静压空气轴承的动刚度和阻尼分析

合集下载

空气轴承简介介绍

空气轴承简介介绍

06
相关术语和概念的解释
相关术语和概念的解释
• 空气轴承是一种利用气体润滑原理制成的轴承。与传统的 机械润滑相比,气体润滑具有更高的速度、更低的摩擦系 数和更高的可靠性。
THANK YOU
空气轴承的技术创新不断涌现
未来,随着科学技术的不断进步和创新,空气轴承的技术 创新也将不断涌现。一些新技术如智能传感器技术、物联 网技术等将会与空气轴承相结合,提高其智能化和自动化 水平,使其更加适应现代化工业生产的需求。
空气轴承的环保和节能意识逐渐增强
随着环保和节能意识的逐渐增强,空气轴承的制造和使用 过程中对环境的影响也受到越来越多的关注。未来,空气 轴承将会更加注重环保和节能方面的性能,以实现可持续 发展。
05
空气轴承的发展趋势和前景
空气轴承的发展趋势
向高速、高精度、高刚度方向发展
随着工业技术的不断发展,空气轴承的应用领域越来越广泛,对其性能要求也越来越高。 为了满足这些要求,空气轴承的设计和制造技术也在不断改进,向高速、高精度、高刚度 方向发展。
空气轴承的应用领域不断扩大
除了传统的机械加工领域,空气轴承在新能源、汽车制造、医疗器械等领域的应用也在不 断增加。这些领域对空气轴承的性能要求较高,因此需要不断提高其性能和质量。
气体箔轴承
在轴瓦上覆盖一层薄薄的 金属箔片,利用金属箔片 的变形和弹性来适应轴颈 的转动。
02
空气轴承的应用领域
空气轴承的应用领域
• 空气轴承是一种利用压缩空气来支撑和驱动旋转的轴承。它具有高速性能、高精度、高刚度、长寿命等优点,因此在许多 领域得到广泛应用。
03
空气轴承的性能参数
空气轴承的性能参数
• 空气轴承是一种利用压缩空气来润滑和支撑旋转轴的轴承。 由于其具有低摩擦、高精度、高刚性等特点,因此在高速旋 转和高温等极端环境下表现出色。

气体轴承的动态特性分析及实验研究

气体轴承的动态特性分析及实验研究

气体轴承的动态特性分析及实验研究任佟; 陈东菊; 李彦生; 范晋伟【期刊名称】《《西安交通大学学报》》【年(卷),期】2019(053)008【总页数】8页(P68-75)【关键词】气体轴承; 气膜阻尼系数; 轴承转子系统; 动态特性【作者】任佟; 陈东菊; 李彦生; 范晋伟【作者单位】北京工业大学先进制造技术北京市重点实验室 100024 北京【正文语种】中文【中图分类】TH133.35气体轴承作为主轴系统中支撑主轴回转运动的重要元素,其性能将直接影响主轴在工作中的运动精度,并对加工零件的表面质量、形状精度及粗糙度造成重要影响[1]。

气体轴承的动态特性在很大程度上决定系统的动态特性。

轴承的动态特性是通过轴承的阻尼系数和动态刚度来衡量的。

气体轴承工作时,微小气膜间隙产生气膜波动,气膜阻尼会抑制气膜波动,因此气膜阻尼成为影响气体轴承动态特性的重要因素。

然而,空气黏度仅为液压油的1/1 000,这样导致气体的阻尼特性很差,为了更准确地分析气体轴承的动态特性,有必要对主轴的气膜阻尼进行研究。

一些学者在微机电系统下建立了气膜阻尼模型。

Pandey等和Altu等通过格林公式研究了不同条件下弹性平板间的阻尼分布情况[2-3];李锡广等针对MEMS陀螺中带孔结构建立了空气阻尼计算模型[4];Xia等提出了圆形和椭圆形微扭镜的挤压薄膜空气阻尼系数[5];周浩等仿真计算了微陀螺仪表芯结构的空气阻尼系数[6];Li 等、Homentcovschi等和高春晖等针对不同形状的穿孔微孔板挤提出了压膜阻尼的计算分析模型[7-9];Moeenfard等采用EKM分析了微镜中挤压薄膜阻尼问题[10];Ghanbari等提出了一种用于研究面内振荡微束谐振腔中流体薄膜阻尼的数学模型[11];陈奥运建立了敏感模态压膜阻尼简化分析模型[12];Wang等分析了平行板驱动器中的挤压膜阻尼系数对环境的影响[13]。

然而,这些模型对于气浮轴承并不完全适用。

气体轴承刚度阻尼系数

气体轴承刚度阻尼系数

气体轴承刚度阻尼系数1. 引言1.1 研究背景气体轴承的刚度系数是衡量其在承受外力时的变形能力,影响着轴承的稳定性和工作效率。

而阻尼系数则是衡量轴承在受到冲击力或振动作用时所具有的减震能力,影响着轴承的工作平稳度和减少振动噪音。

研究气体轴承的刚度和阻尼系数,能够为提高轴承的性能和使用效果提供科学依据。

在当前工业智能化和高效化的发展背景下,进一步深入研究气体轴承的刚度和阻尼系数,对于推动轴承技术的创新和发展具有重要意义。

本文将对气体轴承的刚度阻尼系数进行系统性的探讨,并寻求优化这些参数的途径,为未来气体轴承技术的研究提供新思路和方法。

1.2 研究意义气体轴承是一种利用气体作为介质支撑旋转机械的轴承,具有低摩擦、高精度、低磨损等优点,在航空航天、精密制造等领域有着广泛的应用。

而气体轴承的刚度和阻尼系数则是评价其性能的重要参数。

研究气体轴承的刚度和阻尼系数对于优化气体轴承的设计和改进具有重要的意义。

通过深入了解气体轴承的刚度和阻尼特性,可以帮助工程师在设计过程中选择合适的材料和参数,提高轴承的性能和可靠性,降低设备的维护成本和能耗。

通过研究气体轴承的刚度和阻尼系数,可以提高气体轴承在高速、高温、高负荷等恶劣工况下的稳定性和可靠性,拓展气体轴承的应用范围,在航天航空、精密制造、半导体制造等领域发挥更大的作用。

探究气体轴承的刚度和阻尼系数具有重要的理论和实际意义,对于推动气体轴承技术的发展和应用具有积极的促进作用。

【内容结束】2. 正文2.1 气体轴承气体轴承是一种通过气体的压力来支撑和减少摩擦的轴承。

与传统的机械轴承相比,气体轴承具有更低的摩擦系数和更高的承载能力,同时也能减少磨损和噪音。

气体轴承通常由气体供应系统、轴承壳体和轴承孔组成。

气体轴承的工作原理是利用气体在轴承间形成的气膜来支撑和减少摩擦。

当轴承旋转时,气体在轴承孔中形成气膜,以抵抗轴承受到的载荷,同时减少摩擦力。

通过调整气体的压力和流动速度,可以控制气体轴承的刚度和阻尼特性。

单供气孔静压平面止推空气轴承静特性分析

单供气孔静压平面止推空气轴承静特性分析
Ab s t r a c t : T h e s t a t i c p e r f o r ma nc e s o f i n h e r e n t o if r ic e nd a p o c k e t e d o r i ic f e t h r u s t b e a in t g s wa s a n ly a z e d b y s i mu l a t i o n wi t h t h e s o f t wa r e o f CF D, a n d t h e lo f w ie f l d o f p r e s s u r e nd a v e l o c i t y d i s t ib r u t i o n w a s o b t a i n e d . Th e e f f e c t s o f p a r a me t e r s o f b e a in t g a n d s u p p l y p r e s s u r e o n s t a t i c p e fo r m a r n c e s o f p o c k e t e d o i r ic f e t h r u s t b e a r i n g s we r e a n a l y z e d . h e T r e s u l t s s h o w t h a t , c o mp a r e d wi t h i n h e r e n t o if r i c e b e a r i n g s , p o c k e t e d o if r i c e b e a in t g s e x h i b i t h i g h l o a d c a p a c i t y a n d g a s il f m s t i f f n e s s . F o r p o c k e t e d o if r ic e b e a r i n g s, t h e l o a d c a p a c i t y a n d g a s il f m s t i f f n e s s re a a l l i n c r e se a d b y i n c r e a s i n g t h e d i a me t e r a n d d e p t h o f t h e a i r c h a mb e r , a n d t h e s u p p l y p r e s s u r e a n d s u p p l y o if r ic e d i m e a t e r , b u t t h e d e p t h o f t h e ir a c h a mb e r , t h e s u p p l y o if r i c e d i a me t e r h a v e a r e l a —

静压止推气体轴承性能分析

静压止推气体轴承性能分析
计算流体力学在 20 世纪 80 年代取得了重大进展。在高速可压缩流动方面,基于 总变差减小(Total Variation Diminishing,TVD)与矢通量分裂(Flux VectorSplitting)、通 量差分分裂(Flux Difference Splitting)等方法的高精致格式 (High Resolution Scheme)终 于较好地解决了流体力学的一大难题——跨、超音速计 算的激波精确捕获。而采用传 统的人工黏性方法的 Jameson 格式等在这方面也取得 很大的成功。多重网格与残差光 顺(Residual Smoothing)等加速收敛技术有效地减少了三维流动模拟的巨大计算工 作 量。而在低速不可压流动方面,利用人工可压缩性方法与压力校正法等对纳维尔-斯 托克斯方程组的直接求解取代了局限性很大的流函数-涡量法等传统解法,从而也促 进 CFD 技术向流体传热、多相流、燃烧与化学反应流等领域迅速扩展与深入。这些 进展为通用 CFD 软件的发展奠定了良好的理论基础。 计算流体力学按照求解的方程可以分为两大类,一类是求解传统的 NS 方程。另 一 类是近一二十年发展起来的方法。这类方法直接求解波耳兹曼方程,NS 方程可以 看作是波耳兹曼方程在一定条件下进行统计平均的结果。波耳兹曼方程在微观尺度上 按照概率统计的方法描述了流体微团的运动。这类方法的优势是,在低于 0.3 马赫数 以下的计算中可以达到非常高的计算精度,所以被广泛的应用于汽车领域。但是,在 超过 0.3 马赫数的问题中,其本身的理论基础不是十分成熟,限制了其在航空航天领 域的应用。本文还是求解传统的 NS 方程。对于 NS 方程常用的离散方法有限体积法 (FVM)、有限元素法(FEM)、有限差分法(FDM)和谱方法等等。
计算流体力学和相关的计算传热学,计算燃烧学的原理是用数值方法求解非线性 联立的质量、能量、组分、动量和自定义的标量的微分方程组,求解结果能预报流动、 传热、传质、燃烧等过程的细节,并成为过程装置优化和放大定量设计的有力工具。 计算流体力学的基本特征是数值模拟和计算机实验,它从基本物理定理出发,在很大 程度上替代了耗资巨大的流体动力学实验设备,在科学研究和工程技术中产生巨大的 影响。不但如此,计算流体力学还能够处理一些实验和理论分析都难以解决的问题。 NASA 曾经研究一种新型飞机(Aerospace Plane),这种飞机将以 20 倍音速以上的速度 飞行。因为这样的马赫数远远超过现在风洞的能力,所以无法使用风洞实验满足研究

空气静压轴承动态性能仿真研究

空气静压轴承动态性能仿真研究

第3"卷第5期有色金属材料与工程NONFERROUS METAL MATERIALS AND ENGINEERING Vol.38 No.5 2017文章编号:2096-2983 (2017) 0*-0280-06D01:10.13258/ki.nm m e.2017.05.006空气静压轴承动态性能仿真研究王昊(上海理工大学能源与动力工程学院,上海200093)摘要:空气静压轴承具有较小摩擦、运转平稳、使用寿命长、回转精度高且无环境污染等优点.以孔式节流空气静压轴承作为研究对象,利用建模软件,建立孔式节流空气静压轴承三维实体计算模型.通过计算流体动力学(CFD)原理,对该模型网格划分后模拟仿真轴承在一定偏心率下的旋转状态,计算并得出气膜压力分布图,分析其在不同供气压强和不同旋转速度对轴承承载力的影响,并得出影响轴承承载力因素的变化曲线.研究结果对孔式节流空气静压轴承结构设计优化具有可靠性的指导意义.关键词:空气静压轴承%孔式节流%供气压强%旋转速度%承载力中图分类号:TH133 文献标志码:ADynamic Performance Simulation of Air Static Pressure BearingWANG Hao(School of Energy and Power Engineering,University of Shanghai for Science and Technology^ Shanghai 200093, China)A bstract:Air bearing has less friction than the other bearings. Moreover,it has a smooth opeservice life,high precision rotary and no environmental pollution, etc. In this paper, a three-dimens model is established to simulate the holes throttle air bearing. The model is meshed into the unstructuredgrid and the simulation results are obtained. Simulation results of bearing in rotating state is analyzed andstudied under the influence of gas pressure and rotating speed. The air film pressure dist aerostatic bearing is obtained based on the results of the CFD. Finally, the paper summarizes the influenceof the corresponding factors on the bearing capacity.Keywords:air static b earing;hole type throttle;inlet pressure;rotating speed;bearing capacity空气静压轴承利用空气作为润滑剂,从外界提 供压缩空气,经过压缩的气体经节流孔进入轴承间 隙,在主轴与轴承表面形成可压缩的气膜层,并起负 载作用.由于空气黏度很低,摩擦力几乎不存在,因此空气轴承几乎消除了由摩擦力产生的阻力和磨 损,所以更适用于高速和高精度设备.较之其他轴承 具有较小摩擦、运转平稳、使用寿命长、回转精度高且无环境污染等优点.:2/,在航空、航天以及精密测 量和超精密加工设备中得到广泛应用3.提供足够 的承载力和稳定性的最关键的问题在于这些轴承的 设计[4:7],因此气体轴承已成为精密轴承的一个重 要发展方向.近年来国内外对其进行了很多研究,段明德 等[8]通过建立空气静压轴承三维模型,仿真分析旋收稿日期:2017-03 - 08作者简介:王昊(1990—),男,硕士研究生.研究方向:静压轴承.E-mail: 740320796@qq. com第5期王昊:空气静压轴承动态性能仿真研究281转工作状态的轴承,得出进气压力、轴承转速与气模 厚度对空气轴承承载能力及需气量带来的影响' Zhu M等对超精密空气静压轴承的瞬态流动特性进 行了研究.为了捕捉湍流结构和波动,利用L E S方 法数值计算轴承间隙的瞬态流场,对轴承间隙涡结 构和压力波动进行了分析.R enn等[17]研究空气静 压轴承孔型节流器对质量流量特性的影响,并进行 了一系列的模拟和试验.结果表明,通过孔口的质量 流量特性与通过喷嘴的质量流量特性不同.空气静压轴承处于低转速工作时,表现为静压 效应;但当轴承高速旋转工作时,由于摩擦有相对运 动,故亦会产生动压效应.当动压效应达到一定程度 时,轴承成为动静压混合轴承,由原本静压空气转变 为动压静压混合空气轴承,变为动静压混合润滑工 作.考虑到动静压混合状态空气流动情况,本研究使 用计算流体动力学(CFD)的方法17:12,在数值模拟 计算基础上分析动静压效应.通过数值模拟的方法 求得比较精确的近似解,在实际工作时,空气在气体 轴承间隙流动是较为复杂的三维流场,因此使用三 维模型更容易得到精确的结果.其他研究一般地都 没有考虑到节流孔进口处的压力分析.本文通过模 拟得出了节流孔进口处压力分布图,并对其进行了 分析,为空气轴承的性能设计优化提供有效指导.1孔式静压径向轴承的结构参数和理 论分析节流管在空气静压轴承中是一个重要组成部 分,有一定的阻抗,具有压力调节的作用.气体静压 节流方式主要有小孔节流、多孔质节流、表面节流、毛细管节流和狭缝节流等[13],其中小孔节流方式又 分为简单孔式节流器和环形孔式节流器.本文采用 环形双排孔节流孔布置.在轴承静止无工作状态时,因轴承自重和载荷 (总称为F)存在,转轴与轴承内表面紧密接触,无气 膜存在.当工作时,这时压缩空气经节流孔逐渐进入 轴承间隙,直到内部压力大于F时,转轴被气体浮 起,气膜形成,形成气浮垫[14].当工作稳定时,转轴 在气膜压力的支承下达到平衡.但因负载存在,使得 其产生了一定的偏心量6,导致上下气膜表面压力 不一样.负载变大时,下气膜厚度减小,气膜压力变 大;而上气膜厚度增大时,气膜压力变小,此时上下 气膜表面会形成压力差就是气膜承载力,用来平衡外部负载,使之内外压力平衡.提高静压气体轴承的刚度和承载能力是优化气 体轴承性能的重要方法,多数由压缩的供气压力、轴 承结构参数及气体的不同等因素确定.气体静压轴 承结构主要参数见表1.表1空气静压轴承结构的主要参数Tab. 1 Main parameters o f aerostatic bearing structure几何特征参数值轴承直径/m m56轴承长度/m m80节流孔直径/mm2进口直径/mm4节流孔径向位置/mm15平均气模厚度/mm2节流孔数量/个12文献[8]对偏心率为0.1时的空气静压轴承做 了一些相关研究.在文献[15]中偏心率为0.1〜0.6,研究并得出偏心率对承载力的影响结果:在一 定范围内,承载力和偏心率构成线性关系,并且在偏 心率为0.5时,研究分析并得出了详细的结论.本文 取偏心率为0.3进行一系列的研究分析.通过计算轴承静态性能的近似公式[15],对承载力性能进行近似的估算(在e e0. 3,且^e3的情况下).()单个径向轴承的承载力根据公式:W+C j L D(p s - <@) (1)式中::e0. 2,单排孔供气;:e 0. 25,双排孔供 气L= 80mm;D= 60 mm;为环境压力,即标准 大气压力;<〇为供气压力,<〇= 5.0 d105p a;:为 载荷系数,它是轴承处于不同情况下,各参数确定 后,可以承受的载荷与所能达的理论承载力之比.本文采用的是径向双排孔供气轴承,所以: e 0.25.由式(1)代入数据得W= 478 N.由于空气可被压缩,做出假设,空气在轴承中的 状态为等温过程,空气静压轴承处于高速工作时,表 现为动静压混合过程,轴承内气膜的压力P符合 Reynolds方程[16]:e1 - ecos_e_>282有色金属材料与工程2017年第38卷式中^为气体动力黏度;P为气膜压力;尺为轴承的半径为气体密度;、为轴承的平均气膜厚度;e为轴承的偏心率;U为轴承两相对表面的运动速度.Reynolds方程等式左侧为气膜压力变化参数,而等式右侧各项展开,会得到各种压力的各种效应.物理意义为:吵g,动压效应;M g,伸缩效应;隱|^,密度效应.除上述效应外,其中还存在其他效应:挤压效应,加热效应等都会在气膜上产生压 力[17].所以,静压气体轴承为动静压混合轴承.2动压效应图1为空气静压轴承动压效应.当轴承工作时,因承载力W存在,旋转中心为〇2,偏心量为&当轴 承绕轴高速旋转时,由于与空气摩擦力存在,气膜与 轴接触的附面层空气将会随转轴一起旋转,在图1中X轴下,气模的流动状态是由气膜较薄的一侧流进,从气膜厚的一侧流出,该范围的气膜受力较小;X轴 上,气膜层的流动状态是由气膜较厚一侧流进,从气 膜薄的一侧流出.形成了由小变大的扩大楔形间隙和 由大变小的收敛楔形间隙,满足动压效应形成的几何 条件.故而轴承工作会有动压效应存在.图1空气静压轴承动压效应示意图Fig. 1Hydrodynamic effect of static pressure bearing 3静压轴承的模拟仿真3.1模型本文采用双排小孔节流空气径向轴承,节流管 与轴承外壳为45°.本文主要研究气体经节流管进 入轴承的空气状态.因此气体为主要对象,以气体建 立气膜模型,采用SolidW orks建模软件,如图2 所示.图2气膜模型Fig. 2 M odel of air film3.2网格划分轴承工作时,高压气体通过45°倾角的供气管 进入到节流管时,横截面发生了突变,因此高压气体 在流经节流突变口时,使得速度与压力变化幅度较 大.因此在此处进行了网格加密,相对其他区域较密 集,如图3所示.图3气膜网格Fig. 3 Mesh of air film3.3数值模拟网格划分完,导入到FLUENT计算,求解器设 置为基于压力的求解器(Pressure Based),采用可实 现性Realizable fc :'模型•此模型与标准fc :'模 型、重整化群RNG fc:'模型相比,优点是可以在雷诺应力上保持与真实湍流的一致,可以更准确地模 拟平面和圆形射流的扩散速度;在旋转计算、带方向 压强梯度的边界层计算和分离流计算等问题中,计 算更符合实际情况;针对分离流计算和带二次流的 复杂流动计算也较为准确.本研究进出口为压力边 界条件,轴承内表面设置为旋转面,选用非平衡壁面 函数,采用SIMPLEC算法收敛计算.第5期王昊:空气静压轴承动态性能仿真研究2833.4仿真结果轴承工作时,压缩气体经节流孔进入轴承间隙, 一部分沿着轴向流向两端和中间,在中间会形成相 对稳定的压力区;轴承气膜内膜面,由于气体存在黏 性,气膜层会随着壁面的旋转而转动,旋转方向与轴 承旋转方向一致.空气静压轴承的供气压力、偏心率、轴承旋转速 度、轴承的结构参数和气体性质等因素均会影响气体 在轴承内的流动状态特性,进而影响到轴承工作状态特性.本文主要针对偏心率为7 3时,研究分析供气 压力和轴承旋转速度对轴承承载力的影响规律.进口压力0.5M Pa 压缩空气,均以45°进气,出 口压力均为大气压力•由图4(@)〜(d )可以看出,压 缩气体经45°节流管节流,压力下降.由节流孔进入 轴承时,在节流管进口右侧形成了一个低压区,并随 着顺时针方向压力逐渐升高,而不同轴承转速对压 力分布具有一定的一致性,即旋转速度对压力影响 很小,见图4.(a )进气压强0.5 M P a ,转速5 000 r/m in (b )进气压强0.5 M P a ,转速30 000 r/m in(c )进气压强0.5 M P a ,转速60 000r/m in (d )进气压强0.5 M P a ,转速 100 000 r/m in图4供气压力和轴承旋转速度对轴承承载力影响Fig. 4 Influence of gas supply pressure and bearing rotation speed on the bearing capacity of the bearing is studied轴承工作时,供气孔、节流孔和轴承气膜外圆柱 表面与轴承固定接触,轴承固定.轴承气膜内圆柱表 面与轴颈接触,轴颈以一定的速度旋转.在偏心率为0.3,旋转速度为5 000 r /m in 的条件 下,分析不同进气压力下的轴承气膜内表面压力分 布.由图5可知,一定转速情况下,轴承气膜压强随着 进气压强的增加承载力增加,且压力分布更加均勻.通过气膜压力分布可对气膜压强积分计算得出 气膜压力合力,即轴承承载力W •在不同工况下积 分所得承载力不同,以此得出了不同进气压强和转 速与承载力的关系.由图6(a )可知,在偏心率为0. 3,进气压强为 0.5 M Pa 时,轴承的承载力在该气膜厚度下,在转速 的逐渐提高下,承载力静压成平稳状态,由静压与总IE 1lizippii iP K19187654321G -1-2284有色金属材料与工程2017年第38卷压图可知轴承动压效应随转速的增大逐渐减小.由图6(b )可知,在偏心率为0. 3,旋转速度为5 000 r /min 时,在不同供气压力下,轴承的承载力随 着供气压强的增加而增加,动压效应越明显,见图6.(a )进气压力为0.2 M Pa ,旋转速度5 000 r/m in (b )进气压力为0.3 M Pa ,旋转速度5 000 r/m in(e )进气压力为0.6 M Pa ,旋转速度5 000 /m in (f )进气压力为0.7 M Pa ,旋转速度5 000 r/m in图*不同进气压力条件轴承气膜内表面压力分布Fig. * Pressure distribution of the bearing gas film4结论本文利用有限元数值模拟,研究分析在一定偏心率下,对空气静压轴承旋转工作时进行模拟计算,得出结论:压缩气体经节流孔进入轴承时,在节流孔右侧形成了一个低压区,顺时针方向压力逐渐升高, 轴承转速对压力分布影响很小.轴承的承载力在一定气膜厚度和进气压强下,随转速逐渐提高,承载力 逐渐下降,成下降趋势.轴承承载力随着进气压强的第5期王昊:空气静压轴承动态性能仿真研究2850 20 000 40 000 60 000 80 000 100 000循环速度/ 〇m in _^(a )不同转速对承载力的影响曲线0.2 0.3 0.4 0.5 0.6 0.7冲击压力/M P a(b )不同供气压强对承载力的影响曲线图$不同因素对承载力的影响曲线Fig. 6 Graph is different factors impacton the bearing capacity增大成非线性增大,动压也随着压强增大而增大,动 压变得更明显.一定旋转速度下,随着进气压强的增 大,压力分布越均勻,越适合轴承高效稳定的工作.研 究结果为孔式节流空气静压轴承结构设计优化和在 相关工程中的应用提供可靠性的指导及技术支撑.参考文献:[1 /王元勋,陈尔昌,师汉民,等.气体润滑轴承的研究与 发展[J ].湖北工业大学学报,1994(3) : 155 : 159.[2 /孙立佳,孙淑凤,张华涛,等.静压轴径轴承静态特性的 数值模拟分析[J ].低温与超导,2010,38⑴:56 : 7[3] LIN W J,KHAIAIT J P , LIN W , et al . Modelling of anorifice -type aerostatic thrust bearing [ C ] $ Proceedings of 2006 International Conference on Control ,Automation , Robotics and Vision . Singapore : IEEE ,2006: 1 - 6..4 ] LUND JW. A theoretical analysis of whirl instabilityand pneumatic hammer for a rigid rotor in pressurized gas journal b earings.]. Journal of Tribology ,1967,89 (2):154.[5 ] TALUKDERH M ,ST 〇WELL T B. Pneumatic hammerin an externally pressurized orifice-compensated air journal b ea rin g.]. Tribology International ,2003, 36 (8):585-591.[6 ] AL-BENDER F .〇n the modelling of the dynamiccharacteristics of aerostatic bearing films : From stability analysis to active compensation [J]. Precision Engineering ,2009,33(2) % 17- 126.[7] L 〇 C Y,WANG C C,LEE Y H. Performance analysis ofhigh-speed spindle aerostatic bearings [J ]. Tribology International ,2005,38!) % : 14.[8] 段明德,张武果,曹立波.空气静压径向轴承动压效应对其承载能力的影响[J ].轴承,2013 !) : 36 - 38,50.[9 ] ZHU J C,CHEN H, CHEN X D. Large eddy simulation ofvortex sheddng and pressure fluctuation in aerostatic bearings[J]. Journal of Fluids and Structures,2013,40(7): 42-51.[10] RENN J C,HSIA 〇 C H. Experimental and CFD studyon the mass flow-rate characteristic of gas through orifice-type restrictor in aerostatic bearings [J ]. Tribology International ,2004,37(4) : 309 - 315.[1] 刘凡,孟宪东.空气静压轴承孔型节流器的CFD 研究[J ].机械,2005,32(11) :21 - 23.[2] 孙雅洲,卢泽生,饶河清.基于FLUENT 软件的多孔质静压轴承静态特性的仿真与实验研究[J ].机床与 液压,2007,35(3):170-172.[3] POWELL J W .空气静压轴承设计[M ]. 丁维刚,译.北京:国防工业出版社,1978.[4] 任凯,刘波,张君安.高刚度气浮垫气腔槽宽变化规律研究[J ].机电产品开发与创新,2011,24(1) :29-30.[5] 吴利杰,杨春娥,王为辉.空气静压径向轴承静态性能的有限元分析[J].机电工程,2015,32(9) :1201 - 1205.[16]郑书飞.精密空气电主轴气体轴承动态特性参数分析[D ].南京:东南大学,2010.[7]池长青.流体力学润滑[M ].北京:国防工业出版社,1998.。

最新空气静压轴承工作原理

最新空气静压轴承工作原理

空气静压气浮轴承工作原理气体静压轴承是滑动轴承形式当中的一种,其结构和工作原理与液体滑动轴承类似,不同的是采用气体(多为空气)作为润滑介质。

当外部压缩气体通过节流器进入轴承间隙,就会在间隙中形成一层具有一定承载和刚度的润滑气膜,依靠该气膜的润滑支承作用将轴浮起在轴承中。

对于气体静压轴承,采用外压供气是其基本工作方式,节流器是其结构的关键,而主轴工作时因自重和载荷出现的偏心则建立起轴承相应的承载和刚度加工中心机制。

以径向供气的静压气浮轴承为例,径向孔式静压气体轴的气流通道主要由节流孔和轴承径向间隙两部分组成,节流孔是使外部加压气体进入轴承间隙前,产生节流效果、并使之形成具有一定承载能力及刚度的稳定润滑气膜的一种装置。

而轴承径向间隙则是通过改变径向间隙,调整对气流的阻抗以达到改变空气流量,进而影响上游来流条件,改变节流孔出口压力Pr,在轴承腔内建立起新的平衡。

两者的宏观表现均是对流体产生阻抗,使来流压力不断降低,因此,有类似电学欧姆定律的规律。

将图4-1的气浮轴承模型类比图4-2的电阻模型。

压缩空气以供气压力只:由供气通道经节流小孔进入气腔,通过气膜流出,当通道横截面积减小时,气流速度加快,剪切速率会增加,由于气体的粘性,气体的内摩擦会消耗其动能,经过节流小孔后气体压力值减小,即气腔中压力Pr,小于供气压力凡。

同理由于气膜厚度很小,空气在气膜中流动时的剪切速率很大,所以气体由气腔流经气膜时,压力会有再次损失,即环境压力Po低于气腔压力Pr。

我们将节流小孔和气膜这些小截面通道对气流的阻碍作用称为阻抗,将节流小孔的阻抗记为Rg,记气膜的阻抗为Rh。

那么,空气流动的过程与电流流经两个串联的电阻非常相似,其中,气流对应于电流,阻抗对应于电阻,气体压力对应于电压。

未通压缩空气前,由于滑动件的自重与载荷的作用:支承件与滑动件相互贴合:气膜厚度h为零。

此时气膜的阻抗Rh趋于无穷大,气腔压力只,趋近于供气压力Ps;当供气压力与气腔面积之乘积值超过载荷F时,滑动件浮起,气膜形成,气腔压力只,低于供气压力凡滑动件在气膜压力的支承下达到平衡。

[整理]高速空气静压主轴承性能分析

[整理]高速空气静压主轴承性能分析

高速空气静压主轴承性能分析Cheng-Ying Lo ,Cheng-Chi W ang ,Yu-Han Lee摘要:气动轴承设计的问题的解决方法是先压力分布和轴承轮转方向的精确度。

目前,本文研究出了一个详细的理论分析轴承性能的方法,其中气动轴承最初是由无量纲简化的纳维——斯托克斯方程的形式来表达。

利用轴承之间的间隙和孔口中的质量连续流动的假设,可以推导出非线性无量纲雷诺方程,然后利用牛顿方法进行离散。

最后,修改后的雷诺方程可以利用循环迭代的方法来解决。

目前的数值模型可以有效的油膜压力分布,摩擦力影响,承载能力,刚度,润滑气体流量,和静止状态偏心率和动态气动轴承压力包括高偏心率部分,高速非圆形线部分,推力轴承,滑块轴承等内容的分析。

这个被使用的分析模型提供了宝贵的分析方式来研究高精度的静态和动态旋转的气体轴承的性能,并使其成为可以得到的最优化设计。

1.简介气体轴承的特点是旋转时低噪音和低摩擦损失。

因此,它们经常被应用于各种精密仪器中,在空负荷高速电动马达驱动的情况下,它们产生摩擦量为零。

相比于传统的油轴承,气体轴承具有产生的热量低,少污染,和较高的精度的优点。

然而,它们的主要缺点是,它们的运行往往相当不稳定,这往往限制其允许使用的范围。

1961年,格罗斯和扎克[1]首先开发,并应用了微扰的方法来解决:稳定,自行形成,可认为无限长的平面楔形油膜问题。

使用的这种微扰的方法可以有效的分析所有的几何参数范围,并得到高度精确的结果。

1975年,马宗达[2]提出一种理论方法,考虑到三维流多孔材料对轴承的影响,推导出稳态固定和旋转性能特点。

我们知道气动轴承的主要承载能力受气膜的空气动力学影响,其中气膜的刚度,阻尼系数,和稳定的范围值是主要的影响参数。

多数的轴承设计都是为了运转稳定,因此需要掌握最基本的有关稳定性的知识。

所以,马宗达[3]构建了一个多孔矩形的推力轴承,在外部施压,利用可压缩润滑液的条件下的理论模型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档