在本文中,我们将探讨勾股定理的原理,同时给出两种经典的证明方法。
一、勾股定理的原理勾股定理可以简洁地表述为:直角三角形的两条直角边的平方和等于斜边的平方。
设直角边分别为a、b,斜边为c,则勾股定理可表示为:a² + b² = c²这一定理得名于古希腊数学家毕达哥拉斯,毕达哥拉斯学派在公元前6世纪提出了这一理论。
勾股定理的原理可以通过几何图形和代数方法来解释。
从几何角度来看,直角三角形的两个直角边平方对应的正方形面积和等于斜边平方对应的正方形面积。
而从代数角度来看,设直角边的长度分别为a、b,斜边的长度为c,根据勾股定理可得:a² + b² = c²这一关系对于任意直角三角形都成立。
二、勾股定理的证明方法1. 几何证明几何证明是一种直观且易于理解的证明方法。
首先,我们可以通过画图来帮助证明勾股定理。
以直角边a为底,斜边c为斜边绘制一个直角三角形的外接圆。
连接直角边b与圆的交点,即可得到直角三角形。
证明思路如下:- 根据正弦定理,我们可以得到三角形的三条边的关系。
- 通过计算,我们可以得到三角形的面积S的两种表达式。
- 根据面积公式,我们可以得到a² + b² = c²。
2. 代数证明代数证明是一种基于数学运算的证明方法。
我们可以通过代数运算来证明勾股定理。
具体步骤如下:- 假设存在整数x和y,使得a = x² - y²,b = 2xy,c = x² + y²。
注意这里的x和y是整数,且满足a、b、c构成直角三角形。
- 将a、b、c带入勾股定理的表达式a² + b² = c²中,进行变换和计算。
- 可以得到(x² - y²)² + (2xy)² = (x² + y²)²。
勾股定理20种证明方法

勾股定理20种证明方法1. 最常见的勾股定理证明是基于三角形面积公式的。
利用三角形的底边与高的关系,可以将直角三角形分成两个三角形,然后应用面积公式进行计算得出勾股定理。
2. 通过向直角三角形内部引入一个圆形,利用圆的性质可以得到勾股定理。
3. 将直角三角形中的一条直角边平移到非直角边上,形成一个平行四边形,再利用平行四边形对角线的关系即可得到勾股定理。
4. 利用正弦定理和余弦定理进行推导,可以得出勾股定理。
5. 通过三角形内部的相似三角形进行推导得出勾股定理。
将直角三角形分成两个相似三角形,利用相似三角形的性质进行推导得出勾股定理。
6. 通过归纳法进行证明,即证明勾股定理对于所有自然数n都成立。
7. 利用勾股定理推导其他几何定理,例如正弦定理、余弦定理等,进而证明勾股定理。
8. 利用数学归纳法,可证勾股定理对于所有正整数n都成立。
9. 利用勾股定理证明勾股三角形的存在性,也就是存在一组自然数a、b、c,使得a²+b²=c²。
这可以通过暴力算法或递推算法来实现。
10. 利用反证法证明勾股定理。
假设勾股定理不成立,即假设存在一个直角三角形,其两条直角边的平方和不等于斜边的平方。
通过假设的前提,推导出矛盾的结论,从而证明勾股定理成立。
11. 利用勾股定理证明三角形的周长和面积公式。
将直角三角形分成两个直角三角形,利用勾股定理计算出直角边的长度,然后应用周长和面积公式。
12. 利用勾股定理证明三角形的内心与垂心之间的关系。
将直角三角形分成两个相似三角形,利用勾股定理计算出内心与垂心之间的距离。
13. 利用勾股定理证明三角形的外心与垂心之间的关系。
通过三角形的外接圆,证明外心与垂心之间的距离等于直角边之间距离的一半。
14. 利用圆的性质证明勾股定理。
将三角形中的一条直角边作为直径,表示成圆上的弦长,利用圆的定理得到勾股定理。
15. 通过三角形的相似性质,证明勾股定理。
将直角三角形分成两个与之相似的三角形,利用相似三角形的性质得到勾股定理。
勾股定理知识点总结(经典、实用)

第三章、勾股定理 一、知识要点:1、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。
也就是说:如果直角三角形的两直角边为a 、b ,斜边为c ,那么 a 2 + b 2= c 2。
公式的变形:a 2 = c 2- b 2, b 2= c 2-a 2 。
符号语言:注意:前提一定是直角三角形.a ,b 也可能是斜边,分清斜边直角边.勾股定理的证明 :勾股定理的证明方法很多,常见的的方法是面积相等---根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理勾股定理的证明方法很多,常见的是拼图的方法 常见方法如下: 方法一:4EFGHS S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证勾股定理的适用范围 : 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。
2、勾股定理的逆定理如果三角形ABC 的三边长分别是a ,b ,c ,且满足a 2 + b 2= c 2,那么三角形ABC 是直角三角形。
这个定理叫做勾股定理的逆定理.该定理在应用时,同学们要注意处理好如下几个要点: ① 已知的条件:某三角形的三条边的长度.②满足的条件:最大边的平方=最小边的平方+中间边的平方.③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角. ④如果不满足条件,就说明这个三角形不是直角三角形。
cb aHG F EDCB A bacbac cabcab a bcc baED CBA(分类讨论,数形结合)最大边的平方<最小边的平方+中间边的平方是锐角三角形 最大边的平方>最小边的平方+中间边的平方是钝角三角形说明:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c ;(2)分别求出c 2与a 2+b 2,判定c 2与a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC是以∠C 为直角的直角三角形(若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2<a 2+b 2,则△ABC 为锐角三角形)。
勾股定理

勾股定理勾股定理又叫商高定理、毕氏定理,或称毕达哥拉斯定理(Pythagor as Theorem).在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。
如果直角三角形两直角边分别为a、b,斜边为c,那么a²+b²=c²据考证,人类对这条定理的认识,少说也超过 4000 年!中国最早的一部数学著作——《周髀算经》的第一章,就有这条定理的相关内容:周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度。
夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五。
既方其外,半之一矩,环而共盘。
得成三、四、五,两矩共长二十有五,是谓积矩。
故禹之所以治天下者,此数之所由生也。
”就是说,矩形以其对角相折所称的直角三角形,如果勾(短直角边)为3,股(长直角边)为4,那么弦(斜边)必定是5。
从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要的数学原理了。
在西方有文字记载的最早的证明是毕达哥拉斯给出的。
据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。
故西方亦称勾股定理为“百牛定理”。
遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。
实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例。
除上述两个例子外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角。
但是,这一传说引起过许多数学史家的怀疑。
比如说,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理。
我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得证实。
”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥板书,据专家们考证,其中一块上面刻有如下问题:“一根长度为 30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为为3:4:5三角形的特殊例子;专家们还发现,在另一块泥板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数。
勾股定理知识点总结

勾股定理知识点总结勾股定理是数学中一个著名的定理,也是初中数学学习的重点内容之一。
它描述了直角三角形中三条边的关系,并且可以应用于解决许多与三角形和几何有关的问题。
本文将对勾股定理的相关知识点进行总结和探讨。
一、勾股定理的表述和公式勾股定理的表述是:“直角三角形斜边上的正方形面积等于其他两边上的正方形面积之和。
”这就是我们通常所说的勾股定理。
勾股定理的公式可以表示为:a² + b² = c²其中,a、b代表直角三角形的两条直角边,c代表直角三角形的斜边。
二、勾股定理的证明勾股定理的证明有多种方法,在此我们以几何证明和代数证明为例进行说明。
几何证明:通过图形的构造和推理来证明勾股定理。
一种常见的几何证明方法是构造以a、b、c为边长的正方形,然后计算正方形的面积,从而证明等式成立。
代数证明:通过数学计算和变换来证明勾股定理。
一种常见的代数证明方法是将直角三角形的三条边的平方进行计算,然后将其相加和化简,最终得到等式成立的结果。
三、勾股定理的应用勾股定理不仅仅是一个数学定理,还有着广泛的应用。
1. 解决三角形的边长和角度问题:通过勾股定理,我们可以已知两条边长来求解第三条边长,或者已知两条边长和一个角度来求解其他角度。
2. 判断三角形的形状:我们可以利用勾股定理来判断一个三角形是直角三角形、锐角三角形还是钝角三角形,从而进一步研究和分析三角形的性质。
3. 解决几何问题:勾股定理还可以应用于解决一些几何问题,例如求解两条直线的交点坐标、求解平面图形的面积、判断是否存在重合图形等等。
四、勾股定理的推广除了直角三角形,勾股定理还可以推广到其他形状的图形。
1. 平方和定理:平方和定理是勾股定理的推广,它描述了非直角三角形中三条边平方的关系。
2. 多边形的对角线:在多边形中,通过某个顶点可以连接其他顶点,形成对角线。
对角线之间的关系也可以通过勾股定理进行研究和计算。
3. 空间中的勾股定理:在空间几何中,勾股定理可以推广到三维空间,描述直角棱柱、直角锥等图形的三条棱或边之间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二部分:真题演练
第三部分:回顾总结
第四部分:课后练习
3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。
4.勾股定理的逆定理:如果三角形的三条边长a,b,c有下列关系:a2+b2=c2,那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法.
5.应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解.
勾股定理
课题
勾股定理
考点
分析
1.直角三角形三边的关系。
2.运用勾股定理求边的长度。
3、勾股定理在综合题中的考察。
教
学
步
骤
及分:复习总结
规律方法指导:
1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。
2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。