几何最值问题参考答案

合集下载

中考压轴题专题:与圆有关的最值问题(附答案)

中考压轴题专题:与圆有关的最值问题(附答案)

与圆有关的最值(取值范围)问题引例1:在坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是_________.引例2:如图,在边长为1的等边△OAB中,以边AB为直径作⊙D,以O为圆心OA长为半径作⊙O,C为半圆弧上的一个动点(不与A、B两点重合),射线AC交⊙O于点E,»ABBC=,AC=,求的最大值.a b a b引例3:如图,∠BAC=60°,半径长为1的圆O与∠BAC的两边相切,P为圆O上一动点,以P为圆心,PA长为半径的圆P交射线AB、AC于D、E两点,连接DE,则线段DE长度的最大值为( ).A.3 B.6 CD.一、题目分析:此题是一个圆中的动点问题,也是圆中的最值问题,主要考察了圆内的基础知识、基本技能和基本思维方法,注重了初、高中知识的衔接1.引例1:通过隐藏圆(高中轨迹的定义),寻找动点C与两个定点O、A构成夹角的变化规律,转化为特殊位置(相切)进行线段、角度有关计算,同时对三角函数值的变化(增减性)进行了延伸考查,其实质是高中“直线斜率”的直接运用;2.引例2:通过圆的基本性质,寻找动点C与两个定点A、B构成三角形的不变条件,结合不等式的性质进行转化,其实质是高中“柯西不等式”的直接运用;3.引例3:本例动点的个数由引例1、引例2中的一个动点,增加为三个动点,从性质运用、构图形式、动点关联上增加了题目的难度,解答中还是注意动点D、E与一个定点A 构成三角形的不变条件(∠DAE=60°),构造弦DE、直径所在的直角三角形,从而转化为弦DE与半径AP之间的数量关系,其实质是高中“正弦定理”的直接运用;综合比较、回顾这三个问题,知识本身的难度并不大,但其难点在于学生不知道转化的套路,只能凭直观感觉去寻找、猜想关键位置来求解,但对其真正的几何原理却无法通透.二、解题策略1.直观感觉,画出图形;2.特殊位置,比较结果;3.理性分析动点过程中所维系的不变条件,通过几何构建,寻找动量与定量(常量)之间的关系,建立等式,进行转化.A 三、中考展望与题型训练例一、斜率运用1.如图,A 点的坐标为(﹣2,1),以A 为圆心的⊙A 切x 轴于点B ,P (m ,n)为⊙A 上的一个动点,请探索n+m 的最大值.例二、圆外一点与圆的最近点、最远点1.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,点D 是平面内的一个动点,且AD=2,M 为BD 的中点,在D 点运动过程中,线段CM 长度的取值范围是 .2.如图,⊙O 的直径为4,C 为⊙O 上一个定点,∠ABC=30°,动点P 从A 点出发沿半圆弧»AB 向B 点运动(点P 与点C 在直径AB 的异侧),当P 点到达B 点时运动停止,在运动过程中,过点C 作CP 的垂线CD 交PB 的延长线于D 点.(1)在点P 的运动过程中,线段CD 长度的取值范围为 ;(2)在点P 的运动过程中,线段AD 长度的最大值为 .例三、正弦定理 1.如图,△ABC 中,∠BAC=60°,∠ABC=45°,AB=D 是线段BC 上的一个动点,以AD 为直径作⊙O 分别交AB ,AC 于E ,F 两点,连接EF ,则线段EF 长度的最小值为 .2. 如图,定长弦CD 在以AB 为直径的⊙O 上滑动(点C 、D 与点A 、B 不重合),M 是CD 的中点,过点C 作CP ⊥AB 于点P ,若CD=3,AB=8,则PM 长度的最大值是 .A例四、柯西不等式、配方法1.如图,已知半径为2的⊙O 与直线l 相切于点A ,点P 是直径AB 左侧半圆上的动点,过点P 作直线l 的垂线,垂足为C ,PC 与⊙O 交于点D ,连接PA 、PB ,设PC 的长为x (2<x <4),则当x= 时,PD•CD 的值最大,且最大值是为 .2.如图,线段AB=4,C 为线段AB 上的一个动点,以AC 、BC 为边作等边△ACD 和等边△BCE ,⊙O 外接于△CDE ,则⊙O 半径的最小值为( ).D. 23.在平面直角坐标系中,以坐标原点O 为圆心,2为半径画⊙O ,P 是⊙O 上一动点,且P 在第一象限内,过点P 作⊙O 的切线与轴相交于点A ,与轴相交于点B ,线段AB 长度的x y 最小值是 .例四、相切的应用(有公共点、最大或最小夹角)1.如图,在Rt △ABC 中,∠C=90°,AC=6,BC=8,D 为AB 边上一点,过点D 作CD 的垂线交直线BC 于点E ,则线段CE 长度的最小值是 .2.如图,Rt△ABC 中,∠C=90°,∠A=30°,AB=4,以AC 上的一点O 为圆心OA 为半径作⊙O ,若⊙O 与边BC 始终有交点(包括B 、C 两点),则线段AO 的取值范围是 .3.如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O 于点Q,则PQ的最小值为( )A.B.C.3 D.2例五、其他知识的综合运用1.(2015•济南)抛物线y=ax2+bx+4(a≠0)过点A(1,﹣1),B(5,﹣1),与y轴交于点C.(1)求抛物线的函数表达式;(2)如图1,连接CB,以CB为边作▱CBPQ,若点P在直线BC上方的抛物线上,Q为坐标平面内的一点,且▱CBPQ的面积为30,求点P的坐标;(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为上的一动点(不与点A,E 重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值.2.(2013秋•相城区校级期末)如图,已知A、B是⊙O与x轴的两个交点,⊙O的半径为1,P是该圆上第一象限内的一个动点,直线PA、PB分别交直线x=2于C、D两点,E为线段CD的中点.(1)判断直线PE与⊙O的位置关系并说明理由;(2)求线段CD长的最小值;(3)若E点的纵坐标为m,则m的范围为 .B【题型训练】1.如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5,OA与⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C,若在⊙O上存在点Q,使△QAC是以AC为底边的等腰三角形,则⊙O的半径r的取值范围为 .2.已知:如图,RtΔABC中,∠B=90º,∠A=30º,BC=6cm,点O从A点出发,沿AB以每秒cm的速度向B点方向运动,当点O运动了t秒(t>0)时,以O点为圆心的圆与边AC相切于点D,与边AB相交于E、F两点,过E作EG⊥DE交射线BC于G.(1)若点G在线段BC上,则t的取值范围是;(2)若点G在线段BC的延长线上,则t的取值范围是 .3.如图,⊙M,⊙N的半径分别为2cm,4cm,圆心距MN=10cm.P为⊙M上的任意一点,Q为⊙N上的任意一点,直线PQ与连心线所夹的锐角度数为,当P、Q在两圆上任意运动时,lα的最大值为; (B);; (D) tanα∠43344.如图,在矩形ABCD中,AB=3,BC=4,O 为矩形ABCD的中心,以D为圆心1为半径作⊙D,P为⊙D上的一个动点,连接AP、OP,则△AOP面积的最大值为( ).(A)4 (B) (C) (D)215358174 5.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,经过点C且与边AB相切的动圆与CA、CB 分别相交于点P、Q,则线段PQ长度的最小值是( ).A. B. C.5 D.1942456.如图,在等腰Rt△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E在AB边上运动(点E不与点A重合),过A、D、E三点作⊙O,⊙O交AC于另一点F,在此运动变化的过程中,线段EF长度的最小值为.7.如图,A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心的坐标为(-1,0),半径为1,若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是( ).A.2 B.1 C. D.22-8.如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C的圆心坐标为(0,-1),半径为1,D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是( ).A.3 B. C.103D.41139.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=4,⊙C的半径为1,点P在斜边AB上,PQ 切⊙O于点Q,则切线长PQ长度的最小值为( ).B.10.如图∠BAC=60°,半径长1的⊙O与∠BAC的两边相切,P为⊙O上一动点,以P为圆心,PA长为半径的⊙P交射线AB、AC于D、E两点,连接DE,则线段DE长度的范围为 .11.在直角坐标系中,点A的坐标为(3,0),点P()是第一象限内一点,且AB=2,m n,则的范围为 .m n-12.在坐标系中,点A的坐标为(3,0),点P是y轴右侧一点,且AP=2,点B上直线y=x+1上一动点,且PB⊥AP于点P,则,则的取值范围是 .tan ABP m∠=m13.在平面直角坐标系中,M(3,4),P是以M为圆心,2为半径的⊙M上一动点,A(-1,0)、B(1,0),连接PA、PB,则PA2+PB2最大值是 .蔡老师点评:与圆有关的最值问题,看着无从下手,但只要仔细观察,分析图形,寻找动点与定点之间不变的维系条件,构建关系,将研究的问题转化为变量与常量之间的关系,就能找到解决问题的突破口!几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法,先探求出定值,再给出证明.几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基本方法有:1.特殊位置与极端位置法;2.几何定理(公理)法;3.数形结合法等.注:几何中的定值与最值近年广泛出现于中考试题中,由冷点变为热点.这是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数形结合、特殊与一般相结合、逻辑推理与合情想象相结合等思想方法.参考答案:引例1.解:C在以A为圆心,以2为半径作圆周上,只有当OC与圆A相切(即到C点)时,∠BOC最小,AC=2,OA=3,由勾股定理得:OC=,∵∠BOA=∠ACO=90°,∴∠BOC+∠AOC=90°,∠CAO+∠AOC=90°,∴∠BOC=∠OAC,tan∠BOC=tan∠OAC= =,随着C的移动,∠BOC越来越大,∵C在第一象限,∴C不到x轴点,即∠BOC<90°,∴tan∠BOC≥,故答案为:m≥.引例1图引例2图+≤引例2.a b原题:(2013•武汉模拟)如图,在边长为1的等边△OAB中,以边AB为直径作⊙D,以O为圆心OA长为半径作圆O,C为半圆AB上不与A、B重合的一动点,射线AC交⊙O 于点E,BC=a,AC=b.(1)求证:AE=b+a;(2)求a+b的最大值;(3)若m是关于x的方程:x2+ax=b2+ab的一个根,求m的取值范围.【考点】圆的综合题.【分析】(1)首先连接BE,由△OAB为等边三角形,可得∠AOB=60°,又由圆周角定理,可求得∠E的度数,又由AB为⊙D的直径,可求得CE的长,继而求得AE=b+a;(2)首先过点C作CH⊥AB于H,在Rt△ABC中,BC=a,AC=b,AB=1,可得(a+b)2=a2+b2+2ab=1+2ab=1+2CH•AB=1+2CH≤1+2AD=1+AB=2,即可求得答案;(3)由x2+ax=b2+ab,可得(x﹣b)(x+b+a)=0,则可求得x的值,继而可求得m 的取值范围.【解答】解:(1)连接BE,∵△OAB为等边三角形,∴∠AOB=60°,∴∠AEB=30°,∵AB为直径,∴∠ACB=∠BCE=90°,∵BC=a,∴BE=2a,CE=a,∵AC=b,∴AE=b+a;(2)过点C作CH⊥AB于H,在Rt△ABC中,BC=a,AC=b,AB=1,∴a2+b2=1,∵S△ABC=AC•BC=AB•CH,∴AC•BC=AB•CH,∴(a+b)2=a2+b2+2ab=1+2ab=1+2CH•AB=1+2CH≤1+2AD=1+AB=2,∴a+b≤,故a+b的最大值为,(3)∵x2+ax=b2+ab,∴x2﹣b2+ax﹣ab=0,∴(x+b)(x﹣b)+a(x﹣b)=0,∴(x﹣b)(x+b+a)=0,∴x=b或x=﹣(b+a),当m=b时,m=b=AC<AB=1,∴0<m<1,当m=﹣(b+a)时,由(1)知AE=﹣m,又∵AB<AE≤2AO=2,∴1<﹣m≤2,∴﹣2≤m<﹣1,∴m的取值范围为0<m<1或﹣2≤m<﹣1.【点评】此题考查了圆周角定理、等边三角形的性质、完全平方公式的应用以及一元二次方程的解法.此题难度较大,注意掌握数形结合思想与分类讨论思想的应用.引例3.解:连接EP,DP,过P点作PM垂直DE于点M,过O做OF⊥AC与F,连接AO,如图,∵∠BAC=60°,∴∠DPE=120°.∵PE=PD,PM⊥DE,∴∠EPM=60°,∴ED=2EM=2EP•sin60°=EP=PA.当P与A、O共线时,且在O点右侧时,⊙P直径最大.∵⊙O与∠BAC两边均相切,且∠BAC=60°,∴∠OAF=30°,OF=1,∴AO==2,AP=2+1=3,∴DE=PA=3.故答案为:D。

几何最值问题 (讲义及答案)

几何最值问题 (讲义及答案)

几何最值问题(讲义)➢知识点睛1.解决几何最值问题的理论依据:①两点之间,线段最短(已知两个定点)②垂线段最短(已知一个定点、一条定直线)③三角形三边关系(已知两边长固定或其和、差固定)④过圆内一点,最长的弦为直径,最短的弦为垂直于直径的弦2.几何最值问题的处理思路:①分析定点、动点,寻找不变特征;②若属于常见模型、结构,调用模型、结构解决问题;若不属于常见模型,要结合所求目标,根据不变特征转化为基本定理或表达为函数解决问题.转化原则:尽量减少变量,向定点、定线段、定图形靠拢,或使用同一变量表达所求目标.3.常用模型、结构示例:①轴对称最值模型lll求P A+PB的最小值,求|P A-PB|的最大值,定长线段MN在直线l上滑动,使点在线异侧使点在线同侧求AM+MN+BN 的最小值;1/ 72 / 7平移BN (或AM )②利用图形性质进行转化(三角形三边关系示例)DCABONM求OD 的最大值 求AB 的最值➢ 精讲精练1. 如图,直线243y x =+与x 轴、y 轴分别交于点A 和点B ,点C ,D 分别为线段AB ,OB 的中点,点P 为OA 上一动点,PC +PD 值最小时点P的坐标为( ) A .(-3,0)B .(-6,0)C .(32-,0)D .(52-,0)y xPODCBA2. 已知:如图,∠ABC =30°,P 为∠ABC 内部一点,BP =4,如果点M ,N 分别为边AB ,BC 上的两个动点,则△PMN 周长的最小值是________.3 / 7 ED C B AAE PCBA3. 如图,在长方形ABCD 中,AB =4,BC =8,E 为CD 边的中点,若P ,Q 为BC 边上的两个动点,且PQ =2,则当BP =________时,四边形APQE 的周长最小.A B CD EP Q第3题图 第4题图4. 已知二次函数y =-x 2+2x +3与y 轴的交点为A ,顶点为B ,点P (t ,0)是x 轴上的动点.则|P A -PB |的最大值是________,此时点P 的坐标是__________.5. 如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8,D 是AB 边上 的动点,E 是BC 边上的动点,则AE +DE 的最小值为( ) A .3213 B .10C .245D .4856. 如图,在Rt △ABC 中,∠B =90°,AB =3,BC =4,点D 在BC 边上,则以AC 为对角线的所有□ADCE 中,DE 长度的最小值为_____________.4 / 7OEDCBA第6题图 第7题图7. 如图,边长为6的等边三角形ABC 中,E 是对称轴AD 上的一个动点,连接EC ,将线段EC 绕点C 逆时针转60°得到FC ,连接DF .则在点E 运动过程中,DF 的最小值是________.8. 如图,△ABC 是等边三角形,AB =3,E 在AC 上且AE =23AC ,D 是直线BC 上一动点,线段ED 绕点E 逆时针旋转90°,得到线段EF ,当点D运动时,则线段AF 的最小值是___________.ABCDEF9. 如图,已知AB =2,C 是线段AB 上任一点,分别以AC ,BC 为斜边,在AB 的同侧作等腰直角三角形ACD 和等腰直角三角形BCE ,则DE 长度的最小值为_____________.ED B CA5 / 710. 动手操作:在矩形纸片ABCD 中,AB =3,AD =5.如图所示,折叠纸片,使点A 落在BC 边上的A′处,折痕为PQ ,当点A′在BC 边上移动时,折痕的端点P ,Q 也随之移动.若限定点P ,Q 分别在AB ,AD 边上移动,则点A′在BC 边上可移动的最大距离为________________.QPA'D C B AD CBA11. 如图,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△A′MN ,连接A′C ,则A′C 长度的最小值是_______.A'D CBNMAF DE AHGB C第11题图 第12题图12. 如图,E ,F 是正方形ABCD 的边AD 上的两个动点,且满足AE =DF .连接CF 交BD 于点G ,连接BE 交AG 于点H ,连接DH .若正方形的边长为2,则DH 长度的最小值是_______.13.已知抛物线3)(1)y x x =+-,与x 轴从左至右依次相交于A ,B 两点,与y 轴相交于点C ,经过点A的直线y b =+与抛物线的另一个交点为D .设点E 是线段AD 上的一点(不含端点),连接BE .一动点Q 从点B 出发,沿线段BE 以每秒1个单位的速度运动到点E ,再沿线段ED 以每秒233个单位的速度运动到点D后停止,则当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?6/ 77 / 7➢ 参考答案1. C2. 43. 44.2;(-3,0)5. D6. 37.23 8. 231+ 9. 1 10. 211. 17- 12. 15-13. ()341-,。

中考几何最值问题归类解析

中考几何最值问题归类解析
行 Y 交 A 于点 P 轴 D .
3 , 点 E的纵坐标 为 一m +2 )则 m
+3,



设点 E的横坐标 为 r( n 0<m
< ) 则 点 E 的纵 坐 标 为 一1 + 3 , 7 1 ,
2 +3, m
|D \ B
图 1 1


D( 3 , 0, ) O F=m, 线 D 的表 达 式 直 E
出 的 新 题 、 题 脱 颖 而 出. 类 试 题 较 好 地 考 查 了 学 生 活 这

过 M 作 M 上A , 时 MN 最 小 , 直 角 三 角 N C此 在
几何探究 、 推理能力的要求. 现以 2 1 0 0年 中考试题为例 加以归类说明.
1 线段 最 值 问题 例 1 ( 00年 黄 冈 ) 图 21 如
十’截 ・ ( 1年 期・ 版 7 7 2 1 第2 初中 ) 0
・复习参考 ・
中 考 几 伺 最 值 问 题 归 类 麓 斩
2 10 江 苏丰县 中学初 中部 27 0
在近几年各地 中考中 , 几何最值 问题屡屡受 到命 题
者 青 睐 , 类 问 题 不 仅 涉 及 到平 面 几 何 的基 本 知 识 , 此 还 涉及 几 何 图形 、 面 直 角 坐标 系 、 数 等 知 识. 观 2 1 平 函 纵 00 年各 地 中考 数 学试 卷 , 一批 立 意新 颖 、 造 精 巧 、 点 突 构 考
() 1 求证 : 邶 AE B; △A N
( ) 当 点 在 何 处 时 ,M +C 的 值 最 小 ; 2① A M ② 当 点 在 何 处 时 ,M +B + M 的值 最 小 , 说 A M C 并

(答案)奥赛经典-奥林匹克数学中的几何问题---参考答案(第1-2章)

(答案)奥赛经典-奥林匹克数学中的几何问题---参考答案(第1-2章)

参考答案第一章 梅涅劳斯定理及应有习题A1.延长CB ,FE 交于H ,ADB △与截线GEH ,有13122AG DH BE DH GD HB EA HB ⋅⋅=⋅⋅=,有43DH HB =,即74CH HD =.对ACD △及截线FGH ,72141AF CH DG AF FC HD GA FC ⋅⋅=⋅⋅=,求得27AF FC =. 2.设CB ,DE 的延长线交于P ,又BP BC =,32FP PB =,对AFB △与截线HEP ,CGE ,有31121AH FP BE AH GF PB EA HF ⋅⋅=⋅⋅=,即23AH HF =;11121AG FC BE AG GF CB EA GF ⋅⋅=⋅⋅=,即21AG GF =.由此求得645AH HG GF =∶∶∶∶.3.对BDP △于截线CEA ,有1231612BC DA PE BC CD AP EA CD ⋅⋅=⋅⋅=,知BD DC =.对CDP △与截线BFA ,有22111CB DA PF PF BD AP FC FC ⋅⋅=⋅⋅=,知14PF FC =.而20CF =,故15CP =. 在PBC △中,由中线长公式2PD =,得BC =,即BD =.又22222269BP PD BD +=+==,即90BPD ∠=︒,27PBD S =△,4108ABC PBD S S ==△△.4.直线OCB 分别与DMF △和AEM △的三边延长线都相交,有1DB MO FC MB FO DC ⋅⋅=,1AB EO MCEB MO AC⋅⋅=,即OF OE DB FC EB AC OM OM MB DC AB MC ⋅⋅⋅=⋅⋅⋅.由EF AD ∥,有DB AB MB EB =,FC MC DC AC =,从而21OF OE OM ⋅=,即22OF OE OM OP ⋅==,有OFP OPE △∽△,故OPF OEP ∠=∠.5.直线截ABC △,有22133CF AD BE BE FA DB EC EC ⋅⋅=⋅⋅=,即94BE EC =,故54BC CE =.直线截DBE △,有25154EF AD BC EF FD AB CE ED ⋅⋅=⋅⋅=,所以21EF FD =∶∶. 6.设AC BC x ==,则AB =,。

几何最值—转化求最值(一)(含答案)

几何最值—转化求最值(一)(含答案)

学生做题前请先回答以下问题问题1:几何最值问题的理论依据是什么?答:(已知两个定点)两点之间,__________;(已知一个定点、一条定直线)________最短;(已知两边长固定或其和、差固定)三角形_________;过圆内一点,最长的弦为______,最短的弦为______________.问题2:几何最值问题的转化原则是什么?答:尽量减少______,向_______、_______、_______靠拢.问题3:想一想,几何最值问题的处理思路是什么?以下是问题及答案,请对比参考:问题1:几何最值问题的理论依据是什么?答:(已知两个定点)两点之间,;(已知一个定点、一条定直线)最短;(已知两边长固定或其和、差固定)三角形;过圆内一点,最长的弦为,最短的弦为.答:问题2:几何最值问题的转化原则是什么?答:尽量减少,向、、靠拢.答:问题3:想一想,几何最值问题的处理思路是什么?答:几何最值—转化求最值(一)一、单选题(共5道,每道20分)1.如图,在△ABC中,∠ACB=90°,AC=12,BC=8,点A,C分别在x轴、y轴上.当点A在x 轴上运动时,点C随之在y轴上运动,则在运动过程中,点B到原点的最大距离为( )A.12B.15C.16D.18答案:C解题思路:试题难度:三颗星知识点:几何最值问题2.如图,在矩形ABCD中,AB=5,BC=12,E是BC边上一动点,则以BD为对角线的所有平行四边形BEDF中,EF的最小值是( )A. B.5C.6D.12答案:B解题思路:试题难度:三颗星知识点:几何最值问题3.如图,在△ABC中,AB=5,AC=12,BC=13,P为边BC上一动点,PE⊥AB于点E,PF⊥AC 于点F,M为EF中点,PM的最小值为( )A. B.C.3D.答案:A解题思路:试题难度:三颗星知识点:几何最值问题4.如图,边长为2a的等边△ABC中,M是高AD所在直线上的一个动点,连接CM,将线段CM绕点C逆时针旋转60°得到CN,连接DN.则在点M运动过程中,线段DN的最小值为( )A. B.aC. D.答案:D解题思路:试题难度:三颗星知识点:几何最值问题5.如图,在△ABC中,AB=10,AC=8,BC=6,过点C且与AB边相切的动圆与AC,BC分别相交于点P,Q,则线段PQ长度的最小值为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:几何最值问题。

几何最值问题参考答案与解析

几何最值问题参考答案与解析

几何最值问题一.选择题(共6小题)1.(2015•孝感一模)如图,已知等边△ABC的边长为6,点D为AC的中点,点E为BC的中点,点P为BD上一点,则PE+PC的最小值为()3==3,.2.(2014•鄂城区校级模拟)如图,在直角坐标系中有线段AB,AB=50cm,A、B到x轴的距离分别为10cm和40cm,B点到y轴的距离为30cm,现在在x轴、y轴上分别有动点P、Q,当四边形PABQ的周长最短时,则这个值为()+50∵LN=AS==40=50+503.(2014秋•贵港期末)如图,AB⊥BC,AD⊥DC,∠BAD=110°,在BC、CD上分别找一点M、N,当△AMN周长最小时,∠MAN的度数为()4.(2014•无锡模拟)如图,∠MON=90°,矩形ABCD的顶点A,B分别在OM、ON上,当B 在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=.运动过程中,当点D到点O的距离最大时,OA长度为()∴OE=AE=AB=∴AD=BC=DE=cos∠ADE===DF=∴OA=AD=5.(2015•鞍山一模)如图,正方形ABCD的边长为4,点E在边BC上且CE=1,长为的线段MN在AC上运动,当四边形BMNE的周长最小时,则tan∠MBC的值是()EF=,此时四,连结MN===PQ=,tan∠MBC=tan∠PDC==6.(2015•江干区一模)如图,△ABC中,CA=CB,AB=6,CD=4,E是高线CD的中点,以CE 为半径⊙C.G是⊙C上一动点,P是AG中点,则DP的最大值为()BG∴AD=BD=CD=2BG最大值为.二.填空题(共3小题)7.(2014•江阴市校级模拟)如图,线段AB的长为4,C为AB上一动点,分别以AC、BC 为斜边在AB的同侧作等腰直角△ACD和等腰直角△BCE,那么DE长的最小值是 2 .CD=,CD′=(x,CD′==(8.(2012•河南校级模拟)如图,矩形ABCD中,AB=4,BC=8,E为CD边的中点,点P、Q 为BC边上两个动点,且PQ=2,当BP= 4 时,四边形APQE的周长最小.9.(2013•武汉)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是﹣1 .AB=1OH=AO=OD=,﹣直径的半圆故答案为:三.解答题(共1小题)10.(2015•黄冈中学自主招生)阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).请你回答:AP的最大值是 6 .参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,则AP+BP+CP的最小值是(或不化简为).(结果可以不化简),∴CD=4+2A'C==+2;+2(或不化简为+2(或不化简为完美WORD格式编辑学习指导参考资料。

立体几何最值问题-高考数学一题多解

立体几何最值问题-高考数学一题多解

立体几何最值问题-高考数学一题多解一、攻关方略事物的空间形成,总是表现为不同维数且遵循由低维到高维的发展规律,所谓升维策略,就是把维数、抽象水平较低的或局部的问题转化为维数、抽象水平较高或整体性较强的整体间的关系问题,通过对整体性质或关系的考虑,使原问题获得解决的策略,如平面图形通过翻折或旋转成为空间图形就是二维向三维的转化与变换.在解题时,考虑把高维空间的问题转化为低维空间的问题,这种处理问题的方法叫降维法,也可称之为降维策略,如将立体几何问题转化为平面几何问题.实际上,许多立体几何问题如求空间角、空间距离等,通常总是转化为平面内的问题,通过计算来解决的,当然将空间角、空间距离转变为平面角、平面上点线距离这一步是需要证明的.在立体几何学习中经常碰到几何体中有变角或变动的线段,此时必须根据题意列出沟通已知量与变量之间的关系,运用函数与方程的思想来处理,立体几何中由于动点的变化引起的最值,通常建立关于与动点相关的角度的目标函数,转化为函数最值问题求解.若在空间图形中建立空间直角坐标系,利用向量坐标法,结合条件得到方程(组),则可用解方程(组)求出结果,利用函数与方程的思想方法还可以解空间图形中涉及线面关系、面面关系的探究性问题.真可谓:翻折旋转二维升三,空间问题降维处理.点动角变牵动图形,立几最值函数搞定.1.如图所示,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC 的中心为O .D 、E 、F 为圆O 上的点,DBC △、ECA △、FAB 分别是以BC 、CA 、AB 为底边的等腰三角形,沿虚线剪开后,分别以BC 、CA 、AB 为折痕折起DBC △、ECA △、FAB ,使得D 、E 、F 重合,得到三棱锥.当ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为______.【针对训练】2.点P 在ABC 所在平面α外,PA α⊥,PB PC ==,3tan 2PBC ∠=,则点A 到平面PBC 的距离的最大值是______.3.如图所示,在ABC 中,2AB BC ==,120ABC ∠=︒.若平面ABC 外的点P 和线段AC 上的点D ,满足PD DA =,PB BA =,则四面体P BCD -的体积的最大值是______.4.已知底面边长为2的正三棱锥-P ABC ,其表面展开图是123PP P ,如图所示,求123PP P 的各边长及此三棱锥的体积V .5.已知球的直径4SC =,A 、B 是该球面上的两点,30ASC BSC ∠=∠=︒,则三棱锥S ABC -的体积的最大值为______.(2021全国新高考Ⅰ卷19)6.已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?(2022新高考1卷)7.已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且333l ≤≤)A .8118,4⎡⎤⎢⎥⎣⎦B .2781,44⎡⎤⎢⎥⎣⎦C .2764,43⎡⎤⎢⎥⎣⎦D .[18,27](2022年全国乙卷(文数)第12题)8.已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为()A .13B .12C D .2(2022年全国乙卷(文数)第18题)9.如图,四面体ABCD 中,AD CD ⊥,AD CD =,ADB BDC ∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2AB BD ==,60ACB ∠=︒,点F 在BD 上,当AFC △的面积最小时,求三棱锥F ABC -的体积.10.如图,已知平面四边形ABCD ,AB=BC=3,CD=1,ADC=90°.沿直线AC 将ACD 翻折成ACD '△,直线AC 与BD '所成角的余弦的最大值是________.11.已知四边形ABCD ,2AB BD DA ===,BC CD ==ABD △沿BD 折起,使二面角A BD C --的大小在5,66ππ⎡⎤⎢⎥⎣⎦内,则直线AB 与CD 所成角的余弦值取值范围是()A .08⎡⎢⎣⎦,B .08⎡⎢⎣⎦,C .01⎡⎫⎪⎢⎪⎣⎦⎣⎭ D .88⎢⎣⎦,参考答案:1.3【分析】先求得所求三棱锥体积的表达式,然后利用导数或基本不等式求得体积的最大值.【详解】解法一:由题意可知,折起后所得三棱锥为正三棱锥,当ABC 的边长变化时,设ABC 的边长为()0a a >cm ,则ABC 的面积为24a .DBC △的高为56a -,则正三棱锥的高为=∴2503->,∴0a <<.∴所得三棱锥的体积213412V a =⨯=.令45253t a a =-,则34100t a =',由0t '=,得a =此时所得三棱锥的体积最大,为3.解法二:如图所示,连接OD 交BC 于点G ,由题意知,OD BC ⊥,OG 是等边三角形ABC 内切圆半径,21π1sin 3232BC BC OG ⨯⨯=⨯⨯,解得OG =,∴OG 的长度与BC 的长度成正比.设OG x =,则BC =,5DG x =-,2132ABC S x =⨯=△,则所得三棱锥的体积2213V =⨯=令()452510f x x x =-,50,2x ⎛⎫∈ ⎪⎝⎭.则()3410050f x x x '=-,令()0f x '≥,即4320x x -≤,得02x <≤.则当50,2x ⎛⎫∈ ⎪⎝⎭时,()()280f x f =≤,∴V ≤.∴所求三棱锥的体积的最大值为3.解法三:如图所示,连接OE 交AC 于点H ,连接AO 、OC ,设OH x =.则AC =,5EH x =-,三棱锥D ABC -2ABC S = ,D ABC V -=2≤=,当且仅当104x x =-,即2x =时取等号.∴所求三棱锥的体积的最大值为3.【点睛】本题为平面图形折叠成空间图形,当折叠终止时,几何体是一个正三棱锥,这个正三棱锥底面边长是一个变元,从而导致三棱锥体积的变化,特别要提醒的是,在折叠问题中,必须注意到折叠过程中哪些要素在变化,哪些要素始终保持不变,其中不变要素见核心要素.根据平面图形的性质,寻找不变的数量关系以及直线与直线平行和垂直的位置关系,是解决折叠问题的突破口,因此折叠问题要通过变图、想图、构图、用图的过程,积极思考,体会解题程序方向性,直击问题的本质,折叠问题既要看清平面转化为空间的过程,又要了解三维空间图形问题的平面化处理,两者是互通的.在建立体积表达式的函数模型之后,结合函数思想求最值,通常用导数法,也可考虑运用基本不等式的方法.策略一:以动正三角形AEC 的边长为变元建立函数关系式,运用导数法求其最大值.策略二:以动正三角形ABC 的中心到边的距离为变元建立函数关系式,运用导数法求其最大值.策略三:以动正三角形ABC 的中心到边的距离为变元建立函数关系式,运用基本不等式求最大值,注意等号成立的条件.2【分析】法一,取BC 的中点D ,连接AD 、PD ,设ADP θ∠=,用θ的正余弦表示AD ,PD ,再利用等体积法求解作答.法二,作PD BC ⊥于点D ,连接AD ,作AF PD ⊥于点F ,证明AF ⊥平面PBC ,再利用均值不等式求解作答.【详解】解法一,取BC 的中点D ,连接AD 、PD ,如图,因PB PC =,则PD BC ⊥,而3tan2PBC ∠=,有sin PBC ∠=则有sin PD PB PBC =⋅∠=PA ⊥平面ABC ,,AD BC ⊂平面ABC ,则PA AD ⊥,PA BC ⊥,又,,PA PD P PA PD ⋂=⊂平面PAD ,因此BC ⊥平面PAD ,AD ⊂平面PAD ,则AD BC ⊥,在Rt PAD △中,令(0,)2ADP πθ∠=∈,sin ,cos PA PD AD PD θθ==,设点A 到平面PBC 的距离为h ,11,22PBC ABC S BC PD S BC AD =⋅=⋅ ,由A PBC P ABC V V --=得:1133PBC ABC S h S PA ⋅=⋅ ,即1122BC PD h BC AD PA ⋅⋅=⋅⋅,于是得cos sin 2AD PA PD PD h PD PD θθθ⋅⋅==,当且仅当22=πθ,即4πθ=时取等号,所以点A 到平面PBC解法二,在PBC 中,作PD BC ⊥于点D ,连接AD ,作AF PD ⊥于点F,如图,PA ⊥平面ABC ,BC ⊂平面ABC ,则PA BC ⊥,又,,PA PD P PA PD ⋂=⊂平面PAD ,因此BC ⊥平面PAD ,而BC ⊂平面PBC ,则有平面PAD ⊥平面PBC ,又平面PAD ⋂平面PBC PD =,AF ⊂平面PAD ,因此AF ⊥平面PBC ,即AF 就是点A 到平面PBC 的距离,而3tan 2PBC ∠=,有sin PBD ∠=sin PD PB PBD =⋅∠=,在Rt PAD △中,22211()1222PA AD PD PA AD AF PD PD PD PD +⋅=≤==当且仅当3PA AD ==时取等号,所以点A 到平面PBC3.12##0.5【分析】先求得四面体P BCD -体积的表达式,利用基本不等式或函数的单调性求得体积的最大值.【详解】解法一:由2AB BC ==,120ABC ∠=︒,可得AC =要求四面体P BCD -的体积,关键是寻找底面三角形BCD 的面积BCD S △和点P 到平面BCD 的距离h ,易知2h ≤.设AD x =,则DP x =,DC x =,()12sin 3022DBC xS x =⨯⨯⨯︒=△,其中(0,x ∈,且h x ≤.∴2111366622P BCDBCD x x x x V S h h x -⎛⎫-+=⨯=≤≤= ⎪ ⎪⎝⎭△.当且仅当x x =,即x =P BCD -的体积的最大值是12.解法二:设PD AD x ==,∵PB PA =,PBD ABD ≌△△,1133P BCD BCD V S h -=⨯=△(h 为三棱锥P BCD -的高).当平面PBD ⊥平面BDC 时,使四面体PBCD 的体积较大.作PH BD ⊥,垂足为H ,则PH ⊥平面BCD ,sin sin h PH PD PDB x ADB ==⋅∠=⋅∠.此时,()211sin sin sin 662P BCDx x V ADB ADB ADB -=⋅∠≤∠=∠⎝⎭,当且仅当x =1sin 2P BCD V ADB -=∠,当90ADB ∠=︒,即AD BD ⊥时,P BCD V -最大值为12.解法三:∵13P BCD BCD V S h -=⨯△(h 为三棱锥P BCD -的高),在ABC 中,2AB BC ==,120ABC ∠=︒,则AC =30BAC BCA ∠=∠=︒,设(0PD DA x x ==<<,则DC x =-,1sin 22BCD xS BC CD BCA =⨯⋅∠=△.在ABD △中,由余弦定理,有2222cos BD AD AB AD AB BAC =+-⋅∠.代入整理得BD =PBD △中,由余弦定理,有222cos 2PB BD PD PBD PB BD+-∠=⋅,代值整理得cos PBD ∠∴sin PBD ∠=.过P 作PM BD ⊥,垂足为M ,则PM 为四面体P BCD -的高.∴sin h PM PB PBM ==∠故111336P BCDBCD V S h -===△,t =,∵0x <<12t ≤<,∴224x t -=-.2141466P BCDt V t t t--⎛⎫=⨯=- ⎪⎝⎭在[)1,2t ∈上单调递减.∴当1t =,即x =P BCD -的体积最大为1411612P BCD V --=⨯=.4.1213234PP PP P P ===,3【分析】由12APB CBP ≌△△,分析可得123PP P 是边长为4的正三角形,再由13P ABC ABC S PO V -=⋅ 结合题干数据求解即可.【详解】由题图可知1P 、B 、2P 三点共线,∴12APBCBP ≌△△.∵60ABC ∠=︒,∴1260ABP CBP ∠=∠=︒,1APB △和2CBP △都是正三角形.∴124PP =.同理可知其他两边长也是4,∴123PP P 是边长为4的正三角形.折叠后是棱长为2的正四面体-P ABC ,如图所示.设顶点P 在底面内的投影为O ,连结BO 并延长,交AC 于点D ,则D 为AC 的中点,O 为ABC 的重心,PO ⊥底面ABC .AO AB ==,PO ==.故133P ABC ABC V S PO -=⋅=△.5.2【分析】过AB 作与SC 垂直的截面ABM .通过13S ABC ABM V SC S -=⋅△,分析即得解.【详解】过AB 作平面ABM SC ⊥且SC 平面ABM M =,如图所示,由题意知SAC 、SBC △均为直角三角形.∵4SC =,30ASC BSC ∠=∠=︒,故SAC SBC ≅ ,∴SA =,2CA =,∴SA ACAM BM SC⋅==.∴2141sin 2sin 2332S ABCABM V SC S AMB AMB -=⋅=⨯⨯∠=∠≤△.∴三棱锥S ABC -体积的最大值为2.故答案为:26.(1)证明见解析;(2)112B D =【分析】(1)方法二:通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直;(2)方法一:建立空间直角坐标系,利用空间向量求出二面角的平面角的余弦值最大,进而可以确定出答案;【详解】(1)[方法一]:几何法因为1111,//BF AB AB AB ⊥,所以BF AB ⊥.又因为1AB BB ⊥,1BF BB B ⋂=,所以AB ⊥平面11BCC B .又因为2AB BC ==,构造正方体1111ABCG A B C G -,如图所示,过E 作AB 的平行线分别与AG BC ,交于其中点,M N ,连接11,AM BN ,因为E ,F 分别为AC 和1CC 的中点,所以N 是BC 的中点,易证1Rt Rt BCF B BN ≅ ,则1CBF BBN ∠=∠.又因为1190BBN BNB ∠+∠=︒,所以1190CBF BNB BF BN ∠+∠=︒⊥,.又因为111111,BF AB BN AB B ⊥= ,所以BF ⊥平面11A MNB .又因为ED ⊂平面11A MNB ,所以BF DE ⊥.[方法二]【最优解】:向量法因为三棱柱111ABC A B C -是直三棱柱,1BB ∴⊥底面ABC ,1B B AB ∴⊥11//A B AB ,11BF A B ⊥,BF AB ∴⊥,又1BB BF B ⋂=,AB ∴⊥平面11BCC B .所以1,,BA BC BB 两两垂直.以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z 轴建立空间直角坐标系,如图.()()()0,0,0,2,0,0,0,2,0,B A C ∴()()()1110,0,2,2,0,2,0,2,2B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ≤≤).因为()()0,2,1,1,1,2BF DE a ==--,所以()()0121120BF DE a ⋅=⨯-+⨯+⨯-=,所以BF DE ⊥.[方法三]:因为11BF A B ⊥,11//A B AB ,所以BF AB ⊥,故110BF A B ⋅= ,0BF AB ⋅=,所以()11BF ED BF EB BB B D ⋅=⋅++ ()11=BF B D BF EB BB ⋅+⋅+ 1BF EB BF BB =⋅+⋅ 11122BF BA BC BF BB ⎛⎫=--+⋅ ⎪⎝⎭11122BF BA BF BC BF BB =-⋅-⋅+⋅ 112BF BC BF BB =-⋅+⋅111cos cos 2BF BC FBC BF BB FBB =-⋅∠+⋅∠1=2202-⨯⨯,所以BF ED ⊥.(2)[方法一]【最优解】:向量法设平面DFE 的法向量为(),,m x y z =,因为()()1,1,1,1,1,2EF DE a =-=--,所以00m EF m DE ⎧⋅=⎨⋅=⎩ ,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-因为平面11BCC B 的法向量为()2,0,0BA =,设平面11BCC B 与平面DEF 的二面角的平面角为θ,则cos m BA m BA θ⋅=⋅==当12a =时,2224a a -+取最小值为272,此时cos θ=所以()minsin θ=112B D =.[方法二]:几何法如图所示,延长EF 交11A C 的延长线于点S ,联结DS 交11B C 于点T ,则平面DFE 平面11B BCC FT =.作1BH FT ⊥,垂足为H ,因为1DB ⊥平面11BB C C ,联结DH ,则1D H B ∠为平面11BB C C 与平面DFE 所成二面角的平面角.设1,B D t =[0,2],t ∈1B T s =,过1C 作111//CG AB 交DS 于点G .由111113C S C G SA A D ==得11(2)3C G t =-.又1111B D BT C G C T=,即12(2)3t s s t =--,所以31t s t =+.又111B H BT C F FT =,即11B H =,所以1B H =所以DH ==则11sin B D DHB DH∠===所以,当12t =时,()1min 3sin 3DHB ∠=.[方法三]:投影法如图,联结1,FB FN,DEF 在平面11BB C C 的投影为1BN F ,记面11BB C C 与面DFE 所成的二面角的平面角为θ,则1cos B NF DEFS S θ=.设1(02)BD t t =≤≤,在1Rt DB F中,DF ==在Rt ECF中,EF =D 作1B N 的平行线交EN 于点Q .在Rt DEQ △中,DE ==在DEF 中,由余弦定理得222cos 2DF EF DE DFE DF EF+-∠=⋅=,sin DFE ∠1sin 2DFE S DF EF DFE =⋅∠ =13,2B NF S = 1cos B NF DFES S θ==,sin θ,当12t =,即112B D =,面11BB C C与面DFE 所成的二面角的正弦值最小,最小值为3.【整体点评】第一问,方法一为常规方法,不过这道题常规方法较为复杂,方法二建立合适的空间直角坐标系,借助空间向量求解是最简单,也是最优解;方法三利用空间向量加减法则及数量积的定义运算进行证明不常用,不过这道题用这种方法过程也很简单,可以开拓学生的思维.第二问:方法一建立空间直角坐标系,利用空间向量求出二面角的平面角是最常规的方法,也是最优方法;方法二:利用空间线面关系找到,面11BB C C 与面DFE 所成的二面角,并求出其正弦值的最小值,不是很容易找到;方法三:利用面DFE 在面11BB C C 上的投影三角形的面积与DFE △面积之比即为面11BB C C 与面DFE 所成的二面角的余弦值,求出余弦值的最小值,进而求出二面角的正弦值最小,非常好的方法,开阔学生的思维.7.C【分析】设正四棱锥的高为h ,根据题意求出正四棱锥的底面边长与高的关系,再利用导数求解即可.【详解】设球体的半径为R ,由题知:34363R ππ=,所以球的半径3R =.设正四棱锥的底面边长为2a ,高为h ,则222222l h a h =+=+,22232(3)a h =+-,所以26h l =,2222a l h =-所以正四棱锥的体积42622411214()=333366936l l l V Sh a h l l ⎛⎫==⨯⨯=⨯-⨯- ⎪⎝⎭,设()641=936x f x x ⎛⎫- ⎪⎝⎭,3x ≤≤,所以()5233112449696x x f x x x ⎛⎫⎛⎫-'=-= ⎪⎝⎭⎝⎭,当3x ≤≤()0f x ¢>,()f x 为增函数,当x <≤()0f x '<,()f x 为减函数,所以当l =时,正四棱锥的体积V 取最大值,最大值为643,又3l =时,274V =,l =814V =,所以正四棱锥的体积V 的最小值为274,所以该正四棱锥体积的取值范围是276443⎡⎤⎢⎥⎣⎦,.故选:C 8.C【分析】令四棱锥底面四边形外接圆半径为r ,用r 表示四棱锥的高及底面四边形面积最大值,再借助导数求解作答.【详解】设该四棱锥底面四边形为ABCD ,平面ABCD 截球O 所得小圆半径为r ,则球心O到平面ABCD 的距离h =设四边形ABCD 对角线,AC BD 的夹角为α,则1sin 2ABCD S AC BD α=⋅,于是得该四棱锥的体积:12sin 22sin 36623ABCD V S h BD r r rπα=⋅=⋅≤⋅⋅=当且仅当对角线,AC BD 是截面小圆互相垂直的两条直径,即四边形ABCD 为正方形时取等号,令2(0,1)r x =∈,有23r =23(),(0,1)f x x x x =-∈,求导得:22()233()3f x x x x x '=-=-,当203x <<时,()0f x '>,当213x <<时,()0f x '<,因此函数()f x 在2(0,)3上单调递增,在2(,1)3上单调递减,当23x =时,23max 224()(()3327f x =-=,从而当223r =时,max 222(333r =⨯⨯max V =,此时3h ==,故选:C9.(1)证明见解析;【分析】(1)利用线面垂直的判定定理可得AC ⊥平面BED ,然后根据面面垂直的判定定理可得平面BED ⊥平面ACD ;(2)首先判断出三角形AFC 的面积最小时F 点的位置,然后求得F 到平面ABC 的距离,从而求得三棱锥F ABC -的体积或利用等积法及锥体的体积公式即得.【详解】(1)AD CD = ,ADB BDC ∠=∠,BD BD =,ADB CDB ∴≅ ,AB BC ∴=,又E 为AC 的中点.AC BE ∴⊥,AD CD = ,E 为AC 的中点.AC DE ∴⊥,又BE DE E = ,BE ⊂平面BED ,DE ⊂平面BED ,AC ∴⊥平面BED ,又AC ⊂ 平面ACD ,∴平面BED ⊥平面ACD ;(2)方法一:依题意2AB BD BC ===,60ACB ∠=︒,三角形ABC 是等边三角形,所以2,1,AC AE CE BE ====由于,AD CD AD CD =⊥,所以三角形ACD 是等腰直角三角形,所以1DE =,所以222DE BE BD +=,即DE BE ⊥,由于AC BE E ⋂=,,AC BE ⊂平面ABC ,所以DE ⊥平面ABC ,由于ADB CDB ≅△△,所以FBA FBC ∠=∠,由于BF BFFBA FBC AB CB =⎧⎪∠=∠⎨⎪=⎩,所以FBA FBC ≅ ,所以AF CF =,所以EF AC ⊥,由于12AFC S AC EF =⋅⋅ ,所以当EF 最短时,三角形AFC 的面积最小,过E 作EF BD ⊥,垂足为F ,在Rt BED △中,1122BE DE BD EF ⋅⋅=⋅⋅,解得2EF =,所以13,222DF BF DF ===-=,所以34BF BD =,过F 作FH BE ⊥,垂足为H ,则//FH DE ,又DE ⊥平面ABC ,所以FH ⊥平面ABC ,且34FH BF DE BD ==,所以34FH =,所以111323324F ABC ABC V S FH -=⋅⋅=⨯⨯=方法二:AB BC = ,60ACB ∠=︒,2AB =ABC ∴ 是边长为2的等边三角形,BE ∴=连接EF ,由于ADB CDB ≅△△,所以FBA FBC ∠=∠,由于BF BFFBA FBC AB CB =⎧⎪∠=∠⎨⎪=⎩,所以FBA FBC ≅ ,所以AF CF =,所以EF AC ⊥,由于12AFC S AC EF =⋅⋅ ,所以当EF 最短时,三角形AFC 的面积最小,即EF BD ⊥时,AFC △的面积最小,,,2AD CD AD CD AC ⊥== ,E 为AC 的中点,∴1DE =,222DE BE BD +=,BE ED ∴⊥,在Rt BED △中,1122BE DE BD EF ⋅⋅=⋅⋅,解得2EF =,∴32BF ,113222BEF S BF EF ∴=⋅=⋅11233F ABC A BEF C BEF BEF V V V S AC ---∴=+=⋅=⋅= .10.6【分析】取AC 中点O ,连接OB ,过点O 作Oz ⊥平面ABC ,以点O 为原点建立空间直角坐标系,设二面角D AC B '--的大小为α,把直线A C 与BD '所成角的余弦表示为α的函数,求出函数最大值作答.【详解】在ACD 中,90ADC ∠= ,1,CD AD ==则AC =,过D 作DH AC ⊥于H ,连接D H ',如图,显然D H AC '⊥,ACD 绕直线AC 旋转过程中,线段DH 绕点H 在垂直于直线AC 的平面γ内旋转到D H ',取AC 中点O ,连接OB ,因3AB BC ==,有OB AC ⊥,OB =,,663CD ADD H DH CH OH AC⋅'=====,过点O 作Oz ⊥平面ABC ,以点O 为原点,射线,,OB OA Oz 分别为,,x y z 轴非负半轴,建立空间直角坐标系,则A ,B ,(0,2C -,显然有//Oz 平面γ,设二面角D AC B '--的大小为[0,]απ∈,有(,,sin )636D αα'-,则有(,sin )6236BD αα=--' ,CA的方向向量为(0,1,0)n = ,设直线AC 与BD '所成的角为θ,于是得||cos |cos ,|||||n BD n BD n BD θ'⋅'=〈〉=='因[0,]απ∈,则1cos 1α-≤≤,于是得cos 6θ=,当且仅当cos 1α=取等号,所以直线AC 与BD '11.A【分析】取BD 中点O ,连接AO ,CO ,以O 为原点建立空间直角坐标系,利用二面角A BD C --的大小θ的正余弦表示,AB CD的坐标,利用空间向量建立函数关系求解作答.【详解】取BD 中点O ,连接AO ,CO ,而AB =BD =DA =2,BC =CD,则CO ⊥BD ,AO ⊥BD ,且CO =1,AOAOC ∠是二面角A BD C --的平面角,令5[,]66AOC ππθ∠=∈,显然有BD ⊥平面AOC ,BD ⊂平面BCD ,则平面AOC ⊥平面BCD ,在平面AOC 内过O 作Oz OC ⊥,而平面AOC I 平面BCD OC =,因此Oz ⊥平面BCD ,即射线,,OC OD Oz 两两垂直,以O 为原点,射线,,OC OD Oz 分别为,,x y z轴非负半轴,建立空间直角坐标系,如图,则(0,1,0),(1,0,0),(0,1,0)B C D -,)A θθ,,1,),(1,1,0)BA CD θθ==-,设直线AB 与CD 所成的角为α,则||cos |cos ,|||||AB CD AB CD AB CD α⋅=〈〉==,由5[,66ππθ∈得:cos [,]22θ∈,15122θ-≤≤,则5|1|[0,2θ∈,于是得cos[0,]α∈,8.所以直线AB与CD 所成角的余弦值取值范围是[0,]8故选:A答案第18页,共18页。

最值模型之瓜豆模型(原理)圆弧轨迹型-2024年中考数学常见几何模型及参考答案

最值模型之瓜豆模型(原理)圆弧轨迹型-2024年中考数学常见几何模型及参考答案

最值模型之瓜豆模型(原理)圆弧轨迹型动点轨迹问题是中考和各类模拟考试的重要题型,学生受解析几何知识的局限和思维能力的束缚,该压轴点往往成为学生在中考中的一个坎,致使该压轴点成为学生在中考中失分的集中点。

掌握该压轴题型的基本图形,构建问题解决的一般思路,是中考专题复习的一个重要途径。

本专题就最值模型中的瓜豆原理(动点轨迹为圆弧型)进行梳理及对应试题分析,方便掌握。

【模型解读】模型1、运动轨迹为圆弧模型1-1. 如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.Q点轨迹是?如图,连接AO,取AO中点M,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.则动点Q是以M为圆心,MQ为半径的圆。

模型1-2. 如图,△APQ是直角三角形,∠PAQ=90°且AP=k⋅AQ,当P在圆O运动时,Q点轨迹是?如图,连结AO,作AM⊥AO,AO:AM=k:1;任意时刻均有△APO∽△AQM,且相似比为k。

则动点Q是以M为圆心,MQ为半径的圆。

模型1-3. 定义型:若动点到平面内某定点的距离始终为定值,则其轨迹是圆或圆弧。

(常见于动态翻折中)如图,若P为动点,但AB=AC=AP,则B、C、P三点共圆,则动点P是以A圆心,AB半径的圆或圆弧。

模型1-4. 定边对定角(或直角)模型1)一条定边所对的角始终为直角,则直角顶点轨迹是以定边为直径的圆或圆弧.如图,若P为动点,AB为定值,∠APB=90°,则动点P是以AB为直径的圆或圆弧。

2)一条定边所对的角始终为定角,则定角顶点轨迹是圆弧.如图,若P为动点,AB为定值,∠APB为定值,则动点P的轨迹为圆弧。

【模型原理】动点的轨迹为定圆时,可利用:“一定点与圆上的动点距离最大值为定点到圆心的距离与半径之和,最小值为定点到圆心的距离与半径之差”的性质求解。

1(2023·山东泰安·统考中考真题)如图,在平面直角坐标系中,Rt△AOB的一条直角边OB在x轴上,点A的坐标为(-6,4);Rt△COD中,∠COD=90°,OD=43,∠D=30°,连接BC,点M是BC中点,连接AM.将Rt△COD以点O为旋转中心按顺时针方向旋转,在旋转过程中,线段AM的最小值是()A.3B.62-4C.213-2D.22(2023·四川广元·统考一模)如图,线段AB为⊙O的直径,点C在AB的延长线上,AB=4,BC=2,点P是⊙O上一动点,连接CP,以CP为斜边在PC的上方作Rt△PCD,且使∠DCP=60°,连接OD,则OD长的最大值为.3(2023·四川宜宾·统考中考真题)如图,M是正方形ABCD边CD的中点,P是正方形内一点,连接BP,线段BP以B为中心逆时针旋转90°得到线段BQ,连接MQ.若AB=4,MP=1,则MQ的最小值为.4(2023·湖南·统考中考真题)如图,在矩形ABCD中,AB=2,AD=7,动点P在矩形的边上沿B→C→D→A运动.当点P不与点A、B重合时,将△ABP沿AP对折,得到△AB P,连接CB ,则在点P的运动过程中,线段CB 的最小值为.5(2023·山东·统考中考真题)如图,在四边形ABCD中,∠ABC=∠BAD=90°,AB=5,AD=4,AD< BC,点E在线段BC上运动,点F在线段AE上,∠ADF=∠BAE,则线段BF的最小值为.6(2023·浙江金华·九年级校考期中)如图,点A,C,N的坐标分别为(-2,0),(2,0),(4,3),以点C为圆心、2为半径画⊙C,点P在⊙C上运动,连接AP,交⊙C于点Q,点M为线段QP的中点,连接MN,则线段MN的最小值为.7(2023上·江苏连云港·九年级校考阶段练习)已知矩形ABCD,AB=6,BC=4,P为矩形ABCD内一点,且∠BPC=135°,若点P绕点A逆时针旋转90°到点Q,则PQ的最小值为.8(2023下·陕西西安·九年级校考阶段练习)问题提出:(1)如图①,在△ABC中,AB=AC,∠BAC=120°,BC=43,则AB的长为;问题探究:(2)如图②,已知矩形ABCD,AB=4,BC=5,点P是矩形ABCD内一点,且满足∠APB= 90°,连接CP,求线段CP的最小值;问题解决:(3)如图③所示,我市城市绿化工程计划打造一片四边形绿地ABCD,其中AD∥BC,AD= 40m,BC=60m,点E为CD边上一点,且CE:DE=1:2,∠AEB=60°,为了美化环境,要求四边形ABCD的面积尽可能大,求绿化区域ABCD面积的最大值.课后专项训练1(2023·安徽合肥·校考一模)如图,在△ABC中,∠B=45°,AC=2,以AC为边作等腰直角△ACD,连BD,则BD的最大值是()A.10-2B.10+3C.22D.10+22(2023春·广东·九年级专题练习)已知:如图,在△ABC中,∠BAC=30°,BC=4,△ABC面积的最大值是( ).A.8+43B.83+4C.83D.8+833(2022秋·江苏扬州·九年级校考阶段练习)如图,A是⊙B上任意一点,点C在⊙B外,已知AB=2,BC=4,△ACD是等边三角形,则△BCD的面积的最大值为()A.43+4B.4C.43+8D.64(2023·山东济南·一模)正方形ABCD中,AB=4,点E、F分别是CD、BC边上的动点,且始终满足DE=CF,DF、AE相交于点G.以AG为斜边在AG下方作等腰直角△AHG使得∠AHG=90°,连接BH.则BH的最小值为()A.25-2B.25+2C.10-2D.10+25(2023上·江苏连云港·九年级统考期中)如图,在矩形ABCD中,已知AB=3,BC=4,点P是BC边上一动点(点P不与点B,C重合),连接AP,作点B关于直线AP的对称点M,连接CM,则CM的最小值为.6(2023春·广东深圳·九年级专题练习)如图,点G是△ABC内的一点,且∠BGC=120°,△BCF是等边三角形,若BC=3,则FG的最大值为.7(2023·江苏泰州·九年级专题练习)如图,在矩形ABCD中,AD=10,AB=16,P为CD的中点,连接BP.在矩形ABCD外部找一点E,使得∠BEC+∠BPC=180°,则线段DE的最大值为.8(2023·陕西渭南·三模)如图,在矩形ABCD中,AB=6,BC=5,点E在BC上,且CE=4BE,点M 为矩形内一动点,使得∠CME=45°,连接AM,则线段AM的最小值为.9(2023江苏扬州·三模)如图,在等边△ABC和等边△CDE中,AB=6,CD=4,以AB、AD为邻边作平行四边形ABFD,连接AF.若将△CDE绕点C旋转一周,则线段AF的最小值是.10(2023秋·湖北武汉·九年级校考阶段练习)如图,△ABC为等腰直角三角形,∠BAC=90°,AB= AC=22,点D为△ABC所在平面内一点,∠BDC=90°,以AC、CD为边作平行四边形ACDE,则CE的最小值为.11(2023·福建泉州·统考模拟预测)如图,点E是正方形ABCD的内部一个动点(含边界),且AD= EB=8,点F在BE上,BF=2,则以下结论:①CF的最小值为6;②DE的最小值为82-8;③CE= CF;④DE+CF的最小值为10;正确的是.12(2021·广东·中考真题)在△ABC中,∠ABC=90°,AB=2,BC=3.点D为平面上一个动点,∠ADB=45°,则线段CD长度的最小值为.13(2023·广东·深圳市二模)如图,在矩形ABCD中,AB=3,BC=4,E为边BC上一动点,F为AE 中点,G为DE上一点,BF=FG,则CG的最小值为.14(2023秋·广东汕头·九年级校考期中)如下图,在正方形ABCD中,AB=6,点E是以BC为直径的圆上的点,连接DE,将线段DE绕点D逆时针旋转90°,得到线段DF,连接CF,则线段CF的最大值与最小值的和.15(2023·陕西渭南·统考一模)如图,在矩形ABCD中,AB=2,BC=4,Q是矩形ABCD左侧一点,连接AQ、BQ,且∠AQB=90°,连接DQ,E为DQ的中点,连接CE,则CE的最大值为.16(2023·安徽亳州·统考模拟预测)等腰直角△ABC 中,BAC =90°,AB =5,点D 是平面内一点,AD =2,连接BD ,将BD 绕D 点逆时针旋转90°得到DE ,连接AE ,当DAB =(填度数)度时,AE 可以取最大值,最大值等于.17(2023·河北廊坊·统考二模)已知如图,△ABC 是腰长为4的等腰直角三角形,∠ABC =90°,以A 为圆心,2为半径作半圆A ,交BA 所在直线于点M ,N .点E 是半圆A 上仟意一点.连接BE ,把BE 绕点B 顺时针旋转90°到BD 的位置,连接AE ,CD .(1)求证:△EBA ≌△DBC ;(2)当BE 与半圆A 相切时,求弧EM的长;(3)直接写出△BCD 面积的最大值.18(2022·北京·中考真题)在平面直角坐标系xOy 中,已知点M (a ,b ),N .对于点P 给出如下定义:将点P 向右(a ≥0)或向左(a <0)平移a 个单位长度,再向上(b ≥0)或向下(b <0)平移b 个单位长度,得到点P ',点P '关于点N 的对称点为Q ,称点Q 为点P 的“对应点”.(1)如图,点M (1,1),点N 在线段OM 的延长线上,若点P (-2,0),点Q 为点P 的“对应点”.①在图中画出点Q;②连接PQ,交线段ON于点T.求证:NT=12 OM;(2)⊙O的半径为1,M是⊙O上一点,点N在线段OM上,且ON=t12<t<1,若P为⊙O外一点,点Q为点P的“对应点”,连接PQ.当点M在⊙O上运动时直接写出PQ长的最大值与最小值的差(用含t的式子表示)19(2023下·广东广州·九年级校考阶段练习)如图,△ABC为等边三角形,点P是线段AC上一动点(点P不与A,C重合),连接BP,过点A作直线BP的垂线段,垂足为点D,将线段AD绕点A逆时针旋转60°得到线段AE,连接DE,CE.(1)求证:BD=CE;(2)连接CD,延长ED交BC于点F,若△ABC的边长为2;①求CD的最小值;②求EF的最大值.20(2023·江苏常州·统考二模)如图,在平面直角坐标系中,二次函数y=-13x2+bx-3的图像与x轴交于点A和点B9,0,与y轴交于点C.(1)求二次函数的表达式;(2)若点P是抛物线上一点,满足∠PCB+∠ACB=∠BCO,求点P的坐标;(3)若点Q在第四象限内,且cos∠AQB=35,点M在y轴正半轴,∠MBO=45°,线段MQ是否存在最大值,如果存在,直接写出最大值;如果不存在,请说明理由.最值模型之瓜豆模型(原理)圆弧轨迹型动点轨迹问题是中考和各类模拟考试的重要题型,学生受解析几何知识的局限和思维能力的束缚,该压轴点往往成为学生在中考中的一个坎,致使该压轴点成为学生在中考中失分的集中点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何最值问题一.选择题(共6小题)1.(2015•孝感一模)如图,已知等边△ABC的边长为6,点D为AC的中点,点E为BC 的中点,点P为BD上一点,则PE+PC的最小值为()A.3B.3C.2D.3考点:轴对称-最短路线问题.分析:由题意可知点A、点C关于BD对称,连接AE交BD于点P,由对称的性质可得,PA=PC,故PE+PC=AE,由两点之间线段最短可知,AE即为PE+PC的最小值.解答:解:∵△ABC是等边三角形,点D为AC的中点,点E为BC的中点,∴BD⊥AC,EC=3,连接AE,线段AE的长即为PE+PC最小值,∵点E是边BC的中点,∴AE⊥BC,∴AE===3,∴PE+PC的最小值是3.故选D.点评:本题考查的是轴对称﹣最短路线问题,熟知等边三角形的性质是解答此题的关键.2.(2014•鄂城区校级模拟)如图,在直角坐标系中有线段AB,AB=50cm,A、B到x轴的距离分别为10cm和40cm,B点到y轴的距离为30cm,现在在x轴、y轴上分别有动点P、Q,当四边形PABQ的周长最短时,则这个值为()A.50 B.50C.50﹣50 D.50+50考点:轴对称-最短路线问题;坐标与图形性质.专压轴题.题:分析:过B点作BM⊥y轴交y轴于E点,截取EM=BE,过A点作AN⊥x轴交x轴于F 点,截取NF=AF,连接MN交X,Y轴分别为P,Q点,此时四边形PABQ的周长最短,根据题目所给的条件可求出周长.解答:解:过B点作BM⊥y轴交y轴于E点,截取EM=BE,过A点作AN⊥x轴交x轴于F点,截取NF=AF,连接MN交x,y轴分别为P,Q点,过M点作MK⊥x轴,过N点作NK⊥y轴,两线交于K点.MK=40+10=50,作BL⊥x轴交KN于L点,过A点作AS⊥BP交BP于S点.∵LN=AS==40.∴KN=60+40=100.∴MN==50.∵MN=MQ+QP+PN=BQ+QP+AP=50.∴四边形PABQ的周长=50+50.故选D.点评:本题考查轴对称﹣最短路线问题以及坐标和图形的性质,本题关键是找到何时四边形的周长最短,以及构造直角三角形,求出周长.3.(2014秋•贵港期末)如图,AB⊥BC,AD⊥DC,∠BAD=110°,在BC、CD上分别找一点M、N,当△AMN周长最小时,∠MAN的度数为()A.30°B.40°C.50°D.60°考点:轴对称-最短路线问题.分析:根据要使△AMN的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=70°,进而得出∠MAB+∠NAD=70°,即可得出答案.解答:解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值,作DA延长线AH,.∵∠DAB=110°,∴∠HAA′=70°,∴∠AA′M+∠A″=∠HAA′=70°,∵∠MA′A=∠MAB,∠NAD=∠A″,∴∠MAB+∠NAD=70°,∴∠MAN=110°﹣70°=40°.故选B.点评:本题考查的是轴对称﹣最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出M,N的位置是解题关键.4.(2014•无锡模拟)如图,∠MON=90°,矩形ABCD的顶点A,B分别在OM、ON 上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=.运动过程中,当点D到点O的距离最大时,OA长度为()A.B.C.2D.考点:勾股定理;三角形三边关系;直角三角形斜边上的中线.分析:取AB的中点,连接OE、DE,根据直角三角形斜边上的中线等于斜边的一半求出OE,利用勾股定理列式求出DE,然后根据三角形的任意两边之和大于第三边判断出O、E、D三点共线时点D到点O的距离最大,过点A作AF⊥OD于F,利用∠ADE的余弦列式求出DF,从而得到点F是OD的中点,判断出AF垂直平分OD,再根据线段垂直平分线上的点到两端点的距离相等可得OA=AD.解答:解:如图,取AB的中点,连接OE、DE,∵∠MON=90°,∴OE=AE=AB=×2=1,∵三边形ABCD是矩形,∴AD=BC=,在Rt△ADE中,由勾股定理得,DE===2,由三角形的三边关系得,O、E、D三点共线时点D到点O的距离最大,此时,OD=OE+DE=1+2=3,过点A作AF⊥OD于F,则cos∠ADE==,即=,解得DF=,∵OD=3,∴点F是OD的中点,∴AF垂直平分OD,∴OA=AD=.故选B.点评:本题考查了勾股定理,三角形的任意两边之和大于第三边,直角三角形斜边上的中线等于斜边的一半的性质,线段垂直平分线上的点到两端点的距离相等的性质,作辅助线并判断出OD最大时的情况是解题的关键,作出图形更形象直观.5.(2015•鞍山一模)如图,正方形ABCD的边长为4,点E在边BC上且CE=1,长为的线段MN在AC上运动,当四边形BMNE的周长最小时,则tan∠MBC的值是()A.B.C.D.1考点:轴对称-最短路线问题;正方形的性质.分析:根据题意得出作EF∥AC且EF=,连结DF交AC于M,在AC上截取MN=,此时四边形BMNE的周长最小,进而利用相似三角形的判定与性质得出答案.解答:解:作EF∥AC且EF=,连结DF交AC于M,在AC上截取MN=,延长DF 交BC于P,作FQ⊥BC于Q,则四边形BMNE的周长最小,由∠FEQ=∠ACB=45°,可求得FQ=EQ=1,∵∠DPC=∠FPQ,∠DCP=∠FQP,∴△PFQ∽△PDC,∴=,∴=,解得:PQ=,∴PC=,由对称性可求得tan∠MBC=tan∠PDC==.故选:A.点评:此题主要考查了正方形的性质以及相似三角形的判定与性质,得出M,N的位置是解题关键.6.(2015•江干区一模)如图,△ABC中,CA=CB,AB=6,CD=4,E是高线CD的中点,以CE为半径⊙C.G是⊙C上一动点,P是AG中点,则DP的最大值为()A.B.C.2D.考点:圆的综合题.分析:根据等腰三角形的性质可得点D是AB的中点,然后根据三角形中位线定理可得DP=BG,然后利用两点之间线段最短就可解决问题.解答:解:连接BG,如图.∵CA=CB,CD⊥AB,AB=6,∴AD=BD=AB=3.又∵CD=4,∴BC=5.∵E是高线CD的中点,∴CE=CD=2,∴CG=CE=2.根据两点之间线段最短可得:BG≤CG+CB=2+5=7.当B、C、G三点共线时,BG取最大值为7.∵P是AG中点,D是AB的中点,∴PD=BG,∴DP最大值为.故选A.点评:本题主要考查了圆的综合题,涉及了等腰三角形的性质、三角形中位线定理、勾股定理、两点之间线段最短等知识,利用三角形中位线定理将DP转化为BG是解决本题的关键.二.填空题(共3小题)7.(2014•江阴市校级模拟)如图,线段AB的长为4,C为AB上一动点,分别以AC、BC为斜边在AB的同侧作等腰直角△ACD和等腰直角△BCE,那么DE长的最小值是2.考点:等腰直角三角形.分析:设AC=x,BC=4﹣x,根据等腰直角三角形性质,得出CD=x,CD′=(4﹣x),根据勾股定理然后用配方法即可求解.解答:解:设AC=x,BC=4﹣x,∵△ABC,△BCD′均为等腰直角三角形,∴CD=x,CD′=(4﹣x),∵∠ACD=45°,∠BCD′=45°,∴∠DCE=90°,∴DE2=CD2+CE2=x2+(4﹣x)2=x2﹣4x+8=(x﹣2)2+4,∴当x取2时,DE取最小值,最小值为:4.故答案为:2.点评:本题考查了二次函数最值及等腰直角三角形,难度不大,关键是掌握用配方法求二次函数最值.8.(2012•河南校级模拟)如图,矩形ABCD中,AB=4,BC=8,E为CD边的中点,点P、Q为BC边上两个动点,且PQ=2,当BP=4时,四边形APQE的周长最小.考点:轴对称-最短路线问题.专题:压轴题.分析:要使四边形APQE的周长最小,由于AE与PQ都是定值,只需AP+EQ的值最小即可.为此,先在BC边上确定点P、Q的位置,可在AD上截取线段AF=DE=2,作F 点关于BC的对称点G,连接EG与BC交于一点即为Q点,过A点作FQ的平行线交BC于一点,即为P点,则此时AP+EQ=EG最小,然后过G点作BC的平行线交DC的延长线于H点,那么先证明∠GEH=45°,再由CQ=EC即可求出BP的长度.解答:解:如图,在AD上截取线段AF=DE=2,作F点关于BC的对称点G,连接EG与BC交于一点即为Q点,过A点作FQ的平行线交BC于一点,即为P点,过G点作BC的平行线交DC的延长线于H点.∵GH=DF=6,EH=2+4=6,∠H=90°,∴∠GEH=45°.设BP=x,则CQ=BC﹣BP﹣PQ=8﹣x﹣2=6﹣x,在△CQE中,∵∠QCE=90°,∠CEQ=45°,∴CQ=EC,∴6﹣x=2,解得x=4.故答案为4.点评:本题考查了矩形的性质,轴对称﹣最短路线问题的应用,题目具有一定的代表性,是一道难度较大的题目,对学生提出了较高的要求.9.(2013•武汉)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是﹣1.考点:正方形的性质.专题:压轴题.分析:根据正方形的性质可得AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,然后利用“边角边”证明△ABE和△DCF全等,根据全等三角形对应角相等可得∠1=∠2,利用“SAS”证明△ADG和△CDG全等,根据全等三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AHB=90°,取AB的中点O,连接OH、OD,根据直角三角形斜边上的中线等于斜边的一半可得OH=AB=1,利用勾股定理列式求出OD,然后根据三角形的三边关系可知当O、D、H三点共线时,DH的长度最小.解答:解:在正方形ABCD中,AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠1=∠2,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠2=∠3,∴∠1=∠3,∵∠BAH+∠3=∠BAD=90°,∴∠1+∠BAH=90°,∴∠AHB=180°﹣90°=90°,取AB的中点O,连接OH、OD,则OH=AO=AB=1,在Rt△AOD中,OD===,根据三角形的三边关系,OH+DH>OD,∴当O、D、H三点共线时,DH的长度最小,最小值=OD﹣OH=﹣1.(解法二:可以理解为点H是在Rt△AHB,AB直径的半圆上运动当O、H、D 三点共线时,DH长度最小)故答案为:﹣1.点评:本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系,确定出DH最小时点H的位置是解题关键,也是本题的难点.三.解答题(共1小题)10.(2015•黄冈中学自主招生)阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).请你回答:AP的最大值是6.参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,则AP+BP+CP的最小值是(或不化简为).(结果可以不化简)考点:旋转的性质;全等三角形的判定与性质;等边三角形的性质;勾股定理;等腰直角三角形.专题:几何综合题.分析:(1)根据旋转的性质知A′A=AB=BA′=2,AP=A′C,所以在△AA′C中,利用三角形三边关系来求A′C即AP的长度;(2)以B为中心,将△APB逆时针旋转60°得到△A'P'B.根据旋转的性质推知PA+PB+PC=P'A′+P'B+PC.当A'、P'、P、C四点共线时,(P'A′+P'B+PC)最短,即线段A'C最短.然后通过作辅助线构造直角三角形A′DC,在该直角三角形内利用勾股定理来求线段A′C的长度.解答:解:(1)如图2,∵△ABP逆时针旋转60°得到△A′BC,∴∠A′BA=60°,A′B=AB,AP=A′C∴△A′BA是等边三角形,∴A′A=AB=BA′=2,在△AA′C中,A′C<AA′+AC,即AP<6,则当点A′A、C三点共线时,A′C=AA′+AC,即AP=6,即AP的最大值是:6;故答案是:6.(2)如图3,∵Rt△ABC是等腰三角形,∴AB=BC.以B为中心,将△APB逆时针旋转60°得到△A'P'B.则A'B=AB=BC=4,PA=P′A′,PB=P′B,∴PA+PB+PC=P′A′+P'B+PC.∵当A'、P'、P、C四点共线时,(P'A+P'B+PC)最短,即线段A'C最短,∴A'C=PA+PB+PC,∴A'C长度即为所求.过A'作A'D⊥CB延长线于D.∵∠A'BA=60°(由旋转可知),∴∠1=30°.∵A'B=4,∴A'D=2,BD=2,∴CD=4+2.在Rt△A'DC中A'C====2+2;∴AP+BP+CP的最小值是:2+2(或不化简为).故答案是:2+2(或不化简为).点评:本题综合考查了旋转的性质、等腰直角三角形的性质、勾股定理以及等边三角形的判定与性质.注意:旋转前、后的图形全等.。

相关文档
最新文档