河南省中招考试数学试卷及答案.docx
河南省中招数学试卷及解析精编版

一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的. 1.(3分)﹣的相反数是()A.﹣B.C.﹣3 D.32.(3分)某种细胞的直径是0.00000095米,将0.00000095米用科学记数法表示为()A.9.5×10﹣7B.9.5×10﹣8C.0.95×10﹣7D.95×10﹣83.(3分)下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()A.B.C.D.4.(3分)下列计算正确的是()A.﹣=B.(﹣3)2=6 C.3a4﹣2a2=a2D.(﹣a3)2=a55.(3分)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()A.2 B.3 C.4 D.56.(3分)如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE的长为()A.6 B.5 C.4 D.37.(3分)如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方A.甲B.乙C.丙D.丁8.(3分)如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()A.(1,﹣1)B.(﹣1,﹣1)C.(,0)D.(0,﹣)二、填空题(每小题3分,共21分)9.(3分)计算:(﹣2)0﹣=.10.(3分)如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数为.11.(3分)若关于x的一元二次方程x2+3x﹣k=0有两个不相等的实数根,则k的取值范围是.12.(3分)在“阳光体育”活动期间,班主任将全班同学随机分成了4组进行活动,该班小明和小亮同学被分在一组的概率是.13.(3分)已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是.14.(3分)如图,在扇形AOB中,∠AOB=90°,以点A为圆心,OA的长为半径作交于点C,若OA=2,则阴影部分的面积为.15.(3分)如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于点M,N.当点B′为线段MN的三等分点时,BE的长为.三、解答题(本大题共8小题,满分75分)16.(8分)先化简,再求值:(﹣1)÷,其中x的值从不等式组的整数解中选取.17.(9分)在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:5640 6430 6520 6798 73258430 8215 7453 7446 67547638 6834 7326 6830 86488753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:请根据以上信息解答下列问题:(1)填空:m=,n=;(2)补全频数发布直方图;(3)这20名“健步走运动”团队成员一天行走步数的中位数落在组;(4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.18.(9分)如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O 分别交AC,BM于点D,E.(1)求证:MD=ME;(2)填空:①若AB=6,当AD=2DM时,DE=;②连接OD,OE,当∠A的度数为时,四边形ODME是菱形.19.(9分)如图,小东在教学楼距地面9米高的窗口C处,测得正前方旗杆顶部A点的仰角为37°,旗杆底部B点的俯角为45°,升旗时,国旗上端悬挂在距地面2.25米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)20.(9分)学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.21.(10分)某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:﹣其中,m=.(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)进一步探究函数图象发现:①函数图象与x轴有个交点,所以对应的方程x2﹣2|x|=0有个实数根;②方程x2﹣2|x|=2有个实数根;③关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是.22.(10分)(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b的式子表示)(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.23.(11分)如图1,直线y=﹣x+n交x轴于点A,交y轴于点C(0,4),抛物线y=x2+bx+c经过点A,交y轴于点B(0,﹣2).点P为抛物线上一个动点,过点P作x轴的垂线PD,过点B作BD⊥PD于点D,连接PB,设点P的横坐标为m.(1)求抛物线的解析式;(2)当△BDP为等腰直角三角形时,求线段PD的长;(3)如图2,将△BDP绕点B逆时针旋转,得到△BD′P′,且旋转角∠PBP′=∠OAC,当点P的对应点P′落在坐标轴上时,请直接写出点P的坐标.一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的. 1.(3分)﹣的相反数是(B)A.﹣B.C.﹣3 D.32.(3分)某种细胞的直径是0.00000095米,将0.00000095米用科学记数法表示为()A.9.5×10﹣7B.9.5×10﹣8C.0.95×10﹣7D.95×10﹣8故选:A.其中1≤|a|<103.(3分)下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是(C)A.B.C.D.4.(3分)下列计算正确的是(A)A.﹣=B.(﹣3)2=6 C.3a4﹣2a2=a2D.(﹣a3)2=a55.(3分)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为(C)A.2 B.3 C.4 D.56.(3分)如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE的长为(D)A.6 B.5 C.4 D.37.(3分)如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方A.甲B.乙C.丙D.丁8.(3分)如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为(B)10题图A.(1,﹣1)B.(﹣1,﹣1)C.(,0)D.(0,﹣)二、填空题(每小题3分,共21分)9.(3分)计算:(﹣2)0﹣=﹣1.10.(3分)如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数为110°.11.(3分)若关于x的一元二次方程x2+3x﹣k=0有两个不相等的实数根,则k的取值范围是k>﹣.12.(3分)在“阳光体育”活动期间,班主任将全班同学随机分成了4组进行活动,该班小明和小亮同学被分在一组的概率是.【解答】解:设四个小组分别记作A、B、C、D,13.(3分)已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是(1,4).14.(3分)如图,在扇形AOB中,∠AOB=90°,以点A为圆心,OA的长为半径作交于点C,若OA=2,则阴影部分的面积为﹣.15.(3分)如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于点M,N.当点B′为线段MN的三等分点时,BE的长为或.①当MB′=2,B′N=1时,设EN=x,得B′E=.△B′EN∽△AB′M,=,即=,x2=,BE=B′E==.②当MB′=1,B′N=2时,设EN=x,得B′E=,△B′EN∽△AB′M,=,即=,解得x2=,BE=B′E==,三、解答题(本大题共8小题,满分75分)16.(8分)先化简,再求值:(﹣1)÷,其中x的值从不等式组的整数解中选取.【解答】解:原式=•=﹣•=,解不等式组得,﹣1≤x<,当x=2时,原式==﹣2.17.(9分)在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:5640 6430 6520 6798 73258430 8215 7453 7446 67547638 6834 7326 6830 86488753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:(1)填空:m=4,n=1;(2)补全频数发布直方图;(3)这20名“健步走运动”团队成员一天行走步数的中位数落在B组;(4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.(2);(3)行走步数的中位数落在B组,(4)一天行走步数不少于7500步的人数是:120×=48(人).18.(9分)如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O 分别交AC,BM于点D,E.(1)求证:MD=ME;(2)填空:①若AB=6,当AD=2DM时,DE=2;②连接OD,OE,当∠A的度数为60°时,四边形ODME是菱形.【解答】(1)证明:∵∠ABC=90°,AM=MC,∴BM=AM=MC,∴∠A=∠ABM,∵四边形ABED是圆内接四边形,∴∠ADE+∠ABE=180°,又∠ADE+∠MDE=180°,∴∠MDE=∠MBA,同理证明:∠MED=∠A,∴∠MDE=∠MED,∴MD=ME.(2)①由(1)可知,∠A=∠MDE,∴DE∥AB,∴=,∵AD=2DM,∴DM:MA=1:3,∴DE=AB=×6=2.故答案为2.②当∠A=60°时,四边形ODME是菱形.理由:连接OD、OE,∵OA=OD,∠A=60°,∴△AOD是等边三角形,∴∠AOD=60°,∵DE∥AB,∴∠ODE=∠AOD=60°,∠MDE=∠MED=∠A=60°,∴△ODE,△DEM都是等边三角形,∴OD=OE=EM=DM,∴四边形OEMD是菱形.故答案为60°.19.(9分)如图,小东在教学楼距地面9米高的窗口C处,测得正前方旗杆顶部A点的仰角为37°,旗杆底部B点的俯角为45°,升旗时,国旗上端悬挂在距地面2.25米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【解答】解:在Rt△BCD中,BD=9米,∠BCD=45°,则BD=CD=9米.在Rt△ACD中,CD=9米,∠ACD=37°,则AD=CD•tan37°≈9×0.75=6.75(米).所以,AB=AD+BD=15.75米,整个过程中旗子上升高度是:15.75﹣2.25=13.5(米),因为耗时45s,所以上升速度v==0.3(米/秒).20.(9分)学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.【解答】解:(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元,根据题意,得:,解得:,答:一只A型节能灯的售价是5元,一只B型节能灯的售价是7元;(2)设购进A型节能灯m只,总费用为W元,根据题意,得:W=5m+7(50﹣m)=﹣2m+350,∵﹣2<0,∴W随x的增大而减小,又∵m≤3(50﹣m),解得:m≤37.5,而m为正整数,∴当m=37时,W最小=﹣2×37+350=276,此时50﹣37=13,答:当购买A型灯37只,B型灯13只时,最省钱.21.(10分)某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.﹣m=0.(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)进一步探究函数图象发现:①函数图象与x轴有3个交点,所以对应的方程x2﹣2|x|=0有3个实数根;②方程x2﹣2|x|=2有2个实数根;③关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是﹣1<a<0.【解答】解:(1)根据函数的对称性可得m=0,故答案为:0;(2)如图所示;(3)由函数图象知:①函数y=x2﹣2|x|的图象关于y轴对称;②当x>1时,y随x的增大而增大;(4)①由函数图象知:函数图象与x轴有3个交点,所以对应的方程x2﹣2|x|=0有3个实数根;②如图,∵y=x2﹣2|x|的图象与直线y=2有两个交点,∴x2﹣2|x|=2有2个实数根;③由函数图象知:∵关于x的方程x2﹣2|x|=a有4个实数根,∴a的取值范围是﹣1<a<0,故答案为:3,3,2,﹣1<a<0.22.(10分)(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为a+b(用含a,b的式子表示)(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.【解答】解:(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,故答案为:CB的延长线上,a+b;(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,,∴△CAD≌△EAB,∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=4;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=AP=2,∴最大值为2+3;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE=,∴OE=BO﹣﹣3=2﹣,∴P(2﹣,).23.(11分)如图1,直线y=﹣x+n交x轴于点A,交y轴于点C(0,4),抛物线y=x2+bx+c经过点A,交y轴于点B(0,﹣2).点P为抛物线上一个动点,过点P作x轴的垂线PD,过点B作BD⊥PD于点D,连接PB,设点P的横坐标为m.(1)求抛物线的解析式;(2)当△BDP为等腰直角三角形时,求线段PD的长;(3)如图2,将△BDP绕点B逆时针旋转,得到△BD′P′,且旋转角∠PBP′=∠OAC,当点P的对应点P′落在坐标轴上时,请直接写出点P的坐标.【解答】解:(1)∵点C(0,4)在直线y=﹣x+n上,∴n=4,∴y=﹣x+4,令y=0,∴x=3,∴A(3,0),∵抛物线y=x2+bx+c经过点A,交y轴于点B(0,﹣2).∴c=﹣2,6+3b﹣2=0,∴b=﹣,∴抛物线解析式为y=x2﹣x﹣2,(2)点P为抛物线上一个动点,设点P的横坐标为m.∴P(m,m2﹣m﹣2),∴BD=|m|,PD=|m2﹣m﹣2+2|=|m2﹣m|,∵△BDP为等腰直角三角形,且PD⊥BD,∴BD=PD,∴|m|=|m2﹣m|,∴m=0(舍),m=,m=,∴PD=或PD=;(3)∵∠PBP'=∠OAC,OA=3,OC=4,∴AC=5,∴sin∠PBP'=,cos∠PBP'=,①当点P'落在x轴上时,过点D'作D'N⊥x轴,垂足为N,交BD于点M,∠DBD'=∠ND'P'=∠PBP',如图1,ND'﹣MD'=2,∴(m2﹣m)﹣(﹣m)=2,∴m=(舍),或m=﹣,如图2,ND'+MD'=2,∴(m2﹣m)+m=2,∴m=,或m=﹣(舍),∴P(﹣,)或P(,),②当点P'落在y轴上时,如图3,过点D′作D′M⊥x轴,交BD于M,过P′作P′N⊥y轴,∴∠DBD′=∠ND′P′=∠PBP′,∵P′N=BM,∴(m2﹣m)=m,∴m=,∴P(,).∴P(﹣,)或P(,)或P(,).。
2023年河南省数学中考真题(含答案)

2023年河南省普通高中招生考试试卷数学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。
答在试卷上的答案无效。
一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.下列各数中最小的数是()A.-1B.0C.1D.2.北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同3.2022年河南省出版的4.59亿册图书,为贯彻落实党的二十大关于深化全民阅读活动的重要精神,建设学习型社会提供了丰富的图书资.数据“4.59亿”用科学记数法表示为()A.B.C.D.4.如图,直线AB,CD相交于点O,若,,则的度数为()A.30°B.50°C.60°D.80°5.化简的结果是()A.0B.1C.a D.a-26.如图,点A,B,C在上,若,则的度数为()A.95°B.100°C.105°D.110°7.关于x的一元二次方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根8.为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为()A.B.C.D.9.二次函数的图象如图所示,则一次函数的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限10.如图1,点P从等边三角形ABC的顶点A出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B.设点P运动的路程为x,,图2是点P运动时y随x变化的关系图象,则等边三角形ABC的边长为()A.6B.3C.D.二、填空题(每小题3分,共15分)11.某校计划给每个年级配发n套劳动工具,则3个年级共需配发______套劳动工具.12.方程组的解为______.13.某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x(cm)的统计图,则此时该基地高度不低于300cm的“无絮杨”品种苗约有______棵.14.如图,PA与相切于点A,PO交于点B,点C在PA上,且.若,,则CA的长为______.15.矩形ABCD中,M为对角线BD的中点,点N在边AD上,且.当以点D,M,N为顶点的三角形是直角三角形时,AD的长为______.三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:;(2)化简:.17.(9分)蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利.不同的快递公司在配送、服务、收费和投递范围等方面各具优势.樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了10家樱桃种植户对两家公司的相关评价,并整理、描述、分析如下:a.配送速度得分(满分10分):甲:6 6 7 7 7 8 9 9 9 10乙:6 7 7 8 8 8 8 9 9 10b.服务质量得分统计图(满分10分):c.配送速度和服务质量得分统计表:项目配送速度得分服务质量得分统计量平均数中位数平均数方差快递公司甲7.8m7乙887根据以上信息,回答下列问题:(1)表格中的______;______(填“>”“=”或“<”).(2)综合上表中的统计量,你认为小丽应选择哪家公司?请说明理由.(3)为了从甲、乙两家公司中选出更合适的公司,你认为还应收集什么信息(列出一条即可)?18.(9分)如图,中,点D在边AC上,且.(1)请用无刻度的直尺和圆规作出的平分线(保留作图痕迹,不写作法).(2)若(1)中所作的角平分线与边BC交于点E,连接DE.求证:.19.(9分)小军借助反比例函数图象设计“鱼形”图案,如图,在平面直角坐标系中,以反比例函数图象上的点和点B为顶点,分别作菱形AOCD和菱形OBEF,点D,E在x轴上,以点O为圆心,OA 长为半径作,连接BF.(1)求k的值;(2)求扇形AOC的半径及圆心角的度数;(3)请直接写出图中阴影部分面积之和.20.(9分)综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪ABCD为正方形,AB=30cm,顶点A处挂了一个铅锤M.如图是测量树高的示意图,测高仪上的点D,A与树顶E在一条直线上,铅垂线AM交BC于点H.经测量,点A距地面1.8m,到树EC的距离m,cm.求树EG的高度(结果精确到0.1m).21.(9分)某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由.(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价.(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a元,请直接写出a的取值范围.22.(10分)小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A,C在x轴上,球网AB与y轴的水平距离m,m,击球点P在y轴上.若选择扣球,羽毛球的飞行高度y(m)与水平距离x(m)近似满足一次函数关系;若选择吊球,羽毛球的飞行高度y(m)与水平距离x(m)近似满足二次函数关系.(1)求点P的坐标和a的值.(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C点的距离更近,请通过计算判断应选择哪种击球方式.23.(10分)李老师善于通过合适的主题整合教学内容,帮助同学们用整体的、联系的、发展的眼光看问题,形成科学的思维习惯.下面是李老师在“图形的变化”主题下设计的问题,请你解答.(1)观察发现如图1,在平面直角坐标系中,过点的直线轴,作关于y轴对称的C图形,再分别作关于x轴和直线l对称的图形和,则可以看作是绕点O顺时针旋转得到的,旋转角的度数为______;可以看作是向右平移得到的,平移距离为______个单位长度.(2)探究迁移如图2,中,,P为直线AB下方一点,作点P关于直线AB的对称点,再分别作点关于直线AD和直线CD的对称点和,连接AP,,请仅就图2的情形解决以下问题:①若,请判断β与α的数量关系,并说明理由;②若,求P,两点间的距离.(3)拓展应用在(2)的条件下,若,,,连接.当与的边平行时,请直接写出AP的长.。
2024年河南省中考数学试卷(Word版含解析)

2024年河南省中考数学试卷一、选择题(每小题3分,共30分.下列各小题均有四个选项,其中只有一个是正确的)1.如图,数轴上点P表示的数是()A.﹣1B.0C.1D.22.据统计,2023年我国人工智能核心产业规模达5784亿元.数据“5784亿”用科学记数法表示为()A.5784×108B.5.784×1010C.5.784×1011D.0.5784×10123.如图,乙地在甲地的北偏东50°方向上,则∠1的度数为()A.60°B.50°C.40°D.30°4.信阳毛尖是中国十大名茶之一.如图是信阳毛尖茶叶的包装盒,它的主视图为()A.B.C.D.5.下列不等式中,与﹣x>1组成的不等式组无解的是()A.x>2B.x<0C.x<﹣2D.x>﹣36.如图,在▱ABCD中,对角线AC,BD相交于点O,点E为OC的中点,EF∥AB交BC于点F.若AB=4,则EF的长为()A.B.1C.D.27.计算()3的结果是()A.a5B.a6C.a a+3D.a3a8.豫剧是国家级非物质文化遗产,因其雅俗共赏,深受大众喜爱.正面印有豫剧经典剧目人物的三张卡片如图所示,它们除正面外完全相同.把这三张卡片背面朝上洗匀,从中随机抽取一张,放回洗匀后,再从中随机抽取一张,两次抽取的卡片正面相同的概率为()A.B.C.D.9.如图,⊙O是边长为的等边三角形ABC的外接圆,点D是的中点,连接BD,CD.以点D为圆心,BD的长为半径在⊙O内画弧,则阴影部分的面积为()A.B.4πC.D.16π10.把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I与使用电器的总功率P的函数图象(如图1),插线板电源线产生的热量Q与I的函数图象(如图2).下列结论中错误的是()A.当P=440W时,I=2AB.Q随I的增大而增大C.I每增加1A,Q的增加量相同D.P越大,插线板电源线产生的热量Q越多二、填空题(每小题3分,共15分)11.请写出2m的一个同类项:.12.2024年3月是第8个全国近视防控宣传教育月,其主题是“有效减少近视发生,共同守护光明未来”.某校组织各班围绕这个主题开展板报宣传活动,并对各班的宣传板报进行评分,得分情况如图,则得分的众数为分.13.若关于x的方程有两个相等的实数根,则c的值为.14.如图,在平面直角坐标系中,正方形ABCD的边AB在x轴上,点A的坐标为(﹣2,0),点E在边CD上.将△BCE沿BE折叠,点C落在点F处.若点F的坐标为(0,6),则点E的坐标为.15.如图,在Rt△ABC中,∠ACB=90°,CA=CB=3,线段CD绕点C在平面内旋转,过点B作AD的垂线,交射线AD于点E.若CD=1,则AE的最大值为,最小值为.三、解答题(本大题共8个小题,共75分)16.(1)计算:;(2)化简:.17.为提升学生体质健康水平,促进学生全面发展,学校开展了丰富多彩的课外体育活动.在八年级组织的篮球联赛中,甲、乙两名队员表现优异,他们在近六场比赛中关于得分、篮板和失误三个方面的统计结果如下.技术统计表队员平均每场得分平均每场篮板平均每场失误甲26.582乙26103根据以上信息,回答下列问题.(1)这六场比赛中,得分更稳定的队员是(填“甲”或“乙”);甲队员得分的中位数为27.5分,乙队员得分的中位数为分.(2)请从得分方面分析:这六场比赛中,甲、乙两名队员谁的表现更好.(3)规定“综合得分”为:平均每场得分×1+平均每场篮板×1.5+平均每场失误×(﹣1),且综合得分越高表现越好.请利用这种评价方法,比较这六场比赛中甲、乙两名队员谁的表现更好.18.如图,矩形ABCD的四个顶点都在格点(网格线的交点)上,对角线AC,BD相交于点E,反比例函数的图象经过点A.(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A的三个格点,再画出反比例函数的图象.(3)将矩形ABCD向左平移,当点E落在这个反比例函数的图象上时,平移的距离为.19.如图,在Rt△ABC中,CD是斜边AB上的中线,BE∥DC交AC的延长线于点E.(1)请用无刻度的直尺和圆规作∠ECM,使∠ECM=∠A,且射线CM交BE于点F(保留作图痕迹,不写作法).(2)证明(1)中得到的四边形CDBF是菱形.20.如图1,塑像AB在底座BC上,点D是人眼所在的位置.当点B高于人的水平视线DE时,由远及近看塑像,会在某处感觉看到的塑像最大,此时视角最大.数学家研究发现:当经过A,B两点的圆与水平视线DE相切时(如图2),在切点P处感觉看到的塑像最大,此时∠APB为最大视角.(1)请仅就图2的情形证明∠APB>∠ADB.(2)经测量,最大视角∠APB为30°,在点P处看塑像顶部点A的仰角∠APE为60°,点P到塑像的水平距离PH为6m.求塑像AB的高(结果精确到0.1m.参考数据:≈1.73).21.为响应“全民植树增绿,共建美丽中国”的号召,学校组织学生到郊外参加义务植树活动,并准备了A,B两种食品作为午餐.这两种食品每包质量均为50g,营养成分表如下.(1)若要从这两种食品中摄入4600kJ热量和70g蛋白质,应选用A,B两种食品各多少包?(2)运动量大的人或青少年对蛋白质的摄入量应更多.若每份午餐选用这两种食品共7包,要使每份午餐中的蛋白质含量不低于90g,且热量最低,应如何选用这两种食品?22.从地面竖直向上发射的物体离地面的高度h(m)满足关系式h=﹣5t2+v0t,其中t(s)是物体运动的时间,v0(m/s)是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后s时离地面的高度最大(用含v0的式子表示).(2)若小球离地面的最大高度为20m,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s.”已知实验楼高15m,请判断他的说法是否正确,并说明理由.23.综合与实践在学习特殊四边形的过程中,我们积累了一定的研究经验.请运用已有经验,对“邻等对补四边形”进行研究.定义:至少有一组邻边相等且对角互补的四边形叫做邻等对补四边形.(1)操作判断用分别含有30°和45°角的直角三角形纸板拼出如图1所示的4个四边形,其中是邻等对补四边形的有(填序号).(2)性质探究根据定义可得出邻等对补四边形的边、角的性质.下面研究与对角线相关的性质.如图2,四边形ABCD是邻等对补四边形,AB=AD,AC是它的一条对角线.①写出图中相等的角,并说明理由;②若BC=m,DC=n,∠BCD=2θ,求AC的长(用含m,n,θ的式子表示).(3)拓展应用如图3,在Rt△ABC中,∠B=90°,AB=3,BC=4,分别在边BC,AC上取点M,N,使四边形ABMN 是邻等对补四边形.当该邻等对补四边形仅有一组邻边相等时,请直接写出BN的长.。
2023年河南省中考数学试卷(含答案)

2023年河南省中考数学试卷(含答案)第一卷一、选择题1. 一间长方形的房间,长7米,宽5米,高3米,墙面和地面需要刷漆,请问需要多少平方米的油漆?答案:94平方米2. 若$\frac{x-1}{3}+\frac{2x}{5}=x+3$,则$x=$?答案:$\frac{53}{7}$3. 如图,已知$\tan A=2$,$\tan B=3$,则$\sin(A-B)=$?答案:$\frac{\sqrt{3}}{5}$二、填空题1. $\sqrt{0.04}\times \sqrt{0.16}=$\_\_\_\_\_\_\_\_\_\_\_。
答案:$0.08$2. 当$x=-2$时,$f(x)=$\_\_\_\_\_\_\_\_\_\_。
答案:$-10$三、解答题1. 计算:$3+\frac{1}{3+\frac{1}{3+\frac{1}{3+\frac{1}{3}}}}$。
答案:$\frac{541}{180}$2. 已知$\triangle ABC$,$AB=3$,$BC=4$,$\angleABC=90^\circ$,点$D$在$AC$上,且$\angle ABD=60^\circ$,求$BD$的长度。
答案:$2$第二卷四、应用题某公司有$600$名员工,其中男性员工人数为女性员工人数的$3$倍,且有$280$名男性员工。
若该公司中$\frac{1}{6}$的男性员工和$\frac{1}{4}$的女性员工都会骑车上下班,共有多少人骑车上下班?答案:$170$五、解答题1. 证明:$\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\geq\frac{3}{2}$,其中$a,b,c$均为正数。
答案:(略)2. 已知函数$f(x)=\frac{3x+2}{x-2}$。
(1)求$f(x)$的定义域;(2)若$f(x)+f\left(\frac{x}{2}\right)=3$,求$x$的值。
2020河南中招数学试卷及答案(word版)

2020年河南省中考数学试卷(满分120分,考试时间100分钟)5. 电子文件的大小常用B, kB, MB, GB 等作为单位,其中1 GB=210MB,lMB=210kB, 1 kB=210B 某视频文件的大小约为1 GB, 1 GB 等于【 】A. 230 BB. 830BC. 8×lO lo BD. 2×1030B6. 若点J (-L j ,ι), B (2,尹),C (3,歹3)在反比例函数y = -°的图象上,贝IJy1,力,旳的大小关系是【 】A ・ y1>y2>y3 B. y2>y3>y1 C ・ y1>y3>y2 D ・ y3>y2>y17. 定义运算:m^n=mιr -ιnn -∖.例如:4^2=4×22-4×2-l=7.则方程 I^x=O 的一、选择题(每小题3分,共30分)1. 2的相反数是A. -2B. D. 22. 3・ 4. A. B. C. D. 中央电视台《开学第一课》的收视率 某城市居民6月份人均网上购物的次数 即将发射的气象卫星的零部件质量 某品牌新能源汽车的最大续航里程 如图h∕∕l^若Zl=70。
,则Z2的度数为A. 100°B. IlO oC. 120°如下摆放的儿何体中, 主视图与左视图有可能不同的是D.要调查下列问题,适合釆用全面调查(普查)的是 D. 130根的悄况为【 】A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根8. 国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入山5 000亿元增加到7 500亿元.设我国2017年至2019 年快递业务收入的年平均增长率为X,则可列方程为【】A ・ 5 OOO(I +2x)=7 500B ・ 5 000×2(l +x)=7 500C ・ 5 (XX)(I +X )2=7 500D. 5 (XX)+5 OOO(I +x)+5 OOO(I +x)2=7 5009. 如图,在BC 中,ZACB=90°,边EC 在X 轴上,顶点/, E 的坐标分别为(-2, 6)秋7, 0).将正方形OCz)E 沿X 轴向右平移,当点E 落在曲边上时, 点D 的坐标为【 】3 1 1A. (T 2)B. (2, 2)C ・(中 2) D. (4, 2)10.如图,在∕∖ABC 中,AB=BC= 氐 ZBAC=30Q9分别以点C 为圆心,/C 的长为半径作弧,两弧交于点D 连接DC ,则四边形MCD 的面积为二、填空题(每小题3分,共15分)A. 6√3B. 9C. 6 D ・ 3√311・请写出一个大于1且小于2的无理数________________ •12.已知关于X的不等式组F>",其中e b在数轴上的对应点如图所示,则这x>b个不等式组的解集为 _____________ .---- 1 ----- « --------- * ---- ►b O G13.如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黃、蓝、绿四种颜色.固定指针,自山转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是__________ •14.如图,在边长为2√Σ的正方形45CQ中,点EF分别是边AB9 BC的中点,连接EC, FD点、G, R分别是EC, J ro的中点,连接GH,则GR的长度为.15.如图,在扇形BOC中,ZBOC=60°9 CQ平分ZBOC交说于点、D,点、E为半径OE上一动点•若OB=2、则阴影部分周长的最小值为__________________三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:(1 -- )÷4,其中^ = √5 + l.a + Y a2-l17.(9分)为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的中、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋500 g,与之相差大于Iog为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析, 过程如下:【收集数据】从屮、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位:g)如下:甲:501 497 498 502 513 489 506 490 505 486 502 503 498 497 491 500 505 502 504 505乙: 505 499 502 491 487 506 493 505 499 498502 503 501 490 501 502 511 499 499 501【整理数据】整理以上数据,得到每袋质量X (g)的频数分布表.根据以上信息,回答下列问题:(1)表格中的d= b=_;(2)综合上表中的统计•量,判断工厂应选购哪一台分装机,并说明理由.18.(9分)位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一. 某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP上架设测角仪,先在点M处测得观星台最高点/的仰角为22。
2023年河南省中考数学真题(解析版)

2023年河南省普通高中招生考试试卷数学一、选择题1. 下列各数中,最小的数是( )A. -lB. 0C. 1D. 【答案】A【解析】【分析】根据实数的大小比较法则,比较即可解答.【详解】解:∵101-<<<,∴最小的数是-1.故选:A【点睛】本题考查实数的大小比较,负数都小于0,正数都大于0,正数大于一切负数,两个负数,其绝对值大的反而小.2. 北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是( )A. 主视图与左视图相同B. 主视图与俯视图相同C. 左视图与俯视图相同D. 三种视图都相同【答案】A【解析】【分析】直接利用已知几何体分别得出三视图进而分析得出答案.【详解】解:这个花鹅颈瓶的主视图与左视图相同,俯视图与主视图和左视图不相同.故选:A .【点睛】此题主要考查了简单几何体的三视图,掌握三视图的概念是解题关键.3. 2022年河南省出版的4.59亿册图书,为贯彻落实党的二十大关于深化全民阅读活动的重要精神,建设学习型社会提供了丰富的图书资源.数据“4.59亿”用科学记数法表示为( )A. 74.5910´B. 845.910´C. 84.5910´D. 90.45910´【答案】C【解析】【分析】将一个数表示为10n a ´的形式,其中110a £<,n 为整数,这种记数方法叫做科学记数法,据此即可得出答案.【详解】解:4.59亿8459000000 4.9510==´.故选:C .【点睛】本题主要考查了用科学记数法表示较大的数,掌握形式为10n a ´,其中110a £<,确定a与n 的值是解题的关键.4. 如图,直线AB ,CD 相交于点O ,若180∠=︒,230∠=︒,则AOE ∠的度数为( )A. 30︒B. 50︒C. 60︒D. 80︒【答案】B【解析】【分析】根据对顶角相等可得180AOD ∠=∠=︒,再根据角和差关系可得答案.【详解】解:∵180∠=︒,∴180AOD ∠=∠=︒,∵230∠=︒,∴2803050AOE AOD ∠=∠-∠=︒-︒=︒,故选:B【点睛】本题主要考查了对顶角的性质,解题的关键是掌握对顶角相等.5. 化简11a a a -+的结果是( )A 0 B. 1 C. a D. 2a -【答案】B【解析】的.【分析】根据同母的分式加法法则进行计算即可.【详解】解:11111a a a a a a a--++===,故选:B .【点睛】本题考查同分母的分式加法,熟练掌握运算法则是解决问题的关键.6. 如图,点A ,B ,C 在O e 上,若55C ∠=︒,则AOB ∠的度数为( )A. 95︒B. 100︒C. 105︒D. 110︒【答案】D【解析】【分析】直接根据圆周角定理即可得.【详解】解:∵55C ∠=︒,∴由圆周角定理得:2110AOB C ==︒∠∠,故选:D .【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题关键.7. 关于x 的一元二次方程280x mx +-=的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根【答案】A【解析】【分析】对于20(0)ax bx c a ++=¹,当0D >, 方程有两个不相等的实根,当Δ0=, 方程有两个相等的实根,Δ0<, 方程没有实根,根据原理作答即可.【详解】解:∵280x mx +-=,∴()2248320m m D =-´-=+>,所以原方程有两个不相等的实数根,故选:A .【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题关键.8. 为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为( )A. 12 B. 13 C. 16 D. 19【答案】B【解析】【分析】先画树状图,再根据概率公式计算即可.【详解】设三部影片依次为A 、B 、C ,根据题意,画树状图如下:故相同的概率为3193=.故选B .【点睛】本题考查了画树状图法计算概率,熟练掌握画树状图法是解题的关键.9. 二次函数2y ax bx =+的图象如图所示,则一次函数y x b =+的图象一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】根据二次函数图象的开口方向、对称轴判断出a 、b 的正负情况,再由一次函数的性质解答.【详解】解:由图象开口向下可知a<0,由对称轴b x 02a=->,得0b >.∴一次函数y x b =+的图象经过第一、二、三象限,不经过第四象限.故选:D .【点睛】本题考查二次函数图象和一次函数图象的性质,解答本题的关键是求出a 、b 的正负情况,要掌握它们的性质才能灵活解题,此题难度不大.10. 如图1,点P 从等边三角形ABC 的顶点A 出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B .设点P 运动的路程为x ,PB y PC=,图2是点P 运动时y 随x 变化的关系图象,则等边三角形ABC 的边长为( )A. 6B. 3C.D. 【答案】A【解析】【分析】如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B .结合图象可知,当点P 在AO 上运动时,PB PC =,AO =30BAO CAO ∠=∠=︒,当点P 在OB 上运动时,可知点P 到达点B 时的路程为AO OB ==O 作OD AB ^,解直角三角形可得cos303AD AO =×︒=,进而可求得等边三角形ABC 的边长.【详解】解:如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B .结合图象可知,当点P 在AO 上运动时,1PB PC=,∴PB PC =,AO =又∵ABC V 为等边三角形,∴60BAC ∠=︒,AB AC =,∴()SSS APB APC △≌△,∴BAO CAO ∠=∠,∴30BAO CAO ∠=∠=︒,当点P 在OB 上运动时,可知点P 到达点B 时的路程为∴OB =AO OB ==,∴30BAO ABO ∠=∠=︒,过点O 作OD AB ^,∴AD BD =,则cos303AD AO =×︒=,∴6AB AD BD =+=,即:等边三角形ABC 的边长为6,故选:A .【点睛】本题考查了动点问题的函数图象,解决本题的关键是综合利用图象和图形给出的条件.二、填空题11. 某校计划给每个年级配发n 套劳动工具,则3个年级共需配发______套劳动工具.【答案】3n【解析】【分析】根据总共配发的数量=年级数量´每个年级配发的套数,列代数式.【详解】解:由题意得:3个年级共需配发得套劳动工具总数为:3n 套,故答案为:3n .【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找出合适的等量关系,列代数式.12. 方程组35,37x y x y +=ìí+=î的解为______.【答案】12x y =ìí=î【解析】【分析】利用加减消元法求解即可.【详解】解:3537x y x y +=ìí+=î①②由3´-①②得,88x =,解得1x =,把1x =代入①中得315y ´+=,解得2y =,故原方程组的解是12x y =ìí=î,故答案为:12x y =ìí=î.【点睛】本题主要考查了二元一次方程组的解法,解二元一次方程组的常用解法:代入消元法和加减消元法,观察题目选择合适的方法是解题关键.13. 某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x (cm )的统计图,则此时该基地高度不低于300cm 的“无絮杨”品种苗约有______棵.【答案】280【解析】【分析】利用1000棵乘以样本中不低于300cm 的百分比即可求解.【详解】解:该基地高度不低于300cm 的“无絮杨”品种苗所占百分比为10%18%28%+=,则不低于300cm 的“无絮杨”品种苗约为:100028%280´=棵,故答案为:280.【点睛】本题考查用样本估计总体,明确题意,结合扇形统计图中百分比是解决问题的关键.14. 如图,PA 与O e 相切于点A ,PO 交O e 于点B ,点C 在PA 上,且CB CA =.若5OA =,12PA =,则CA 的长为______.【答案】103【解析】【分析】连接OC ,证明OAC OBC V V ≌,设CB CA x ==,则12PC PA CA x =-=-,再证明PAO PBC V V ∽,列出比例式计算即可.【详解】如图,连接OC ,∵PA 与O e 相切于点A ,∴90OAC ∠=︒;∵OA OB CA CB OC OC =ìï=íï=î,∴OAC OBC V V ≌,∴90OAC OBC ∠=∠=︒,∴90PAO PBC ∠=∠=︒,∵P P ∠=∠,∴PAO PBC V V ∽,∴PO AO PC BC=,∵5OA =,12PA =,∴13PO ==,设CB CA x ==,则12PC PA CA x =-=-,∴13512x x=-,解得103x =,故CA 的长为103,故答案为:103.【点睛】本题考查了切线的性质,三角形全等的判定和性质,勾股定理,三角形相似的判断和性质,熟练掌握性质是解题的关键.15. 矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且1AN AB ==.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为______.【答案】21【解析】分析】分两种情况:当90MND ∠=︒时和当90NMD ∠=︒时,分别进行讨论求解即可.【详解】解:当90MND ∠=︒时,∵四边形ABCD 矩形,∴90A ∠=︒,则∥MN AB ,由平行线分线段成比例可得:AN BM ND MD =,又∵M 为对角线BD 的中点,∴BM MD =,∴1AN BM ND MD==,即:1ND AN ==,【∴2AD AN ND =+=,当90NMD ∠=︒时,∵M 为对角线BD 的中点,90NMD ∠=︒∴MN 为BD 的垂直平分线,∴BN ND =,∵四边形ABCD 矩形,1AN AB ==∴90A ∠=︒,则BN ==∴BN ND ==∴1AD AN ND =+=,综上,AD 的长为21,故答案为:21+.【点睛】本题考查矩形的性质,平行线分线段成比例,垂直平分线的判定及性质等,画出草图进行分类讨论是解决问题的关键.三、解答题16. (1)计算:135---+;(2)化简:()()224x y x x y ---.【答案】(1)15;24y 【解析】【分析】(1)先求绝对值和算术平方根,再进行加减计算即可;(2)先利用完全平方公式去括号,再合并同类项即可.【详解】(1)解:原式1=335-+15=;(2)解:原式222444x xy y x xy=-+-+24y =.【点睛】本题考查实数的混合运算、多项式乘多项式的混合运算,熟练掌握完全平方公式是解题的关键.17. 蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利.不同的快递公司在配送、服务、收费和投递范围等方面各具优势.樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了10家樱桃种植户对两家公司的相关评价,并整理、描述、分析如下:a .配送速度得分(满分10分):甲:6 6 7 7 7 8 9 9 9 10乙:6 7 7 8 8 8 8 9 9 10b .服务质量得分统计图(满分10分):c .配送速度和服务质量得分统计表:配送速度得分服务质量得分项目统计量快递公司平均数中位数平均数方差甲78m 72s 甲乙8872s乙根据以上信息,回答下列问题:(1)表格中的m =______;2s 甲______2s 乙(填“>”“=”或“<”).(2)综合上表中的统计量,你认为小丽应选择哪家公司?请说明理由.(3)为了从甲、乙两家公司中选出更合适的公司,你认为还应收集什么信息(列出一条即可)?【答案】(1)7.5;<.(2)甲公司,理由见解析(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)【解析】【分析】(1)根据中位数和方差概念求解即可;(2)通过比较平均数,中位数和方差求解即可;(3)根据题意求解即可.【小问1详解】由题意可得,787.52m +==,()()()()22222137748726757110s éù=´´-+´-+´-+-=ëû甲()()()()()()()222222221478721072679725777 4.210s éù=´-+-+´-+´-+-+´-+-=ëû乙,∴22s s <甲乙,故答案为:7.5;<;【小问2详解】∵配送速度得分甲和乙的得分相差不大,服务质量得分甲和乙的平均数相同,但是甲的方差明显小于乙的方差,∴甲更稳定,∴小丽应选择甲公司;【小问3详解】还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)【点睛】本题考查中位数、平均数、方差的定义,掌握中位数、平均数、方差的定义是解题的关键.18. 如图,ABC V 中,点D 在边AC 上,且AD AB =.(1)请用无刻度的直尺和圆规作出A ∠的平分线(保留作图痕迹,不写作法).(2)若(1)中所作的角平分线与边BC 交于点E ,连接DE .求证:DE BE =.【答案】(1)见解析(2)见解析【解析】【分析】(1)利用角平分线的作图步骤作图即可;的(2)证明()SAS BAE DAE △≌△,即可得到结论.【小问1详解】解:如图所示,即为所求,【小问2详解】证明:∵AE 平分BAC ∠,∴BAE DAE ∠=∠,∵AB AD =,AE AE =,∴()SAS BAE DAE △≌△,∴DE BE =.【点睛】此题考查了角平分线的作图、全等三角形的判定和性质等知识,熟练掌握角平分线的作图和全等三角形的判定是解题的关键.19. 小军借助反比例函数图象设计“鱼形”图案,如图,在平面直角坐标系中,以反比例函数k y x =图象上的点)A 和点B 为顶点,分别作菱形AOCD 和菱形OBEF ,点D ,E 在x 轴上,以点O 为圆心,OA 长为半径作 AC ,连接BF .(1)求k 的值;(2)求扇形AOC 的半径及圆心角的度数;(3)请直接写出图中阴影部分面积之和.【答案】(1(2)半径为2,圆心角为60︒(3)23p -【解析】【分析】(1)将)A 代入k y x=中即可求解;(2)利用勾股定理求解边长,再利用三角函数求出AOD ∠的度数,最后结合菱形的性质求解;(3)先计算出AOCD S =菱形,再计算出扇形的面积,根据菱形的性质及结合k 的几何意义可求出FBO S =V 【小问1详解】解:将)A 代入k y x=中,得1=,解得:k =【小问2详解】解:Q 过点A 作OD 的垂线,垂足为G ,如下图:)A Q ,1,AG OG \==,2OA \==,\半径为2;12AG OA =Q ,∴1sin 2AG AOG OG ∠==,30AOG \∠=︒,由菱形的性质知:30AOG COG ∠=∠=︒,60AOC \∠=︒,\扇形AOC 的圆心角的度数:60︒;【小问3详解】解:2OD OG ==Q ,1AOCD S AG OD \=´=´=菱形221122663AOC S r p p p =´=´´=Q 扇形,如下图:由菱形OBEF 知,FHO BHO S S =V V ,2BHO k S ==V Q2FBO S \==V ,2233FBO AOCD AOC S S S S p p \=+-=+=V 阴影部分面积菱形扇形.【点睛】本题考查了反比例函数及k 的几何意义,菱形的性质、勾股定理、圆心角,解题的关键是掌握k 的几何意义.20. 综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪ABCD 为正方形,30cm AB =,顶点A 处挂了一个铅锤M .如图是测量树高的示意图,测高仪上的点D ,A 与树顶E 在一条直线上,铅垂线AM 交BC 于点H .经测量,点A 距地面1.8m ,到树EG 的距离11m AF =,20cm BH =.求树EG 的高度(结果精确到0.1m ).【答案】树EG 的高度为9.1m 【解析】【分析】由题意可知,90BAE MAF BAD ∠=∠=∠=︒, 1.8m FG =,易知EAF BAH ∠=∠,可得2tan tan 3EF EAF BAH AF ∠==∠=,进而求得22m 3EF =,利用EG EF FG =+即可求解.【详解】解:由题意可知,90BAE MAF BAD ∠=∠=∠=︒, 1.8m FG =,则90EAF BAF BAF BAH ∠+∠=∠+∠=︒,∴EAF BAH ∠=∠,∵30cm AB =,20cm BH =,则2tan 3BH BAH AB ∠==,∴2tan tan 3EF EAF BAH AF ∠==∠=,∵11m AF =,则2113EF =,∴22m 3EF =,∴22 1.89.1m 3EG EF FG =+=+»,答:树EG 的高度为9.1m .【点睛】本题考查解直角三角形的应用,得到EAF BAH ∠=∠是解决问题的关键.21. 某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由.(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价.(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a 元,请直接写出a 的取值范围.【答案】(1)活动一更合算(2)400元 (3)当300400a £<或600800a £<时,活动二更合算【解析】【分析】(1)分别计算出两个活动需要付款价格,进行比较即可;(2)设这种健身器材的原价是x 元,根据“选择活动一和选择活动二的付款金额相等”列方程求解即可;(3)由题意得活动一所需付款为0.8a 元,活动二当0300a <<时,所需付款为a 元,当300600a £<时,所需付款为()80a -元,当600900a £<时,所需付款为()160a -元,然后根据题意列出不等式即可求解.【小问1详解】解:购买一件原价为450元的健身器材时,活动一需付款:4500.8360´=元,活动二需付款:45080370-=元,∴活动一更合算;【小问2详解】设这种健身器材的原价是x 元,则0.880x x =-,解得400x =,答:这种健身器材的原价是400元,【小问3详解】这种健身器材的原价为a 元,则活动一所需付款为:0.8a 元,活动二当0300a <<时,所需付款为:a 元,当300600a £<时,所需付款为:()80a -元,当600900a £<时,所需付款为:()160a -元,①当0300a <<时,0.8a a >,此时无论a 为何值,都是活动一更合算,不符合题意,②当300600a £<时,800.8a a -<,解得300400a £<,即:当300400a £<时,活动二更合算,③当600900a £<时,1600.8a a -<,解得600800a £<,即:当600800a £<时,活动二更合算,综上:当300400a £<或600800a £<时,活动二更合算.【点睛】此题考查了一元一次方程及一元一次不等式的应用,解答本题的关键是仔细审题,注意分类讨论的应用.22. 小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A ,C 在x 轴上,球网AB 与y 轴的水平距离3m OA =,2m CA =,击球点P 在y 轴上.若选择扣球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足一次函数关系0.4 2.8y x =-+;若选择吊球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足二次函数关系()21 3.2y a x =-+.(1)求点P 的坐标和a 的值.(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C 点的距离更近,请通过计算判断应选择哪种击球方式.【答案】(1)()0,2.8P ,0.4a =-,(2)选择吊球,使球的落地点到C 点的距离更近【解析】【分析】(1)在一次函数上0.4 2.8y x =-+,令0x =,可求得()0,2.8P ,再代入()21 3.2y a x =-+即可求得a 的值;(2)由题意可知5m OC =,令0y =,分别求得0.4 2.80x -+=,()20.41 3.20x --+=,即可求得落地点到O 点的距离,即可判断谁更近.【小问1详解】解:在一次函数0.4 2.8y x =-+,令0x =时, 2.8y =,∴()0,2.8P ,将()0,2.8P 代入()21 3.2y a x =-+中,可得: 3.2 2.8a +=,解得:0.4a =-;【小问2详解】∵3m OA =,2m CA =,∴5m OC =,选择扣球,则令0y =,即:0.4 2.80x -+=,解得:7x =,即:落地点距离点O 距离为7m ,∴落地点到C 点的距离为752m -=,选择吊球,则令0y =,即:()20.41 3.20x --+=,解得:1x =±+(负值舍去),即:落地点距离点O 距离为()1m +,∴落地点到C 点的距离为()(514m -=-,∵42-<,∴选择吊球,使球的落地点到C 点的距离更近.【点睛】本题考查二次函数与一次函数的应用,理解题意,求得函数解析式是解决问题的关键.23. 李老师善于通过合适的主题整合教学内容,帮助同学们用整体的、联系的、发展的眼光看问题,形成科学的思维习惯.下面是李老师在“图形的变化”主题下设计的问题,请你解答.(1)观察发现:如图1,在平面直角坐标系中,过点()4,0M 的直线l y P 轴,作ABC V 关于y 轴对称的图形111A B C △,再分别作111A B C △关于x 轴和直线l 对称的图形222A B C △和333A B C △,则222A B C △可以看作是ABC V 绕点O 顺时针旋转得到的,旋转角的度数为______;333A B C △可以看作是ABC V 向右平移得到的,平移距离为______个单位长度.(2)探究迁移:如图2,ABCD Y 中,()090BAD a a ∠=︒<<︒,P 为直线AB 下方一点,作点P 关于直线AB 的对称点1P ,再分别作点1P 关于直线AD 和直线CD 的对称点2P 和3P ,连接AP ,2AP ,请仅就图2的情形解决以下问题:①若2PAP b ∠=,请判断b 与a 的数量关系,并说明理由;②若AD m =,求P ,3P 两点间的距离.(3)拓展应用:在(2)的条件下,若60a =︒,AD =,15PAB ∠=︒,连接23P P .当23P P 与ABCD Y 的边平行时,请直接写出AP 的长.【答案】(1)180︒,8.(2)①2b a =,理由见解析;②2sin m a(3)或【解析】【分析】(1)观察图形可得222A B C △与ABC V 关于O 点中心对称,根据轴对称的性质可得即可求得平移距离;(2)①连接1AP ,由对称性可得,112PAB P AB P AD P AD ∠=∠∠=∠,,进而可得22PAP BAD ∠=∠,即可得出结论;②连接113,PP PP 分别交,AB CD 于,E F 两点,过点D 作DG AB ^,交AB 于点G ,由对称性可知:113PE PE PF P F ==,且113PP AB PP CD ^^,,得出32PP EF =,证明四边形EFDG 是矩形,则DG EF =,在Rt DAG △中,根据sin DG DAG DA∠=,即可求解;(3)分23P P AD ∥,23P P CD ∥,两种情况讨论,设AP x =,则12AP AP x ==,先求得1PP x =,勾股定理求得13PP ,进而表示出3PP ,根据由(2)②可得32sin PP AD a =,可得36PP =,进而建立方程,即可求解.【小问1详解】(1)∵ABC V 关于y 轴对称的图形111A B C △,111A B C △与222A B C △关于x 轴对称,∴222A B C △与ABC V 关于O 点中心对称,则222A B C △可以看作是ABC V 绕点O 顺时针旋转得到的,旋转角的度数为180︒∵()1,1A -,∴12AA =,∵()4,0M ,13,A A 关于直线4x =对称,∴131248A A AA +=´=,即38AA =,333A B C △可以看作是ABC V 向右平移得到的,平移距离为8个单位长度.故答案为:180︒,8.【小问2详解】①2b a =,理由如下,连接1AP ,由对称性可得,112PAB P AB P AD P AD ∠=∠∠=∠,,2112PAP PAB P AB P AD P AD∠=∠+∠+∠+∠1122P AB P AD=∠+∠()112P AB P AD =∠+∠2BAD=∠∴2b a =,②连接113,PP PP 分别交,AB CD 于,E F 两点,过点D 作DG AB ^,交AB 于点G ,由对称性可知:113PE PE PF P F ==,且113PP AB PP CD ^^,,∵四边形ABCD 为平行四边形,∴AB CD∥∴13P P P ,,三点共线,∴311311222PP PE PE PF P F PE PF EF =+++=+=,∵113,,PP AB PP CD DG AB ^^^,∴1190PFD PEG DGE ∠=∠=∠=︒,∴四边形EFDG 是矩形,∴DG EF =,在Rt DAG △中,DAG a ∠=,AD m=∵sin DG DAG DA∠=,∴sin sin DG AD DAG m a =×∠=,∴3222sin PP EF DG m a===【小问3详解】解:设AP x =,则12AP AP x ==,依题意,12PP AD ^,当23P P AD ∥时,如图所示,过点P 作1PQ AP ^于点Q ,∴12390PP P ∠=︒∵15PAB ∠=︒,60a =︒,∴1320P PAP AB ∠=︒∠=,1245DAP DAP ∠=∠=︒∴2190P AP ∠=︒,则12PP =,在1APP V 中,()111180752APP PAP ∠=︒-∠=︒,∴213180457560P PP ∠=︒-︒-︒=︒,则13230PP P ∠=︒,∴13212PP P P ==在Rt APQ △中,30PAQ ∠=︒,则1122PQ AP x ==,AQ x ==,在1Rt PQP V 中,11PQ AP AQ x x =-=,1PP x ====,∴3113PP PP PP x x =+=+=由(2)②可得32sin PP AD a =,∵AD =∴326PP =´=6x =,解得:x =;如图所示,若23P P DC ∥,则13290PP P ∠=︒,∵21360P PP ∠=︒,则32130P P P ∠=︒,则131212PP PP x ==,∵1PP x =,3PP x x x =+=,∵36PP =,6=,解得:x =,综上所述,AP 的长为或【点睛】本题考查了轴对称的性质,旋转的性质,平行四边形的性质,解直角三角形,熟练掌握轴对称的性质是解题的关键.。
河南省中招考试数学试题卷及答案【WORD版】

2007年河南省高级中等学校招生学业考试试卷数 学一、选择题(每小题3分,共18分)1.计算31)(- 的结果是 【 】 A .-1 B . 1 C .-3 D . 32.使分式2+x x有意义的x 的取值范围为 【 】 A .2≠x B .2-≠x C .2->x C .2<x3.如图,ΔABC 与ΔA ’B ’C ’关于直线l 对称, 则∠B 的度数为 【 】A .30°B .50°C .90°D .100° 4.为了某小区居民的用水情况,随机抽查了 10则关于这10户家庭的约用水量,下列说法错误的是【 】A .中位数是5吨B . 极差是3吨C .平均数是5.3吨D .众数是5吨5.由一些大小相同的小正方体组成的几何体的俯视图如图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么,这个几何体的左视图是 【 】6.二次函数122-++=a x ax y 的图像可能是 【 】二、填空题(每小题3分,共27分)30︒lC'B'A'B CA50︒(第3题)A .B .C .D .A.B.C.D.7.52的相反数是. 8.计算:423)2(x x ⋅-=.9.写出一个经过点(1,-1)的函数的表达式.10.如图,PA 、PB 切⊙O 于点A 、B ,点C 是⊙O 上一点,且∠ACB =65°,则∠P =度.11.如图,在直角梯形ABCD 中,AB //CD ,AD ⊥CD ,AB =1cm ,AD =2cm ,CD =4cm ,则BC =.12.已知x 为整数,且满足32≤≤x -,则x =.13.将图①所示的正六边形进行分割得到图②,再将图②中最小的某一个正六边形按同样 的方式进行分割得到图③,再将图③中最小的某一个正六边形按同样的方式进行分割,…,则第n 个图形中共有个正六边形.14.将图,四边形OABC 为菱形,点B 、C 在以点O 为圆心的⌒EF 上,若OA =3,∠1=∠2,则扇形OEF 的面积为. 15.如图,点P 是∠AOB 的角平分线上一点, 过P 作PC //OA 交OB 于点C .若∠AOB =60°, OC =4,则点P 到OA 的距离PD 等于. 三、解答题(本大题共8个小题, 满分75分)16.(8分)32223=-++x x x 17.(9分)如图,点E 、F 、G 分别 是□ABCD 的边AB 、BC 、CD 、DA 的中点. 求证:ΔBEF ≌ΔDGH .18.(9分)下图是2006年某省各类学校在校生数情况制作的扇形统计图和不完整的条形统计图.(第10题图)OCB APDCA B(第11题图) (第14题图)EF OBC21(第15题图)PBCODA(第13题图) ①∙∙∙②③GHEF C B A已知2006年该省普通高校在校生为97.41万人,请根据统计图中提供的信息解答下列问题:(1)2006年该省各类学校在校生总人数约多少万人?(精确到1万) (2)补全条形统计图;(3)请你写出一条合理化建议. 19.(9分)张彬 和王华两位同学为得到一张观看足球比赛的入场券,各自设计了一种方案:张彬:如图,设计了一个可以自由转动的转盘,随意转动转盘,当指针指向阴影区域时,张彬得到了入场券;否则,王华得到入场券;王华:将三个完全相同的小球分别标上数字1、2、3后,放入一个不透明的袋子中.从中随机取出一个小球, 然后放回袋子;混合均匀后,再随机取出一个小球. 若两次取出的小球上的数字之和为偶数,王华得到 入场券;否则,张彬得到入场券.请你运用所学的概率知识,分析张彬和王华 的设计方案对双方是否公平.FG DEBA20.(9分)如图,ABCD 是边长为1的正方形,其中⌒DE 、⌒EF 、⌒FG 的圆心依次是点A 、B 、C .(1)求点D 沿三条圆弧运动到G 所经过的路线长;(2)判断直线GB 与DF 的位置关系,并说明理由.小学初中普通高中中等职业成人高校普通高校 人数(万人)100012008006004002000普通高中10.08%中等职业6.86%成人高校4.87% 1.28%普通高校小学49.86%初中27.05%21.(10分)请你画出一个以BC 为底边的等腰ΔABC ,使底边上的高AD =BC . (1)求tan B 和 sin B 的值;(2)在你所画的等腰ΔABC 中设底边BC =5M ,求腰上的高BE .22.(10分)某商场用36万元购进A 、B 两种商品,销售完后共获利6万元,其进价和售价如下表:(注:获利=售价-进价)(1) 该商场购进A 、B 两种商品各多少件?(2) 商场第二次以原进价购进A 、B 两种商品.购进B 种商品的件数不变,而购进A 种商品的件数是第一次的2倍,A 种商品按原价出售,而B 种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B 种商品最低售价为每件多少元? 23.(11分)如图,对称轴为直线x =27的抛物线经过点A (6,0)和B (0,4). (1)求抛物线解读式及顶点坐标;(2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形,求四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)①当四边形OEAF 的面积为24时,请判断OEAF 是否为菱形?②是否存在点E ,使四边形OEAF 为正方形?若存在,求出点E 的坐标;若不存在,请说明理由.2008年河南省高级中等学校招生统一考试试卷数 学选择题(本题满分18分,共有6道小题,每小题3分) 1.-7的相反数是( )A. 7B. -7C.71 D.17- 2.直角三角形在正方形网格纸中的位置如图所示,则cos α的值是( A.43 B. 34 C. 53 D. 543.如图,是中国共产主义青年团团旗上的图案,点A 、B 、C 、D 、E五等分圆,则A B C D E ∠+∠+∠+∠+∠等于( ) A. ︒360 B. ︒180 C. ︒150 D. ︒1204.初三年级某班十名男同学“俯卧撑”的测试成绩(单位:次数)分别是9,14,10,15,7,9,16,10,11,9,这组数据的众数、中位数、平均数依次是( )A. 9,10,11B.10,11,9C.9,11,10D.10,9,115.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是( )A.k >14-B.k >14-且0k ≠C.k <14-D.14k ≥-0k ≠6.如图,已知□ABCD 中,AB=4,AD=2,E 是AB 边上的一动点(动点E 与点A 不重合,可与点B 重合),设AE=x ,DE 的延长线交CB 的延长线于点F ,设CF=y ,则下列图象能正确反映y 与x 的函数关系的是( )二、填空题(本题满分27分,共有9道小题,每小题3分)7.16的平方根是8.如图,直线a,b 被直线c 所截,若a ∥b ,︒=∠501,则=∠29.样本数据3,6,a,4,2的平均数是5,则这个样本的方差是 10.如图所示,AB 为⊙0的直径,AC 为弦,OD ∥BC 交AC 于点D , 若AB=20cm,︒=∠30A ,则AD=cm11.某花木场有一块如等腰梯形ABCD 的空地(如图), 各边的中点分别是E 、F 、G 、H ,用篱笆围成的四 边形EFGH 场地的周长为40cm ,则对角线AC= cm 12.如图,矩形ABCD 的两条线段交于点O ,过点O 作 AC 的垂线EF,分别交AD 、BC 于点E 、F ,连接CE,已知CDE ∆的周长为24cm ,则矩形ABCD 的周长是cm13、在一幅长50cm ,宽30cm 的风景画的四周镶一条金色纸边, 制成一幅矩形挂图,如图所示,如果要使整个规划土地的面积 是1800cm 2,设金色纸边的宽为x cm ,那么x 满足的方程为 14、如图是二次函数2)1(2++=x a y 图像的一部分,该图在y 轴 右侧与x 轴交点的坐标 是15、如图,直线2-==kx y (k >0)与双曲线xky =在第一象限内的交点面积为R ,与x 轴的交点为P ,与y 轴的交点为Q ;作RM ⊥x 轴于点M ,若△OPQ 与△PRM 的面积是4:1,则=k三、解答题(本题满分75分,共8道小题)16、(本小题满分8分)解不等式组()⎪⎩⎪⎨⎧---+≤②①.323121134x x x x 并把解集在已画好的数轴上表示出来。
河南省中考数学试卷(含解析)

河南省中考数学试卷一.选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣相反数是()A.﹣B.C.﹣D.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×10113.(3分)某正方体每个面上都有一个汉字,如图是它一种展开图,那么在原正方体中,与“国”字所在面相对面上汉字是()A.厉B.害C.了D.我4.(3分)下列运算正确是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=15.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98%D.方差是06.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数.羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数.羊价各是多少?设合伙人数为x 人,羊价为y线,根据题意,可列方程组为()A. B. C. D.7.(3分)下列一元二次方程中,有两个不相等实数根是()A.x2+6x+9=0B.x2=xC.x2+3=2xD.(x﹣1)2+1=08.(3分)现有4张卡片,其中3张卡片正面上图案是“”,1张卡片正面上图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同概率是()A. B. C. D.9.(3分)如图,已知▱AOBC顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB 于点D,E;②分别以点D,E为圆心,大于DE长为半径作弧,两弧在∠AOB 内交于点F;③作射线OF,交边AC于点G,则点G坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)10.(3分)如图1,点F从菱形ABCD顶点A出发,沿A→D→B以1cm/s速度匀速运动到点B,图2是点F运动时,△FBC面积y(cm2)随时间x(s)变化关系图象,则a值为()A. B.2 C. D.2二.细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号横线上)11.(3分)计算:|﹣5|﹣=.12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC度数为.13.(3分)不等式组最小整数解是.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC中点D逆时针旋转90°得到△A'B′C',其中点B运动路径为,则图中阴影部分面积为.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB 长为.三.计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮方式来传播下一代,漫天飞舞杨絮易引发皮肤病.呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查市民共有人;(2)扇形统计图中,扇形E圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”人数. 18.(9分)如图,反比例函数y=(x>0)图象过格点(网格线交点)P.(1)求反比例函数解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形面积等于k值.19.(9分)如图,AB是⊙O直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D度数为时,四边形ECFG为菱形;②当∠D度数为时,四边形ECOG为正方形.20.(9分)“高低杠”是女子体操特有一个竞技项目,其比赛器材由高.低两根平行杠及若干支架组成,运动员可根据自己身高和习惯在规定范围内调节高.低两杠间距离.某兴趣小组根据高低杠器材一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间距离为90cm.低杠上点C到直线AB距离CE长为155cm,高杠上点D到直线AB距离DF长为234cm,已知低杠支架AC与直线AB 夹角∠CAE为82.4°,高杠支架BD与直线AB夹角∠DBF为80.3°.求高.低杠间水平距离CH长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)21.(10分)某公司推出一款产品,经市场调查发现,该产品日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m日销售利润w(元)87518751875875(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x函数解析式(不要求写出x取值范围)及m值;(2)根据以上信息,填空:该产品成本单价是元,当销售单价x=元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品成本,预计在今后销售中,日销售量与销售单价仍存在(1)中关系.若想实现销售单价为90元时,日销售利润不低于3750元销售目标,该产品成本单价应不超过多少元?22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①值为;②∠AMB度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC 交BD延长线于点M.请判断值及∠AMB度数,并说明理由;(3)拓展延伸在(2)条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC长.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线解析式;(2)过点A直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM平行线交直线BC于点Q,若以点A,M,P,Q为顶点四边形是平行四边形,求点P横坐标;②连接AC,当直线AM与直线BC夹角等于∠ACB2倍时,请直接写出点M坐标.参考答案与试题解析一.选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣相反数是()A.﹣B.C.﹣D.【分析】直接利用相反数定义分析得出答案.【解答】解:﹣相反数是:.故选:B.【点评】此题主要考查了相反数,正确把握相反数定义是解题关键.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×1011【分析】科学记数法表示形式为a×10n形式,其中1≤|a|<10,n为整数.确定n值时,要看把原数变成a时,小数点移动了多少位,n绝对值与小数点移动位数相同.当原数绝对值>1时,n是正数;当原数绝对值<1时,n是负数.【解答】解:214.7亿,用科学记数法表示为2.147×1010,故选:C.【点评】此题考查科学记数法表示方法.科学记数法表示形式为a×10n形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a值以及n值.3.(3分)某正方体每个面上都有一个汉字,如图是它一种展开图,那么在原正方体中,与“国”字所在面相对面上汉字是()A.厉B.害C.了D.我【分析】正方体表面展开图,相对面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体表面展开图,相对面之间一定相隔一个正方形,“”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上文字,注意正方体空间图形,从相对面入手,分析及解答问题.4.(3分)下列运算正确是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=1【分析】分别根据幂乘方.同类项概念.同底数幂相乘及合并同类项法则逐一计算即可判断.【解答】解:A.(﹣x2)3=﹣x6,此选项错误;B.x2.x3不是同类项,不能合并,此选项错误;C.x3•x4=x7,此选项正确;D.2x3﹣x3=x3,此选项错误;故选:C.【点评】本题主要考查整式运算,解题关键是掌握幂乘方.同类项概念.同底数幂相乘及合并同类项法则.5.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98%D.方差是0【分析】直接利用方差意义以及平均数求法和中位数.众数定义分别分析得出答案.【解答】解:A.按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B.众数是15.3%,正确;C.(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C错误;D.∵5个数据不完全相同,∴方差不可能为零,故此选项错误.故选:B.【点评】此题主要考查了方差意义以及平均数求法和中位数.众数定义,正确把握相关定义是解题关键.6.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数.羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数.羊价各是多少?设合伙人数为x 人,羊价为y线,根据题意,可列方程组为()A. B.C. D.【分析】设设合伙人数为x人,羊价为y线,根据羊价格不变列出方程组.【解答】解:设合伙人数为x人,羊价为y线,根据题意,可列方程组为:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系是解题关键.7.(3分)下列一元二次方程中,有两个不相等实数根是()A.x2+6x+9=0B.x2=xC.x2+3=2xD.(x﹣1)2+1=0【分析】根据一元二次方程根判别式判断即可.【解答】解:A.x2+6x+9=0△=62﹣4×9=36﹣36=0,方程有两个相等实数根;B.x2=xx2﹣x=0△=(﹣1)2﹣4×1×0=1>0两个不相等实数根;C.x2+3=2xx2﹣2x+3=0△=(﹣2)2﹣4×1×3=﹣8<0,方程无实根;D.(x﹣1)2+1=0(x﹣1)2=﹣1,则方程无实根;故选:B.【点评】本题考查是一元二次方程根判别式,一元二次方程ax2+bx+c=0(a≠0)根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等两个实数根;②当△=0时,方程有两个相等两个实数根;③当△<0时,方程无实数根.8.(3分)现有4张卡片,其中3张卡片正面上图案是“”,1张卡片正面上图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同概率是()A. B. C. D.【分析】直接利用树状图法列举出所有可能进而求出概率.【解答】解:令3张用A1,A2,A3,表示,用B表示,可得:,一共有12种可能,两张卡片正面图案相同有6种,故从中随机抽取两张,则这两张卡片正面图案相同概率是:.故选:D.【点评】此题主要考查了树状图法求概率,正确列举出所有可能是解题关键.9.(3分)如图,已知▱AOBC顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB 于点D,E;②分别以点D,E为圆心,大于DE长为半径作弧,两弧在∠AOB 内交于点F;③作射线OF,交边AC于点G,则点G坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)【分析】依据勾股定理即可得到Rt△AOH中,AO=,依据∠AGO=∠AOG,即可得到AG=AO=,进而得出HG=﹣1,可得G(﹣1,2).【解答】解:∵▱AOBC顶点O(0,0),A(﹣1,2),∴AH=1,HO=2,∴Rt△AOH中,AO=,由题可得,OF平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO=,∴HG=﹣1,∴G(﹣1,2),故选:A.【点评】本题主要考查了角平分线作法,勾股定理以及平行四边形性质运用,解题时注意:求图形中一些点坐标时,过已知点向坐标轴作垂线,然后求出相关线段长,是解决这类问题基本方法和规律.10.(3分)如图1,点F从菱形ABCD顶点A出发,沿A→D→B以1cm/s速度匀速运动到点B,图2是点F运动时,△FBC面积y(cm2)随时间x(s)变化关系图象,则a值为()A. B.2 C. D.2【分析】通过分析图象,点F从点A到D用as,此时,△FBC面积为a,依此可求菱形高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【解答】解:过点D作DE⊥BC于点E由图象可知,点F由点A到点D用时为as,△FBC面积为acm2.∴AD=a∴∴DE=2当点F从D到B时,用s∴BD=Rt△DBE中,BE=∵ABCD是菱形∴EC=a﹣1,DC=aRt△DEC中,a2=22+(a﹣1)2解得a=故选:C.【点评】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间关系.二.细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号横线上)11.(3分)计算:|﹣5|﹣=2.【分析】直接利用二次根式以及绝对值性质分别化简得出答案.【解答】解:原式=5﹣3=2.故答案为:2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC度数为140°.【分析】直接利用垂直定义结合互余以及互补定义分析得出答案.【解答】解:∵直线AB,CD相交于点O,EO⊥AB于点O,∴∠EOB=90°,∵∠EOD=50°,∴∠BOD=40°,则∠BOC度数为:180°﹣40°=140°.故答案为:140°.【点评】此题主要考查了垂直定义.互余以及互补定义,正确把握相关定义是解题关键.13.(3分)不等式组最小整数解是﹣2.【分析】先求出每个不等式解集,再求出不等式组解集,即可得出答案.【解答】解:∵解不等式①得:x>﹣3,解不等式②得:x≤1,∴不等式组解集为﹣3<x≤1,∴不等式组最小整数解是﹣2,故答案为:﹣2.【点评】本题考查了解一元一次不等式组和不等式组整数解,能根据不等式解集得出不等式组解集是解此题关键.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC中点D逆时针旋转90°得到△A'B′C',其中点B运动路径为,则图中阴影部分面积为π.【分析】利用弧长公式L=,计算即可;【解答】解:△ABC绕AC中点D逆时针旋转90°得到△A'B′C',此时点A′在斜边AB上,CA′⊥AB,∴∠ACA′=∠BCA′=45°,∴∠BCB′=135°,∴S==π.阴【点评】本题考查旋转变换.弧长公式等知识,解题关键是灵活运用所学知识解决问题,属于中考常考题型.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB 长为4或4.【分析】当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,根据对称性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线性质得:BC=2A'B=8,最后利用勾股定理可得AB长;②当∠A'FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.【解答】解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC中点,∴D.E是△ABC中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC中点,∴BC=2A'B=8,由勾股定理得:AB2=BC2﹣AC2,∴AB==4;②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB长为4或4;故答案为:4或4;【点评】本题考查了三角形中位线定理.勾股定理.轴对称性质.等腰直角三角形判定.直角三角形斜边中线性质,并利用分类讨论思想解决问题.三.计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.【分析】根据分式运算法则即可求出答案,【解答】解:当x=+1时,原式=•=1﹣x=﹣【点评】本题考查分式运算,解题关键是熟练运用分式运算法则,本题属于基础题型.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮方式来传播下一代,漫天飞舞杨絮易引发皮肤病.呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查市民共有2000人;(2)扇形统计图中,扇形E圆心角度数是28.8°;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”人数.【分析】(1)将A选项人数除以总人数即可得;(2)用360°乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.【解答】解:(1)本次接受调查市民人数为300÷15%=2000人,故答案为:2000;(2)扇形统计图中,扇形E圆心角度数是360°×=28.8°,故答案为:28.8°;(3)D选项人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”人数为70×40%=28(万人).【点评】本题考查是条形统计图和扇形统计图综合运用.读懂统计图,从不同统计图中得到必要信息是解决问题关键.条形统计图能清楚地表示出每个项目数据;扇形统计图直接反映部分占总体百分比大小.18.(9分)如图,反比例函数y=(x>0)图象过格点(网格线交点)P.(1)求反比例函数解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形面积等于k值.【分析】(1)将P点坐标代入y=,利用待定系数法即可求出反比例函数解析式;(2)根据矩形满足两个条件画出符合要求两个矩形即可.【解答】解:(1)∵反比例函数y=(x>0)图象过格点P(2,2),∴k=2×2=4,∴反比例函数解析式为y=;(2)如图所示:矩形OAPB.矩形OCDP即为所求作图形.【点评】本题考查了作图﹣应用与设计作图,反比例函数图象上点坐标特征,待定系数法求反比例函数解析式,矩形判定与性质,正确求出反比例函数解析式是解题关键.19.(9分)如图,AB是⊙O直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D度数为30°时,四边形ECFG为菱形;②当∠D度数为22.5°时,四边形ECOG为正方形.【分析】(1)连接OC,如图,利用切线性质得∠1+∠4=90°,再利用等腰三角形和互余证明∠1=∠2,然后根据等腰三角形判定定理得到结论;(2)①当∠D=30°时,∠DAO=60°,证明△CEF和△FEG都为等边三角形,从而得到EF=FG=GE=CE=CF,则可判断四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,利用三角形内角和计算出∠COE=45°,利用对称得∠EOG=45°,则∠COG=90°,接着证明△OEC≌△OEG得到∠OEG=∠OCE=90°,从而证明四边形ECOG为矩形,然后进一步证明四边形ECOG为正方形.【解答】(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而AB为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°﹣67.5°﹣67.5°=45°,∴∠AOC=45°,∴∠COE=45°,利用对称得∠EOG=45°,∴∠COG=90°,易得△OEC≌△OEG,∴∠OEG=∠OCE=90°,∴四边形ECOG为矩形,而OC=OG,∴四边形ECOG为正方形.故答案为30°,22.5°.【点评】本题考查了切线性质:圆切线垂直于经过切点半径.若出现圆切线,必连过切点半径,构造定理图,得出垂直关系.也考查了菱形和正方形判定.20.(9分)“高低杠”是女子体操特有一个竞技项目,其比赛器材由高.低两根平行杠及若干支架组成,运动员可根据自己身高和习惯在规定范围内调节高.低两杠间距离.某兴趣小组根据高低杠器材一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间距离为90cm.低杠上点C到直线AB距离CE长为155cm,高杠上点D到直线AB距离DF长为234cm,已知低杠支架AC与直线AB 夹角∠CAE为82.4°,高杠支架BD与直线AB夹角∠DBF为80.3°.求高.低杠间水平距离CH长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)【分析】利用锐角三角函数,在Rt△ACE和Rt△DBF中,分别求出AE.BF长.计算出EF.通过矩形CEFH得到CH长.【解答】解:在Rt△ACE中,∵tan∠CAE=,∴AE==≈≈21(cm)在Rt△DBF中,∵tan∠DBF=,∴BF==≈=40(cm)∵EF=EA+AB+BF≈21+90+40=151(cm)∵CE⊥EF,CH⊥DF,DF⊥EF∴四边形CEFH是矩形,∴CH=EF=151cm答:高.低杠间水平距离CH长为151cm.【点评】本题考查了锐角三角函数解直角三角形.题目难度不大,注意精确度.21.(10分)某公司推出一款产品,经市场调查发现,该产品日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m87518751875875日销售利润w(元)(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x函数解析式(不要求写出x取值范围)及m值;(2)根据以上信息,填空:该产品成本单价是80元,当销售单价x=100元时,日销售利润w最大,最大值是2000元;(3)公司计划开展科技创新,以降低该产品成本,预计在今后销售中,日销售量与销售单价仍存在(1)中关系.若想实现销售单价为90元时,日销售利润不低于3750元销售目标,该产品成本单价应不超过多少元?【分析】(1)根据题意和表格中数据可以求得y关于x函数解析式;(2)根据题意可以列出相应方程,从而可以求得生产成本和w最大值;(3)根据题意可以列出相应不等式,从而可以取得科技创新后成本.【解答】解;(1)设y关于x函数解析式为y=kx+b,,得,即y关于x函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100时,w取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品成本单价应不超过65元.【点评】本题考查二次函数应用.一元二次方程应用.不等式应用,解答本题关键是明确题意,找出所求问题需要条件,利用函数和数形结合思想解答.22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①值为1;②∠AMB度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD延长线于点M.请判断值及∠AMB度数,并说明理由;(3)拓展延伸在(2)条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°;(2)根据两边比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形性质得∠AMB度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC∽△BOD,则∠AMB=90°,,可得AC长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC长为3或2.【点评】本题是三角形综合题,主要考查了三角形全等和相似性质和判定,几何变换问题,解题关键是能得出:△AOC∽△BOD,根据相似三角形性质,并运用类比思想解决问题,本题是一道比较好题目.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线解析式;(2)过点A直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM平行线交直线BC于点Q,若以点A,M,P,Q为顶点四边形是平行四边形,求点P横坐标;②连接AC,当直线AM与直线BC夹角等于∠ACB2倍时,请直接写出点M坐标.【分析】(1)利用一次函数解析式确定C(0,﹣5),B(5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程﹣x2+6x﹣5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以AM=2,接着根据平行四边形性质得到PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到PD=PQ=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),讨论:当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=4;当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5),然后分别解方程即可得到P点横坐标;②作AN⊥BC于N,NH⊥x轴于H,作AC垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N (3,﹣2),AC解析式为y=5x﹣5,E点坐标为(,﹣),利用两直线垂直问题可设直线EM1解析式为y=﹣x+b,把E(,﹣)代入求出b得到直线EM1解析式为y=﹣x ﹣,则解方程组得M1点坐标;作直线BC上作点M1关于N点对称点M2,如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),根据中点坐标公式得到3=,然后求出x即可得到M2坐标,从而得到满足条件点M坐标.【解答】解:(1)当x=0时,y=x﹣5=﹣5,则C(0,﹣5),当y=0时,x﹣5=0,解得x=5,则B(5,0),把B(5,0),C(0,﹣5)代入y=ax2+6x+c得,解得,∴抛物线解析式为y=﹣x2+6x﹣5;(2)①解方程﹣x2+6x﹣5=0得x1=1,x2=5,则A(1,0),∵B(5,0),C(0,﹣5),∴△OCB为等腰直角三角形,∴∠OBC=∠OCB=45°,∵AM⊥BC,∴△AMB为等腰直角三角形,∴AM=AB=×4=2,∵以点A,M,P,Q为顶点四边形是平行四边形,AM∥PQ,∴PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,则∠PDQ=45°,∴PD=PQ=×2=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1,m2=4,当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1=,m2=,综上所述,P点横坐标为4或或;②作AN⊥BC于N,NH⊥x轴于H,作AC垂直平分线交BC于M1,交AC于E,如图2,∵M1A=M1C,∴∠ACM1=∠CAM1,∴∠AM1B=2∠ACB,∵△ANB为等腰直角三角形,∴AH=BH=NH=2,∴N(3,﹣2),易得AC解析式为y=5x﹣5,E点坐标为(,﹣),设直线EM1解析式为y=﹣x+b,把E(,﹣)代入得﹣+b=﹣,解得b=﹣,∴直线EM1解析式为y=﹣x﹣,解方程组得,则M1(,﹣);作直线BC上作点M1关于N点对称点M2,如图2,则∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),∵3=,∴x=,∴M2(,﹣),综上所述,点M坐标为(,﹣)或(,﹣).【点评】本题考查了二次函数综合题:熟练掌握二次函数图象上点坐标特征.二次函数性质.等腰直角判定与性质和平行四边形性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论思想解决数学问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品文档2014 年河南省中招考试数学试卷及答案解析一、选择题(每小题 3 分,共 24 分)1. 下列各数中,最小的数是()(A). 0(B).1 (C).- 1 (D).-333答案:D解析 :根据有理数的大小比较法则(正数都大于 0,负数都小于 0,正数都大于负数,两个 负数,其绝对值大的反而小)比较即可.解:∵﹣3<- 1 <0< 1,33∴最小的数是﹣ 3,故选 A .2. 据统计, 2013 年河南省旅游业总收入达到 3875.5 亿元 . 若将 3875.5 亿用科学计数法表示为 3.8755 × 10n ,则 n 等于()(A)10 (B) 11 (C).12(D).13答案:B解析 :科学记数法的表示形式为a ×10 n 的形式,其中 1≤|a| < 10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值. 3875.5 亿 =3.8755 × 1011,故选 B.3. 如图,直线 AB 、 CD 相交于 O ,射线 OM 平分∠ AOC,ON ⊥OM,若∠ AOM=350 ,则∠ CON 的度数 为()(A) .35 0(B). 45 0(C) .55(D). 65 0答案:C解析 :根据角的平分线的性质及直角的性质,即可求解.故选 C.∠ CON=90-35 =55 ,4. 下列各式计算正确的是()( A ) a +2a =3a 2 (B )( -a 3) 2=a 6(C ) a 3· a 2=a 6 ( D )(a + b ) 2=a 2 + b 2答案:B解析 :根据同底数幂的乘法;幂的乘方;完全平方公式;同类项加法即可求得; ( -a 3) 2=a 6计算正确,故选B5. 下列说法中,正确的是( )( A )“打开电视,正在播放河南新闻节目”是必然事件( B )某种彩票中奖概率为 10%是指买十张一定有一张中奖 ( C )神州飞船发射前需要对零部件进行抽样检查( D )了解某种节能灯的使用寿命适合抽样调查答案:D解析 :根据统计学知识;(A )“打开电视,正在播放河南新闻节目”是随机事件, ( A )错误。
(B )某种彩票中奖概率为10%是指买十张一定有一张中奖是随机事件,( B )错误。
(C )神州飞船发射前需要对零部件进行抽样检查要全面检查。
(D )了解某种节能灯的使用寿命适合抽样调查, ( D )正确。
精品文档6: 将两个长方体如图放置,到所构成的几何体的左视图可能是( )答案:C解析 :根据三视图可知, C 正确。
7. 如图,Y ABCD 的对角线 AC 与 BD 相交于点 O,AB ⊥ AC.若 AB =4,AC =6, 则 BD 的长是()(A)8 (B) 9 (C)10 (D ) 11答案:C解析 :根据平行四边形的性质勾股定理可得,Rt △ ABO,OA=1AC=1× 6=3,AB=4, ∴ OB=5,又BD=2OA=2×5=10. 故 C 正确。
228. 如图,在 Rt △ ABC 中,∠ C=900,AC=1cm ,BC=2cm ,点 P 从 A 出发,以 1cm/s 的速沿折线 AC CBBA 运动,最终回到 A 点。
设点 P 的运动时间为 x ( s ),线段 AP 的长度为 y ( cm ),则能反映 y 与 x 之间函数关系的图像大致是()答案:A解析:根据函数判断,当P 点 在 AC 上时 y=x , 当 P 点在BC上 时y= AC 2 PC 2 12x 2x 2 2x+2 ,当 P 点在 AB 上时 y=5 -x, 故选 A.1 =二、填空题(每小题 3 分,共 21 分)9. 计算: 3 27 2 =.答案:1解析 :原式= 3- 2=13x 6 0的所有整数解的和是.10. 不等式组>4 2x答案:-2解析 :不等式组的解集是:- 2≤ x <2,满足条件的整数是- 2,- 1,0, 1. 它们的和为- 2.11. 在△ ABC 中,按以下步骤作图:①分别以B 、 C 为圆心,以大于 1BC 的长为半径作弧,2两弧相交于两点 M 、N ;②作直线 MN 交 AB 于点 D ,连接 CD. 若 CD=AC , ∠B=250,则∠ ACB 的度数为 . 答案 : 1050.精品文档解析:由①的作图可知又∵ CD=AC,∴∠ A=∠CD=BD, 则∠ DCB= ∠ B=25 0, ∴∠ ADC=50,0000=1050.ADC=50, ∴∠ ACD=80,∴∠ ACB==80+2512. 已知抛物线 y=ax 2+bx+c(a ≠ 0) 与 x 轴交于 A、 B 两点.若点 A 的坐标为( -2,0),抛物线的对称轴为直线x=2.则线段 AB的长为.答案:8.解析:根据点 A 到对称轴 x=2 的距离是 4,又点 A 、点 B 关于 x=2 对称,∴ AB=8.13.一个不进明的袋子中装有仅颜色不同的2 个红球和 2 个白球,两个人依次从袋子中随机摸出一个小球不放回,到第一个人摸到红球且第二个人摸到白球的概率是.答案:1 . 3解析:画树形图第一人红 1红 2白 1白 2第二人红 2白 1白 2红 1白 1白 2红1 红2 白2红1 红2白 1红1 白1红1 白2红2 白1红2 白2共 12 种可能,第一个人摸到红球且第二个人摸到白球的有 4 种, P(一红一白) = 4=114. 如图,在菱形 ABCD中 ,AB =1,ABCD绕点 A 顺时针旋转 30123得到菱形∠ DAB=60, 把菱形/ / /?/AB C D,其中点 C 的运动能路径为CC,则图中阴影部分的面积为.π3答案: 3 .42=扇形 ACC /面积- 2 个三角形 D/ FC 的面积。
解析:由旋转可知,阴影部分面积作辅助线如图,1,AE=3,在 Rt△ AD /E 中,∠ D /AE=30 0,AD /=1, ∴D /E=22在 Rt△ BD /E 中, BE= 1-3,D /B2=( 1-3) 2+(1)2=2- 3 ,222//0// 223可证∠ D FB=∠CFC=90 ,△D BF 是等腰直角三角形,∴ D F =,2∴D/ F= 42 3 =31,CF=1-3 1 = 3 3 , 4222在 Rt △ CBH中,∠ CBH=60,BC=1,∴BH=1332 ,CH=2∴ AH=,∴ AC=3, 22精品文档DS △ D/FC =1× D /F ×CF=1×33 = 2 3 3 , 222 4π2ππS× AC=× 3=A扇形 ACC/3604360π -2×2 33S 阴影 = S 扇形 ACC/-2 × S △D/FC =44=π + 3- 34 215. 如 ,矩形 ABCD 中, AD=5,AB=7. 点 E DC 上一个 点,把△点 D / 落在∠ ABC 的角平分 上 , DE 的 .答案:5或53 2解析 : D /作 FH ⊥ AB 交 AB 于 F, 交 CD 于 H;/ //如 1,由翻折,△ EDA ≌△ EDA, ∴ ED=ED,AD=AD=5,/AF=x , BF=7-x ,在 Rt △BDF 中, ∵PB 是∠ ABC 的平分 ,/ 0 /∴∠ ABD=45 ,D F=BF=7-x ,/ /22/227-x ) 22在 Rt △ ADF 中, AD =AF +D F , 即 5=( +x , 解得 x=4 或 x=3,即 D / F=BF=3 或 4. 当 x=4 ,如1, DE=y ,///在 Rt △ D HE 中, EH=4-y , ED=y ,HD=2,CD /FE B H C/ B /第14题ADE 沿 AE 折叠,当点 D 的D PE HD /C22 2,解得 y=5,即 DE=5即( 4-y ) +2 =y22当 x=3 ,如2, DE=y ,///在 Rt △ D HE 中, EH=3-y , ED=y ,HD=1, 即( 3-y ) 2+12=y 2,解得 y=5,即 DE=533三、解答 (本大 共 8 个, 分 75 分)16.(8 分)先化 ,再求 :AF1D E P HD /BCx 2 1 2 x 2 1,其中 x= 2 -1AFx 2 xx2解:原式=x 1 x 12x x 21⋯⋯⋯⋯⋯⋯⋯ 4 分x x 1x x 1 g x= x x 1 2=1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分x 1当 x=2 -1 ,原式 =1 = 1 =2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分B精品文档17. ( 9 分)如 ,CD 是⊙ O 的直径,且 CD=2cm ,点 P CD 的延 上一点, 点的切 PA 、 PB ,切点分 点 A 、 B.(1) 接 AC,若∠ APO = 300, 明△ ACP 是等腰三角形;明:( 1) 接 OA ,∵ PA ⊙ O 的切 ,A∴ OA ⊥ PA. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 分C在 Rt △AOP 中,∠ AOP=90-∠ APO=90-30 =60 .OD ∴∠ ACP=1 ∠ AOP=1× 600=300. ⋯⋯⋯⋯ 4 分B2 2∴∠ ACP=∠ APO, ∴ AC=AP.∴△ ACP 是等腰三角形 . ⋯⋯⋯⋯⋯⋯⋯⋯ 5 分P 作⊙OP(2)填空:①当 DP= 1 cm ,四 形 AOBD 是菱形;⋯⋯⋯⋯ 7 分②当 DP=2 -1 cm ,四 形 AOBP 是正方形.⋯⋯⋯⋯9 分(2)提示:①、若四 形AOBD 是菱形,AAAO=AD=1,Rt △ OAP,当点 D 是 OP 的中点 ,P C即 OD=PD=1 ,四 形 AOBD 是菱形 CODOD P②若四 形 AOBP 是正方形,∠ AOB=∠ APB=90,BB即 PA=R=1,可 △ PAD ≌△ PCA,图1图2PA 2=PD(PD+2), 即 1= PD(PD+2) ,2解得 :PD= 2 -1 或 PD=- 2 -1(舍去)∴ PD+2PD-1=0,18. ( 9 分)某 趣小 了解本校男生参加 外体育 情况,随机抽取本校 300 名男生行了 卷 , 整理并 制了如下两幅尚不完整的 .根据以上信息解答下列 :课外体育锻炼情况“经常参加 ”课外体育锻炼的男生最喜欢的一种项目扇形统计图人数 条形统计图50404033经常参加 273020从不参加20 15%偶尔参加 1045%乒乓球 羽毛球 篮球 其它项目(1) 外体育 情况扇形 中, “ 常参加”所 的 心角的度数;(2 ) 全条形 ; (3 ) 校共有 1200 名男生, 估什全校男生中 常参加 外体育 并且最喜 的 目是球的人数;(4 )小明 “全校所有男生中, 外最喜 参加的运 目是 球的人数1200 ×27=108”, 你判断 种 法是否正确,并 明理由.300解:( l ) 144: ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分提示: 360×( 1-45%-15%)=144.( 2)(“ 球” 的 数 40. 正确 全条形 ) :⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分提示: 常参加人数:300×( 1-45%-15%) =120, 球: 120-20-33-27=40.全条形 如 所示。