小学数学《几何中的计数问题(二)》练习题(含答案)

合集下载

小学生奥数几何、计数、计算练习题

小学生奥数几何、计数、计算练习题

小学生奥数几何、计数、计算练习题1.小学生奥数几何练习题篇一一、填空1、两个完全相同的等腰直角三角形可以拼成一个()形或()形或()形。

2、两个完全相同的梯形可能拼成一个()形或()形或()形。

3、当梯形的上底与下底相等时,梯形就变成()形。

4、平行四边形的面积公式是()。

5、一个平行四边形和一个三角形的面积相等,而且它们的的底边也相等,三角形的高是10厘米,平行四边形的高是()。

二、判断题1、两个三角形可以拼成一个平行四边形。

()2、一个梯形可以分成两个大小、形状完全相同的三角形。

()3、等腰梯形的对角线相等。

()4、两个形状相同、大小相等的直角梯形一定能拼成一个平行四边形。

()5、平行四边形、菱形、等腰梯形都是轴对称图形。

()6、只有一组对边平行的图形叫做梯形。

()7、举一反三:有一组对边平行的四边形叫做梯形。

()8、两个大小相等的三角形一定能拼成一个平行四边形。

()9、两个等底等高的三角形一定能拼成一个平行四边形。

()2.小学生奥数几何练习题篇二例题:一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米,如果长不变,宽减少3米,那么它的`面积减少36平方米,这个长方形原来的面积是多少平方米?由:“宽不变,长增加6米,那么它的面积增加54平方米”可知它的宽是54÷6=9(米);又由“长不变,宽减少3米,那么它的面积减少了36平方米”,可知它的长为:36÷3=12(米),所以,这个长方形的面积是12×9=108(平方米)。

(36÷3)×(54÷9)=108(平方米)练习:(1)一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米,如果长不变,宽增加4米,那么它的面积增加60平方米,这个长方形原来的面积是多少平方米?(2)一个长方形,如果宽不变,长增加5米,那么它的面积增加30平方米,如果长不变,宽增加3米,那么它的面积增加48平方米,这个长方形的面积原来是多少平方米?(3)一个长方形,如果它的长减少3米,或它的宽减少2米,那么它的面积都减少36平方米,求这个长方形原来的面积。

图形计数专项练习题

图形计数专项练习题

图形计数专项练习题在图形计数中,我们需要根据给定的图形,计算出其中的几何形状的数量。

这是一个很有趣的数学问题,也是培养孩子逻辑思维和观察力的好方法。

本文将为大家提供一些图形计数的专项练习题,帮助读者加深对图形计数的理解和运用能力。

练习一请计算下图中不同形状的数量,并将答案填写在括号中:```□□ □■■■■■■■正方形:( )个长方形:( )个三角形:( )个```练习二请计算下图中不同形状的数量,并将答案填写在括号中:```△▢ ■▢▢△■ ■ △正方形:( )个长方形:( )个三角形:( )个```练习三请计算下图中不同形状的数量,并将答案填写在括号中:```▢□ △△△△ □ ▢▢□ □ □正方形:( )个长方形:( )个三角形:( )个```练习四请计算下图中不同形状的数量,并将答案填写在括号中:```△▢ ■■ ■ □□ ▢▢正方形:( )个长方形:( )个三角形:( )个```练习五请计算下图中不同形状的数量,并将答案填写在括号中:```□ ■ △ □■ ■ △ ■■ ■ ■ ■正方形:( )个长方形:( )个```练习六请计算下图中不同形状的数量,并将答案填写在括号中:```■ ■ ■ ■ △■ △ □ □ □■ △ ■ ▢ □正方形:( )个长方形:( )个三角形:( )个```练习七请计算下图中不同形状的数量,并将答案填写在括号中:```■ ■ ■ ● □ □■ △ ● □ □ △□ □ □ ■ ■ ■长方形:( )个三角形:( )个```练习八请计算下图中不同形状的数量,并将答案填写在括号中:```△ □ ■ ■ ■■ ■ ■ ▪ ▢■ □ △ ■ ■正方形:( )个长方形:( )个三角形:( )个```以上是图形计数的专项练习题,通过对每个图形中不同形状的数量进行计数,可以提高我们的观察力和计数能力。

希望大家能够通过这些练习题,更好地掌握图形计数的方法和技巧。

祝大家学习进步!。

小学奥数全国推荐四年级奥数通用学案附带练习题解析答案34几何计数(二)

小学奥数全国推荐四年级奥数通用学案附带练习题解析答案34几何计数(二)

年级四年级学科奥数版本通用版课程标题几何计数(二)我们在学会数线段、数角、数三角形的基础上,通过本讲学习数长方形、正方形来进一步提高观察和思考问题的能力,学会在观察、思考、分析中总结归纳出解决问题的规律和方法。

在解决数图形问题时,首先要认真分析图形的组成规律,根据图形特点选择适当的方法,既可以逐个计数,也可以把图形分成若干个部分,先对每部分按照各自构成的规律数出图形的个数,再把它们的个数加起来。

例1 数一数下图中有多少个长方形。

分析与解:图中的AB边上有线段1+2+3=6(条),AD边上有线段1+2=3(条),把AB边上的每一条线段作为长,AD边上的每一条线段作为宽,每一个长配一个宽,就组成一个长方形,所以,图中共有6×3=18个长方形。

数长方形可以用下面的公式:长边上的线段数×短边上的线段数=长方形的个数。

例2 数一数,下图中有多少个正方形?(每个小方格是边长为1个长度单位的正方形)分析与解:图中边长为1个长度单位的正方形有3×3=9(个),边长为2个长度单位的正方形有2×2=4(个),边长为3个长度单位的正方形有1×1=1(个)。

所以图中的正方形总数为:1+4+9=14(个)。

经进一步分析可以发现,由相同的n×n个小方格组成的几行几列的正方形其中所含的正方形总数为:1×1+2×2+…+n×n(个)。

例 3 数一数图中有多少个正方形(其中每个小方格都是边长为1个长度单位的正方形)。

分析与解:为叙述方便,我们规定最小正方形的边长为1个长度单位,又称为基本线段,图中共有五类正方形。

①以一条基本线段为边的正方形个数共有:6×5=30(个)。

②以二条基本线段为边的正方形个数共有:5×4=20(个)。

③以三条基本线段为边的正方形个数共有:4×3=12(个)。

④以四条基本线段为边的正方形个数共有:3×2=6(个)。

7-8-2 几何计数(二).教师版

7-8-2 几何计数(二).教师版

1.掌握计数常用方法;2.熟记一些计数公式及其推导方法;3.根据不同题目灵活运用计数方法进行计数.本讲主要介绍了计数的常用方法枚举法、标数法、树形图法、插板法、对应法等,并渗透分类计数和用容斥原理的计数思想.一、几何计数在几何图形中,有许多有趣的计数问题,如计算线段的条数,满足某种条件的三角形的个数,若干个图分平面所成的区域数等等.这类问题看起来似乎没有什么规律可循,但是通过认真分析,还是可以找到一些处理方法的.常用的方法有枚举法、加法原理和乘法原理法以及递推法等.n 条直线最多将平面分成21223(2)2n n n ++++=++……个部分;n 个圆最多分平面的部分数为n (n -1)+2;n 个三角形将平面最多分成3n (n -1)+2部分;n 个四边形将平面最多分成4n (n -1)+2部分……在其它计数问题中,也经常用到枚举法、加法原理和乘法原理法以及递推法等.解题时需要仔细审题、综合所学知识点逐步求解.排列问题不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关;组合问题与各事物所在的先后顺序无关,只与这两个组合中的元素有关.二、几何计数分类数线段:如果一条线段上有n +1个点(包括两个端点)(或含有n 个“基本线段”),那么这n +1个点把这条线段一共分成的线段总数为n +(n -1)+…+2+1条数角:数角与数线段相似,线段图形中的点类似于角图形中的边.数三角形:可用数线段的方法数如右图所示的三角形(对应法),因为DE 上有15条线段,每条线段的两端点与点A 相连,可构成一个三角形,共有15个三角形,同样一边在BC 上的三角形也有15个,所以图中共有30个三角形.E DCB A数长方形、平行四边形和正方形:一般的,对于任意长方形(平行四边形),若其横边上共有n 条线段,教学目标知识要点7-8-2.几何计数(二)纵边上共有m条线段,则图中共有长方形(平行四边形)mn个.模块二、复杂的几何计数【例 1】如下图在钉子板上有16个点,每相邻的两个点之间距离都相等,用绳子在上面围正方形,你可以得到个正方形.【考点】复杂的几何计数【难度】4星【题型】填空【关键词】学而思杯,2年级,第4题【解析】先看横着的正方形如下图⑴,可以得到94114++=个正方形,再看斜着的正方形如下图⑵可以得到4个正方形,如下图⑶可以得到2个正方形.这样一共可以得到144220++=个正方形.⑴⑵⑶<考点> 图形计数【答案】20个【巩固】如图,44⨯的方格纸上放了16枚棋子,以棋子为顶点的正方形有个.【解析】根据正方形的大小,分类数正方形.共能组成五种大小不同的正方形(如右图).11⨯的正方形:9个;22⨯的正方形:4个;33⨯的正方形:1个;以11⨯正方形对角线为边长的正方形:4个;以12⨯长方形对角线为边长的正方形:2个.故可以组成9414220++++=(个)正方形.【巩固】下图是3×3点阵,同一行(列)相邻两个点的距离均为1。

小学数学《几何计数》练习题(含答案)

小学数学《几何计数》练习题(含答案)

小学数学《几何计数》练习题(含答案)内容概述几何中的计数问题包括:数线段、数角、数三角形、数长方形、数正方形、数综合图形等.通过这一讲的学习,可以帮助我们养成按照一定顺序去观察、思考问题的良好习惯,做到不重不漏地准确数出图形,逐步学会通过观察、思考探寻事物规律的能力,选择适当的计数方法解决问题.数线段【例1】数一数,下图中有多少条线段?小朋友们,你有几种方法有序的把它数出来?【例2】有一把奇怪的尺子,上面只有“0”“1”“4”“6”这几个刻度(单位:厘米)。

请你想一想,有这把尺子一次可以画出几条不同长度的线段?【例3】(第三届兴趣杯少年数学邀请赛预赛)数一数,右图中共有线段多少条?【例4】(小数报数学竞赛初赛)数一数,右图中共有多少个三角形?你有什么好方法?【例5】如右图中,数一数共有多少条线段?共有多少个三角形?【例6】如右图,数数有多少个三角形?【例7】数一数,右图中共有多少个三角形?【例8】数一数,右图中共有多少个三角形?【例9】(第三届兴趣杯少年数学邀请赛预赛)数一数,右图中三角形共多少个?【例10】数一数,各图中长方形的个数?【例11】带*的长方形有多少个?【例12】右图中有多少个长方形?【例13】右图中各小格都是正方形,图中共有多少个正方形?【例14】数一数,下例各图中有多少个正方形?习题七1.有一把尺子,因磨损只能看清“0”“2”“5”“8”“9”,你能用这把尺子准确画出多少条不同长度的线段?2.数一数,右图中有多少个角?3.数数右图中有多少条线段?4.如右图,数数有多少个三角形?5.数一数下图中有多少个正方形?6.如下图,数一数下列图中长方形的个数?带小花的长方形有多少个?*7.数一数,右图中共有多少个正方形?数线段【例15】数一数,下图中有多少条线段?小朋友们,你有几种方法有序的把它数出来?分析:我们要做到有序思考问题,做到不重、不漏,必须有一个“找”的依据,下面我将给大家展示两种常见的方法:法1:以线段的起点分类(注意保持方向的一致),如右图以A点为共同左端点的线段有: AB AC AD AE AF 5条.以B点为共同左端点的线段有: BC BD BE BF 4条.以C点为共同左端点的线段有: CD CE CF 3条.以D点为共同左端点的线段有: DE DF 2条.以E点为共同左端点的线段有: EF 1条.总数5+4+3+2+1=15条.法2:我们规定:把相邻两点间的线段叫做基本线段,我们还可以这样分类数,由1个基本线段构成的线段有:AB、BC、CD、DE、EF 5条。

小学奥数 几何计数(二) 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  几何计数(二) 精选练习例题 含答案解析(附知识点拨及考点)

1.掌握计数常用方法;2.熟记一些计数公式及其推导方法;3.根据不同题目灵活运用计数方法进行计数.本讲主要介绍了计数的常用方法枚举法、标数法、树形图法、插板法、对应法等,并渗透分类计数和用容斥原理的计数思想.一、几何计数在几何图形中,有许多有趣的计数问题,如计算线段的条数,满足某种条件的三角形的个数,若干个图分平面所成的区域数等等.这类问题看起来似乎没有什么规律可循,但是通过认真分析,还是可以找到一些处理方法的.常用的方法有枚举法、加法原理和乘法原理法以及递推法等.n 条直线最多将平面分成21223(2)2n n n ++++=++……个部分;n 个圆最多分平面的部分数为n (n -1)+2;n 个三角形将平面最多分成3n (n -1)+2部分;n 个四边形将平面最多分成4n (n -1)+2部分……在其它计数问题中,也经常用到枚举法、加法原理和乘法原理法以及递推法等.解题时需要仔细审题、综合所学知识点逐步求解.排列问题不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关;组合问题与各事物所在的先后顺序无关,只与这两个组合中的元素有关.二、几何计数分类数线段:如果一条线段上有n +1个点(包括两个端点)(或含有n 个“基本线段”),那么这n +1个点把这条线段一共分成的线段总数为n +(n -1)+…+2+1条数角:数角与数线段相似,线段图形中的点类似于角图形中的边.数三角形:可用数线段的方法数如右图所示的三角形(对应法),因为DE 上有15条线段,每条线段的两端点与点A 相连,可构成一个三角形,共有15个三角形,同样一边在BC 上的三角形也有15个,所以图中共有30个三角形.ED CBA数长方形、平行四边形和正方形:一般的,对于任意长方形(平行四边形),若其横边上共有n 条线段,纵边上共有m 条线段,则图中共有长方形(平行四边形)mn 个.教学目标知识要点7-8-2.几何计数(二)例题精讲模块二、复杂的几何计数【例1】如下图在钉子板上有16个点,每相邻的两个点之间距离都相等,用绳子在上面围正方形,你可以得到个正方形.【考点】复杂的几何计数【难度】4星【题型】填空【关键词】学而思杯,2年级,第4题【解析】先看横着的正方形如下图⑴,可以得到94114++=个正方形,再看斜着的正方形如下图⑵可以得到4个正方形,如下图⑶可以得到2个正方形.这样一共可以得到144220++=个正方形.⑴⑵⑶<考点> 图形计数【答案】20个【巩固】如图,44⨯的方格纸上放了16枚棋子,以棋子为顶点的正方形有个.【解析】根据正方形的大小,分类数正方形.共能组成五种大小不同的正方形(如右图).⨯的正方形:1个;⨯的正方形:4个;33⨯的正方形:9个;2211以11⨯正方形对角线为边长的正方形:4个;以12⨯长方形对角线为边长的正方形:2个.故可以组成9414220++++=(个)正方形.【巩固】下图是3×3点阵,同一行(列)相邻两个点的距离均为1。

小学数学《几何计数》练习题(含答案)

小学数学《几何计数》练习题(含答案)

小学数学《几何计数》练习题(含答案)内容概述几何中的计数问题包括:数线段、数角、数三角形、数长方形、数正方形、数综合图形等.通过这一讲的学习,可以帮助我们养成按照一定顺序去观察、思考问题的良好习惯,做到不重不漏地准确数出图形,逐步学会通过观察、思考探寻事物规律的能力,选择适当的计数方法解决问题.数线段【例1】数一数,下图中有多少条线段?小朋友们,你有几种方法有序的把它数出来?【例2】有一把奇怪的尺子,上面只有“0”“1”“4”“6”这几个刻度(单位:厘米)。

请你想一想,有这把尺子一次可以画出几条不同长度的线段?【例3】(第三届兴趣杯少年数学邀请赛预赛)数一数,右图中共有线段多少条?【例4】(小数报数学竞赛初赛)数一数,右图中共有多少个三角形?你有什么好方法?【例5】如右图中,数一数共有多少条线段?共有多少个三角形?【例6】如右图,数数有多少个三角形?【例7】数一数,右图中共有多少个三角形?【例8】数一数,右图中共有多少个三角形?【例9】(第三届兴趣杯少年数学邀请赛预赛)数一数,右图中三角形共多少个?【例10】数一数,各图中长方形的个数?【例11】带*的长方形有多少个?【例12】右图中有多少个长方形?【例13】右图中各小格都是正方形,图中共有多少个正方形?【例14】数一数,下例各图中有多少个正方形?习题七1.有一把尺子,因磨损只能看清“0”“2”“5”“8”“9”,你能用这把尺子准确画出多少条不同长度的线段?2.数一数,右图中有多少个角?3.数数右图中有多少条线段?4.如右图,数数有多少个三角形?5.数一数下图中有多少个正方形?6.如下图,数一数下列图中长方形的个数?带小花的长方形有多少个?*7.数一数,右图中共有多少个正方形?数线段【例15】数一数,下图中有多少条线段?小朋友们,你有几种方法有序的把它数出来?分析:我们要做到有序思考问题,做到不重、不漏,必须有一个“找”的依据,下面我将给大家展示两种常见的方法:法1:以线段的起点分类(注意保持方向的一致),如右图以A点为共同左端点的线段有: AB AC AD AE AF 5条.以B点为共同左端点的线段有: BC BD BE BF 4条.以C点为共同左端点的线段有: CD CE CF 3条.以D点为共同左端点的线段有: DE DF 2条.以E点为共同左端点的线段有: EF 1条.总数5+4+3+2+1=15条.法2:我们规定:把相邻两点间的线段叫做基本线段,我们还可以这样分类数,由1个基本线段构成的线段有:AB、BC、CD、DE、EF 5条。

小学数学《计数问题》练习题(含答案)

小学数学《计数问题》练习题(含答案)

小学数学《计数问题》练习题(含答案)知识点:1. 图形的计数.2. 排列组合3. 容斥原理图形计数中常见的几类:1、数线段、三角形,(锐)角的个数.①我们可以按照线段的左端点的位置分为A,B,C三类.如下图所示,以A为左端点的线段有3条,以B为左端点的线段有2条,以C为左端点的线段有1条.所以共有3+2+1=6(条).②我们也可以按照一条线段是由几条小线段构成的来分类.如下图所示,AB,BC,CD是最基本的小线段,由一条线段构成的线段有3条,由两条小线段构成的线段有2条,由三条小线段构成的线段有1条.数线段时线段的条数与图上的点存在一定的关系.例题中共有4个点,线段的条数为3+2+1=6(条). 由此,我们可以推广到一般情况:如果图中有N个点,那么线段的总条数为:(N-1)+(N-2)+(N-3)+…+3+2+1即:(1)2n n⨯-第一个图中三角形的个数是:3+2+1=6(个),第二个图中锐角的个数是:4+3+2+1=10(个)数三角形、数角的方法与数线段的的方法相似,所以计算线段总条数的公式,同样也适用于数三角形和数(锐)角.2、数长方形的个数.以BC为宽的长方形有5+4+3+2+1=15(个)(CD上有一条线段就有一个以BC为宽的长方形);同理:以AB、AC为宽的长方形有15个.共有长方形15+15+15=45(个).注意到在AC上有几条线段就有几个不同的宽: (5+4+3+2+1)×(2+1)=45(个)由此,我们可以推广到一般情况:当一边上含有n条基本线段,另一边上含有m条基本线段时,长方形的总数为(n+…+3+2+1)×(m+…+3+2+1).3、数正方形的个数.图中共有正方形9×3+8×2+7×1=50(个).由此,我们可以推广到一般情况:如果一个长方形的一条边被分成n等份,另一条边被分成m等份,且长和宽上的每一份相等,那么这个长方形中正方形的总数为:nm+(n-1)(m-1)+(n-2)(m-2)+…+(n-m+1)×1(其中n≥m).如果长方形的两条边都相等,那么就成了一个正方形,如下图:图中共有正方形4×4+3×3+2×2+1=30(个)由此我们可以得出:如果一个大正方形的每条边都被分成n等份,那么这个大正方形中所有正方形的总数为:n2+(n一1)2+(n一2)2+…+32+22+12.在数学竞赛和小升初的考试中,会出现一些比较复杂的图形,这就需要我们根据图形的构成方法和自身特点,选择适当的方法.常见的计数图形的方法有多退少补法、分类法、列表法、转化法等.遇到一些复杂的图形计数问题时,常常需要把几种方法结合起来使用,下面我们就通过一些例题来进行分析.【例1】数一数图中有多少条线段?仔细观察图2—1—2,不难发现其中一共有50个点,运用上面的公式易求线段的总条数.【分析】图中共有线段:49+48+47+46+…+3+2+1=50×(50—1)÷2=1225(条)说明:如果要计数的线段是共线线段,只要数出其中共有几个点,就可以直接运用上面的公式求出线段的总条数.【巩固】数一数,右图中共有线段_______条.【分析】AG,AB中共有线段: (3+2+1)×2=12(条)EF,CD,BC,AC中共有线段(2+1)×4=12(条)所以,总共有线段: 12+12=24(条).【例2】分别数出图中每个图形中三角形的总个数?【分析】仔细观察图中的两个图形可以发现:每个三角形中,有两条边是由A点引出的,而第三条边是BC或HI上的线段,BC或HI上线段的条数就与三角形的个数一一对应了.于是数三角形个数的问题可以转化为数线段条数的问题.先看图(1),根据数线段的规律可知,BC边上共有(5+4+3+2+1)=15条线段,也就是说图(1)中有15个三角形.再看图(2),它仅仅是在图(1)的基础上又画了一条割线所构成的;同样的道理,HI边上也有15条线段,因此以HI边上的线段为第三边的三角形也有15个,所以图(2)中共有(15×2)=30个三角形.解:(1)5+4+3+2+1=15(个)(2)(5+4+3+2+1)×2=30(个)【例3】(北京市第七届“迎春杯”决赛试题)下图中共有____个正方形.【分析】这个图可以先看成是3个没有重叠的4×4正方形来数,然后再把重叠的部分2个2×2正方形的个数减掉.这就利用了多退少补的方法.每个4×4正方形中有:边长为1的正方形42个;边长为2的正方形32个;边长为3的正方形22个;边长为4的正方形12个;总共有42+32+22+12=30(个)正方形.现有3个4 × 4的正方形,它们重叠部分是2个2 ×2的正方形.因此,图中正方形的个数是30×3—5×2=80(个)【例4】(南京市第三届“兴趣杯”少年数学邀请赛试题)数一数,右图中三角形共有______个.【分析】利用对称性,分情况计算.类似于△ABH的三角形共有6个;类似于△AGH的三角形共有6个;类似于△ABJ的三角形共有12个;类似于△ABC的三角形共有6个;类似于△AEC的三角形共有2个.于是,图中共有三角形6+6+12+6+2=32(个).【例5】(第二届“华数杯”决赛试题)图中有多少个平行四边形?【分析】这个题要用分类法来计数更合适,不妨把图1转变为图2来讨论.仔细观察和分析图2可以从以下两个方面来对平行四边形分类:(1)平行四边形的方向,图中阴影部分图形代表三种基本平行四边形,它们组成的平行四边形分别以A、B、C类表示.(2)平行四边形所含基本平行四边形的个数.下面我们列表统计如下:图中平行四边形的个数为:(6+6+2+1)×2+(5+4)=39(个).说明:在用分类法计数图形时,如何合理地选择分类的标准是非常重要的;恰当地结合列表法来统计,可以化繁为简,一目了然.1、关于排列在实际生活中常遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法.就是排列问题.在排的过程中,不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关.一般地,从n个不同的元素中任取出m个(m≤n)元素,按照一定的顺序排成一列.叫做从n个不同元素中取出m个元素的一个排列.由排列的定义可以看出,两个排列相同,不仅要求这两个排列中的元素完全相同,而且各元素的先后顺序也一样.如果两个排列的元素不完全相同.或者各元素的排列顺序不完全一样,则这就是两个不同的排列.从n个不同元素中取出m个(m≤n)元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,我们把它记做mnp(m≤n),m(1)(2) (1)mnp n n n n m=---+14444244443共个数.其中!(1) (1)nnP n n n==⨯-⨯⨯2、关于组合一般地,从n个不同元素中取出m个(m≤n)元素组成一组不计较组内各元素的次序,叫做从n个不同元素中取出m个元素的一个组合.由组合的定义可以看出,两个组合是否相同,只与这两个组合中的元素有关,而与取到这些元素的先后顺序无关.只有当两个组合中的元素不完全相同时,它们才是不同的组合.从n个不同元素中取出m个元素(m≤n)的所有组合的个数,叫做从n个不同元素中取出m个不同元素的组合数.记作(1) (1)!mmnn n n mCm⨯-⨯⨯-+=64444744448个数这就是组合数公式.【例6】(1)有4个同学一起去郊游,照相时,必须有一名同学给其他3人拍照,共可能有多少种拍照情况?(照相时3人站成一排)【分析】这是个排列问题.由于4人中必须有一个人拍照,所以,每张照片只能有3人,可以看成有3个位置由这3人来站.由于要选一人拍照,也就是要从四个人中选3人照相,所以,问题就转化成从四个人中选3人,排在3个位置中的排列问题.要计算的是有多少种排法.由排列数公式,共可能有:种不同的拍照情况.【巩固】由4个不同的独唱节目和3个不同的合唱节目组成一台晚会,要求任意两个合唱节目不相邻,开始和最后一个节目必须是合唱,则这台晚会节目的编排方法共有多少种?【分析】先排独唱节目,四个节目随意排,有44P=24种排法;其次在独唱节目的首尾排合唱节目,有三个节目,两个位置,对应23P=6种排法;再在独唱节目之问的3个位置中排一个合唱节目,有3种排法,由乘法原理,一共有24×6×3=432种不同的编排方法.(2)从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中火车有4班,汽车有3班,轮船有2班.问:一天中乘坐这些交通工具从甲地到乙地,共有多少种不同走法?【分析】这是组合问题.一天中乘坐火车有4种走法,乘坐汽车有3种走法,乘坐轮船有2种走法,所以一天中从甲地到乙地共有:4+3+2=9(种)不同走法.【例7】某校举行男生乒乓球比赛,比赛分成3个阶段进行,第1阶段:将参加比赛的48名选手分成8个小组,每组6人,分别进行单循环赛;第二阶段:将8个小组产生的前2名共16人再分成4个小组,每组4人,分别进行单循环赛;第3阶段:由4个小组产生的4个第1名进行2场半决赛和2场决赛,确定1到4名的名次.问:整个赛程一共需要进行多少场比赛?C=15场,共8个小组,有【分析】第l阶段中,每个小组内部的6个人每2人要赛一场,组内赛26C=6场,共4个小组,15×8=120场;第2阶段中,每个小组内部4人中每2人赛一场,组内赛24有6×4=24场;第3阶段赛2+2=4场.根据加法原理,整个赛程一共有120+24+4=148场比赛.【例8】从8名候选人中选出正、副班长各1人,再选出3名班委会成员.一共有多少种不同的选法?C=20种选法.由【分析】先选正、副班长,分别有8种和7种选法.再从剩下的6人中选出3人,有36乘法原理,共有8×7×20=1120种不同的选法.【例9】如下图,一只小甲虫要从A点出发沿着线段爬到B点,要求任何点和线段不可重复经过.问:这只甲虫有多少种不同的走法?【分析】从A点到B点有两类走法,一类是从A点先经过C点到B点,一类是从A点先经过D点到B点.两类中的每一种具体走法都要分两步完成,所以每一类中,都要用乘法原理,而最后计算从A到B 的全部走法时,只要用加法原理求和即可.解:从A点先经过C到B点共有:1×3=3(种)不同的走法.从A点先经过D到B点共有:2×3=6(种)不同的走法.所以,从A点到B点共有:3+6=9(种)不同的走法.同学们对这个题目可能很陌生,为了搞清楚什么是“容斥原理”,大家先一起回答两个问题:(1) 如右图(1),两个面积都是4厘米2的正方形摆在桌面上,它们遮盖住桌面的面积是8厘米2吗?(2) 如右图(2),一个正方形每条边上有6个点,四条边上一共有24个点吗?聪明的同学马上就会发现:(1) 两个正方形的面积和是8厘米2,现在它们有一部分重叠了.因此盖住桌面的面积应当从两个正方形的面积和中减去重叠的这部分面积,所以盖住桌面的面积应少于8厘米2.(2) 四个角上的点每个点都在两条边上,因此被重复计算了,在求四条边上共有多少点时,应当减去重复计算的点,所以共有 6×4-4=20(个)点.这两个问题,在计算时,都采用了“去掉”重复的数值(面积或个数)的方法.当需要计数的两类事物互相包含(有部分重复交叉)时,应把重复计数的部分排除掉.在一些计数问题中,经常遇到有关集合元素个数的计算.我们用|A|表示有限集A 的元素个数.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成: |A ∪B|=|A|+|B|-|A ∩B|,我们称这一公式为包含与排除原理,简称容斥原理.图示如右:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A ∩B ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A 、B 的并集A ∪B 的元素的个数,可分以下两步进行:第一步:分别计算集合A 、B 的元素个数,然后加起来,即先求|A|+|B|(意思是把A 、B 的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C=|A ∩B|(意思是“排除”了重复计算的元素个数).【例10】 某班45个学生参加期末考试,成绩公布后,数学得满分的有10人,数学及语文均得满分的有3人,这两科都没有得满分的有29人,那么语文成绩得满分的有多少人?【分析】 数学或语文至少有一科得满分的有45 - 29=16人,这16个人中数学得满分的有10人,那么数学没有得满分的有6人,这些人必定是语文得了满分,又知有3人两科均得满分,则语文得满分的一共有6+3=9人.【例11】 求在1~100的自然数中不是5的倍数也不是6的倍数的数有多少个?【分析】“既不是5的倍数也不是6的倍数”的反面情况就是“是5的倍数或者是6的倍数”.记A :1~100中5的倍数,205100=÷,有20个; B :1~100中6的倍数,4166100ΛΛ=÷,有16个;B A I :1~100中5和6的公倍数,即30的倍数,10330100ΛΛ=÷,有3个.依据公式,1~100中5的倍数或6的倍数共有3331620=-+个,则既不是5的倍数也不是6的倍数的数有6733100=-个.【例12】 学而思画展上展出了许多幅画,其中有16幅画不是六年级的,有15幅画不是五年级的.现在知道五、六年级共有25幅画,那么其他年级的画共有多少幅?【分析】不是六年级的画中包括五年级的画,同样不是五年级的画中也包括了六年级的画,又16比15大1,说明五年级比六年级多1幅,又知两个年级共有25幅画,则五年级的画有132)125(=÷+幅,因此其他年级的画有31316=-幅.【例13】 某校五年级共有110人,参加语文、英语、数学三科活动小组,每人至少参加一组.已知参加语文小组的有52人,只参加语文小组的有16人;参加英语小组的有61人,只参加英语小组的有15人;参加数学小组的有63人,只参加数学小组的有21人.那么三组都参加的有多少人?【分析】设参加语文小组的人组成集合为A ,参加英语小组的人组成集合为B ,参加数学小组的人组成集合为C.A CB 语文数学英语那么不只参加一种小组的人有:110-16-15-21=58,为|A ∩B|+|B ∩C|+|A ∩C|+|A ∩B ∩C|; 不只参加语文小组的人有:52-16=36|A ∩B|+|A ∩C|+|A ∩B ∩C|; 不只参加英语小组的人有:61-15=46|A ∩B|+|B ∩C|+|A ∩B ∩C|; 不只参加数学小组的人有:63-21=42|B ∩C|+|A ∩C|+|A ∩B ∩C|; 于是,三组都参加的人|A ∩B ∩C|有36+46+42-2×58=8人.【附1】数一数,右图中共有多少条线段?【分析】数线段要分类数:我把它分成两大类:“个人”和“集体”.“个人”:5条 ;“集体”:3+2+1=6 (条);共5个这样的集体, 所以共5×(3+2+1)+5=35(条).【附2】(第六届迎春杯决赛)用三根等长的火柴可以摆成一个等边三角形.用这样的等边三角形如图所示,拼合成一个大的等边三角形.如果这个大的等边三角形的底为20根火柴长,那么一共要多少根火柴?【分析】注意引导学生用“分层数的思路”.把大的等边三角形分为20“层”分别计算火柴的根数:最上一“层”只用了3根火柴;从上向下数第二层用了3×2=6根火柴;从上向下数第三层用了3×3=9根火柴;…… 从上向下数第20层用了3×20=60根火柴.所以,总共要用火柴:3×(1+2+3+…+20)=630(根).【附3】(北京市第六届“迎春杯”决赛)如图是中国象棋盘,如果双方准备各放一个棋子,要求它们不在同一行,也不在同一列,那么总共有____种不同的放置方法.【分析】设甲方先放棋子,乙方后放棋子.那么甲方可以把棋子放在棋盘的任意位置,故甲方有10×9=90种不同的放置方法.对应甲方的第一种放法,乙方按规定必须去掉甲方棋子所在的行与列,而放置在剩下的任意位置,所以乙方有9×8=72种不同的放置方法.因此,总共有72×90=6480种不同的放置方法.【附4】有100位旅客,其中有10人既不懂英语又不懂俄语,有75人懂英语,83人懂俄语.问既懂英语又懂俄语的有多少人?【分析】法1 :在100人中懂英语或俄语的有:100-10=90(人).又因为有75人懂英语,所以只懂俄语的有:90-75=15(人).从83位懂俄语的旅客中除去只懂俄语的人,剩下的83-15=68(人)就是既懂英语又懂俄语的旅客.法 2 :学会把公式进行适当得变换,由容斥原理,得:|A∩B|=|A|+|B|-|A∪B|=75+83-90=68(人).【附5】三年级科技活动组共有63人.在一次剪贴汽车模型和装配飞机模型的定时科技活动比赛中,老师到时清点发现:剪贴好一辆汽车模型的同学有42人,装配好一架飞机模型的同学有34人.每个同学都至少完成了一项活动.问:同时完成这两项活动的同学有多少人?【分析】因42+34=76,76>63,所以必有人同时完成了这两项活动.由于每个同学都至少完成了一项活动,根据包含排除法知,42+34-(完成了两项活动的人数)=全组人数,即76-(完成了两项活动的人数)=63.由减法运算法则知,完成两项活动的人数为76-63=13(人).也可画图分析.1. 如右图,数数有多少个三角形?【分析】法1:常规方法(分类数),第一类(含1个基本三角形,最小的):1+3+5=9(个);第二类(含4个基本三角形,次大的):3个;第三类(含9个基本三角形,最大的):1个.法2:我们可以换个角度分层,将右图从上到下分成最基本的3层,第一层有1个小三角,第一层有3个小三角,第一层有5个小三角,第一层+第二层有1个较大的三角形,第二层+第三层有2个较大的三角形,第一层+第二层+第三层有最大的一个三角形,所以共:1+3+5+1+2+1=13(个)三角形.在数的过程中注意可将三角形分成尖朝上和朝下两类.2. (第十一届迎春杯决赛)如图是由18个大小相同的小正三角形拼成的四边形.其中某些相邻的小正三角形可以拼成较大的正三角形若干个.那么图中包含“*”号的大、小正三角形一共有多少个?【分析】分三类进行计数(设小正三角形边长为1)包含*的三角形中,边长为1的正三角形有1个;边长为2的正三角形有4个;边长为3的正三角形有1个;因此,图中包含“*”的所有大、小正三角形一共有:1+4+1=6(个).3. 从8名候选人中选出正、副班长各1人,再选出3名班委会成员.一共有多少种不同的选法?C=20种选法.由【分析】先选正、副班长,分别有8种和7种选法.再从剩下的6人中选出3人,有36乘法原理,共有8×7×20=1120种不同的选法.4. 某班要在42名同学中选出3名同学去参加夏令营,问共有多少种选法?如果在42人中选3人站成一排,有多少种站法?分析由组合数公式,共有种不同的选法;由排列数公式,共有p=42×41×40=68880342种不同的站法.5. 幼儿园有58人学钢琴,43人学画画,37人既学钢琴又学画画,问只学钢琴和只学画画的分别有多少人?【分析】A圆表示学画画的人,B圆表示学钢琴的人,C表示既学钢琴又学画画的人,图中A圆不含阴影的部分表示只学画画的人:43-37=6,图中B圆不含阴影的部分表示只学钢琴的人:58-37=21.6. 一班有45人,其中26人参加了数学竞赛,22人参加了作文比赛,12人两项比赛都参加了.一班有多少人两项比赛都没有参加?【分析】45-(26+22-12)=9(人).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学《几何中的计数问题(二)》练习题(含答案)
一、数长方形
例1如下图,数一数下列各图中长方形的个数?
分析图(Ⅰ)中长方形的个数与AB边上所分成的线段的条数有关,每一条线段对应一个长方形,所以长方形的个数等于AB边上线段的条数,即长方形个数为:
4+3+2+1=10(个).
图(Ⅱ)中AB边上共有线段4+3+2+1=10条. BC边上共有线段:2+1=3(条),把AB上的每一条线段作为长,BC边上每一条线段作为宽,每一个长配一个宽,就组成一个长方形,所以图(Ⅱ)中共有长方形为:
(4+3+2+1)×(2+1)=10×3=30(个).
图(Ⅲ)中,依据计算图(Ⅱ)中长方形个数的方法:可得长方形个数为:(4+3+2+1)×(3+2+1)=60(个).
解:图(Ⅰ)中长方形个数为4+3+2+1=10(个).
图(Ⅱ)中长方形个数为:
(4+3+2+1)×(2+1)=10×3=30(个).
图(Ⅲ)中长方形个数为:
(4+3+2+1)×(3+2+1)=10×6=60(个).
小结:一般情况下,如果有类似图Ⅲ的任一个长方形一边上有n-1个分点(不包括这条边的两个端点),另一边上有m-1个分点(不包括这条边上的两个端点),通过这些点分别作对边的平行线且与另一边相交,这两组平行线将长方形分为许多长方形,这时长方形的总数为:
(1+2+3+…+m)×(1+2+3+…+n).
例2 如右图数一数图中长方形的个数.
解:AB边上分成的线段有:
5+4+3+2+1=15.
BC边上分成的线段有:
3+2+1=6.
所以共有长方形:
(5+4+3+2+1)×(3+2+1)=15×6=90(个).
二、数正方形
例3 数一数下页各个图中所有正方形的个数.(每个小方格为边长为1的正方形)分析图Ⅰ中,边长为1个长度单位的正方形有:
2×2=4(个),边长为2个长度单位的正方形有:
1×1=1(个).
所以,正方形总数为1×1+2×2=1+4=5(个).
图Ⅱ中,边长为1个长度单位的正方形有3×3=9(个);
边长为2个长度单位的正方形有:2×2=4(个);
边长为3个长度单位的正方形有1×1=1(个).
所以,正方形的总数为:1×1+2×2+3×3=14(个).
图Ⅲ中,边长为1个长度单位的正方形有:
4×4=16(个);
边长为2个长度单位的正方形有:3×3=9(个);
边长为3个长度单位的正方形有:2×2=4(个);
边长为4个长度单位的正方形有:1×1=1(个);
所以,正方形的总数为:
1×1+2×2+3×3+4×4=30(个).
图Ⅳ中,边长为1个长度单位的正方形有:
5×5=25(个);
边长为2个长度单位的正方形有:4×4=16(个);
边长为3个长度单位的正方形有:3×3=9(个);
边长为4个长度单位的正方形有:2×2=4(个);
边长为5个长度单位的正方形有:1×1=1(个).
所有正方形个数为:
1×1+2×2+3×3+4×4+5×5=55(个).
小结:一般地,如果类似图Ⅳ中,一个大正方形的边长是n个长度单位,那么其中边长为1个长度单位的正方形个数有:n×n=n2(个),边长为2个长度单位的正方形个数有:(n-1)×(n-1)=(n-1)2(个)…;边长为(n-1)个长度单位的正方形个数有:2×2=22(个),边长为n个长度单位的正方形个数有:1×1=1(个).所以,这个大正方形内所有正方形总数为:12+22+32+…+n2(个).
例4 如右图,数一数图中有多少个正方形(其中每个小方格都是边长为1个长度单位的正方形).
分析为叙述方便,我们规定最小正方形的边长为1个长度单位,又称为基本线段,图中共有五类正方形.
①以一条基本线段为边的正方形个数共有:
6×5=30(个).
②以二条基本线段为边的正方形个数共有:
5×4=20(个).
③以三条基本线段为边的正方形个数共有:
4×3=12(个).
④以四条基本线段为边的正方形个数共有:
3×2=6(个).
⑤以五条基本线段为边的正方形个数共有:
2×1=2(个).
所以,正方形总数为:
6×5+5×4+4×3+3×2+2×1
=30+20+12+6+2=70(个).
小结:一般情况下,若一长方形的长被分成m等份,宽被分成n等份,(长和宽上的每一份是相等的)那么正方形的总数为(n<m):mn+(m-1)(n-1)+(m-2)(n-2)+…+(m-n+1)·1
显然例4是结论的特殊情况.
例5 如下图,平面上有16个点,每个点上都钉上钉子,形成4×4的正方形钉阵,现有许多皮筋,问能套出多少个正方形.
分析这个问题与前面数正方形的个数是不同的,因为正方形的边不是先画好的,而是要我们去确定的,所以如何确定正方形的边长及顶点,这是我们首先要思考的问题.很明显,我们能围成上图Ⅰ那样正向正方形14个,除此之外我们还能围出图Ⅱ那样斜向正方形4个,图Ⅲ那样斜向正方形2个.但我们不可能再围出比它们更小或更大的斜向正方形,所以斜向正方形一共有4+2=6个,总共可以围出正方形有:14+6=20(个).
我们把上述结果列表分析可知,对于n×n个顶点,
可作出斜向正方形的个数恰好等于(n-1)×(n-1)个顶点时的所有正方形的总数.
三、数三角形
例6 如右图,数一数图中三角形的个数.
分析这样的图形只能分类数,可以采用类似数正方形的方法,从边长为一条基本线段的最小三角形开始.
Ⅰ.以一条基本线段为边的三角形:
①尖朝上的三角形共有四层,它们的总数为:
W①上=1+2+3+4=10(个).
②尖朝下的三角形共有三层,它们的总数为:
W①下=1+2+3=6(个).
Ⅱ.以两条基本线段为边的三角形:
①尖朝上的三角形共有三层,它们的总数为:
W②上=1+2+3=6(个).
②尖朝下的三角形只有一个,记为W②下=1(个).
Ⅲ.以三条基本线段为边的三角形:
①尖朝上的三角形共有二层,它们的总数为:
W③上=1+2=3(个).
②尖朝下的三角形零个,记为W③下=0(个).
Ⅳ.以四条基本线段为边的三角形,只有一个,记为:
W④上=1(个).
所以三角形的总数是10+6+6+1+3+1=27(个).
我们还可以按另一种分类情况计算三角形的个数,即按尖朝上与尖朝下的三角形的两种分类情况计算三角形个数.
Ⅰ.尖朝上的三角形共有四种:
W①下=1+2+3+4=10
W②上=1+2+3=6
W③上=1+2=3
W④上=1
所以尖朝上的三角形共有:10+6+3+1=20(个).
Ⅱ.尖朝下的三角形共有二种:
W①下=1+2+3=6
W②下=1
W③下=0
W④下=0
则尖朝下的三角形共有:6+1+0+0=7(个)
所以,尖朝上与尖朝下的三角形一共有:
20+7=27(个).
小结:尖朝上的三角形共有四种.每一种尖朝上的三角形个数都是由1开始的连续自然数的和,其中连续自然数最多的和中最大的加数就是三角形每边被分成的基本线段的条数,依次各个连续自然数的和都比上一次少一个最大的加数,直到1为止.
尖朝下的三角形的个数也是从1开始的连续自然数的和,它的第一个和恰是尖朝上的第二个和,依次各个和都比上一个和少最大的两个加数,以此类推直到零为止.
例7 页图数一数图中有多少个三角形.
解:参考例6所总结的规律把图中三角形分成尖朝上和尖朝下的两类:
Ⅰ.尖朝上的三角形有五种:
(1)W①上=8+7+6+5+4=30
(2)W②上=7+6+5+4=22
(3)W③上=6+5+4=15
(4)W④上=5+4=9
(5)W⑤上=4
∴尖朝上的三角形共有:30+22+15+9+4=80(个).
Ⅱ.尖朝下的三角形有四种:
(1)W①下=3+4+5+6+7=25
(2)W②下=2+3+4+5=14
习题八
1.下图中有多少个正方形?
2.下图中有多少个长方形?
3.下图中有多少个三角形?
4.下图中有多少个长方形?
5.下图(1)、(2)中各有多少个三角形?
6.下图中有多少个三角形?
7.下图中有多少个三角形?
8.下图中有多少个正方形?
9.下图中有多少个长方体?
习题八解答
1.共有正方形54个.
2.共有长方形136个.
3.共有三角形128个.
4.共有长方形133个.
5.(1)共有三角形78个.
(2)共有三角形58个.
6.共有三角形45个.
7.共有三角形36个.
8.共有正方形24个.
9.共有长方体540个.。

相关文档
最新文档