广东省河源市紫金县2018-2019学年九年级上学期数学期中考试试卷(B)及参考答案

合集下载

2018至2019学年度第一学期九年级上学期中试卷数学试题

2018至2019学年度第一学期九年级上学期中试卷数学试题

2018至2019学年度第一学期九年级上学期中试卷数学试题(考试时间100分钟,满分120分) 班别: 姓名: 成绩:一、选择题(每小题3分,本大题30分): 1. 下列方程是一元二次方程的是( ). A .2x+3=0B .y 2+x-2=0 C .x 2=1 D .x 2+1=02.下列函数解析式中,一定是二次函数的是( ).A. 13-=x yB. c bx ax y ++=2C. 1222+-=t t s D. xx y 12+= 3.二次函数y=(x-1)2﹣1的最小值是( ). A .2B .-1C .1D .-24. 下列交通标志中既是中心对称图形,又是轴对称图形的是( )。

A .B .C .D .5. 一元二次方程的解是( ) A .B .C .或D .或6. 抛物线y= x 2+4的顶点坐标是( ). A .(0,4)B .(-4,0)C .(0,-4)D .(4,0)7. 二次函数245y x x =+-的图象的对称轴为( ). A .4x =B .4x =-C .2x =D .2x =-8. 某厂一月份的总产量为500吨,三月份的总产量达到为700吨。

若平均每月增长率是 ,则可以列方程( ).A .500(1+2x )=700B .500(1+x 2)=700C .500(1+x )2=700D .700(1+x 2)=500 9.将抛物线2y x =向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为( ).A .2(2)3y x =+-B .2(2)3y x =++C .2(2)3y x =-+D .2(2)3y x =-- 10.点B 与点A (﹣2,3)关于原点对称,点B 的坐标为( ).A.(2,﹣3) B.(﹣2,3) C.(2,3) D.(﹣2,﹣3)二、填空题(每小题4分,本大题24分):11、一元二次方程3x2 -2x﹣1=0的一次项系数是,常数项是。

2018-2019学年度上学期期中九年级数学试卷及答案

2018-2019学年度上学期期中九年级数学试卷及答案

2018-2019学年度上学期期中考试 九年级数学试题 (满分120分,时间120分钟)卷一(请将正确选项涂在答题卡上)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四1. 下列图形中,旋转60°后可以和原图形重合的是( ) A .正六边形 B .正五边形 C .正方形 D .正三角形 2.二次函数y =12x 2-4x +3的顶点坐标和对称轴分别是( )A .(1,2),x =1B .(-1,2), x =-1C .(-4,-5),x =-4D .(4,-5),x =43.抛物线y =x 2-2x +1与x 轴的交点个数是( ) A .0 B .1 C .2 D .34.将y =(2x -1)(x +2)+1化成y =a(x +m)2+n 的形式为( ) A .y =2(x +34)2-2516 B .y =2(x -34)2-178C .y =2(x +34)2-178D .y =2(x +34)2+1785.抛物线y =(x +2)2-3可以由抛物线y =x 2平移得到,则下列平移过程正确的是( )A .先向左平移2个单位长度,再向上平移3个单位长度B .先向左平移2个单位长度,再向下平移3个单位长度C .先向右平移2个单位长度,再向下平移3个单位长度D .先向右平移2个单位长度,再向上平移3个单位长度6.设A(-4,y 1),B(-3,y 2),C(0,y 3)是抛物线y =(x +1)2+a 上的三点,则y 1,y 2,y 3的大小关系为( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 3>y 1>y 27.如图所示的桥拱是抛物线形,其函数的解析式为y =-14x 2,当水位线在AB 位置时,水面宽12 m ,这时水面离桥顶的高度为( )A .3 mB .2 6 mC .4 3 mD .9 m,(第8题图)),(第10题图))8.已知二次函数y =ax 2+bx +c 的图象如图所示,有以下结论:①a +b +c<0;②a -b +c>1;③abc>0;④4a -2b +c<0;⑤c -a>1.其中所有正确结论的序号是( ) A .①② B .①③④ C .①②③⑤ D .①②③④⑤9.下列方程采用配方法求解较简便的是( ) A .3x 2+x -1=0 B .4x 2-4x -8=0 C .x 2-7x =0 D.()x -32=4x 210.如图,某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)铁皮备用,当截取的矩形面积最大时,矩形两边长x ,y 应分别为( ) A .x =10,y =14 B .x =14,y =10 C .x =12,y =15 D .x =12,y =1211. 二次函数y =ax 2+bx +1(a ≠0)的图象的顶点在第一象限,且过点(-1,0).设t =a +b +1,则t 值的变化范围是( )A .0<t <1B .0<t <2C .1<t <2D .-1<t <112. 如图,O 是等边三角形的旋转中心,∠EOF =120°,∠EOF 绕点O 进行旋转,在旋转过程中,OE 与OF 与△ABC 的边构成的图形的面积( )A .等于△ABC 面积的13B .等于△ABC 面积的12 C .等于△ABC 面积的14 D .不能确定13. 点P 1(-1,y 1),P 2(3,y 2),P 3(5,y 3)均在二次函数y =-x 2+2x +c 的图象上,则y 1,y 2,y 3的大小关系是( )A.y 3>y 2>y 1B.y 3>y 1=y 2C.y 1>y 2>y 3D.y 1=y 2>y 314. 如图,△ABC 是等边三角形,四边形BDEF 是菱形,其中线段DF 的长与DB 相等,将菱形BDEF 绕点B 按顺时针方向旋转,甲、乙两位同学发现在此旋转过程中,有如下结论. 甲:线段AF 与线段CD 的长度总相等;乙:直线AF 和直线CD 所夹的锐角的度数不变. 那么,你认为( )A .甲、乙都对B .乙对甲不对C .甲对乙不对D .甲、乙都不对15. 如图,将△AOB 绕点O 逆时针旋转90°,得到△A ′OB ′.若点A 的坐标为(a ,b),则点A ′的坐标为( ).A . (-b ,a) B. (b ,a) C. (-b ,-a) D. (b ,-a)16. 平时我们在跳绳时,绳子甩到最高处的形状可近似看作抛物线,如图建立直角坐标系,抛物线的函数解析式为y =-16x 2+13x +32,绳子甩到最高处时刚好通过站在点(2,0)处跳绳的学生小明的头顶,则小明的身高为( )m .A.1.6B.1.5C.1.4 D1.314题图 15题图12题图2018-2019学年度上学期期中考试九年级数学试题卷二2分.把答案写在题中横线上)17.如图,把抛物线y=12x2平移得到抛物线m. 抛物线m经过点A(-6,0)和原点(0,0),它的顶点为P,它的对称轴与抛物线y=12x2交于点Q,则图中阴影部分的面积为.(第17题图) (第19题图)18.在二次函数y=2则m的值为.19.如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△P′AB,则点P与点P′之间的距离为,∠APB=.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)20. (本题8分)(1)用公式法解方程x2-3x-7=0.(2)解方程:4x(2x-1)=3(2x-1)21. (本题7分)如图,已知△ABC的顶点A,B,C的坐标分别是A(-1,-1),B(-4,-3),C(-4,-1).(1)作出△ABC关于原点O中心对称的图形△A’B’C’;(2)将△ABC绕原点O按顺时针方向旋转90°后得到△A1B1C1,画出△A1B1C1,并写出点A1的坐标.22.(本题8分)如图,△ABC中,AB=AC,∠BAC=50°,P是BC边上一点,将△ABP绕点A逆时针旋转50°,点P旋转后的对应点为点P′.(1)画出旋转后的三角形;(2)连接PP′,若∠BAP=20°,求∠PP′C的度数.23. (9分)如图,一个二次函数的图象经过A,B,C三点,点A的坐标为(-1,0),点B的坐标为(4,0),点C在y轴的正半轴上,且AB=OC.(1)求点C的坐标;(2)求这个二次函数的解析式,并求出该函数的最大值.24. (10分)已知关于x的函数y=ax2+x+1(a为常数).(1)若函数的图象与x轴恰有一个交点,求a的值;(2)若函数的图象是抛物线,且顶点始终在x轴上方,求a的取值范围.25. (本题12分)感知:如图①,在△ABC 中,∠C =90°,AC =BC ,D 是边BC 上一点(点D 不与点B ,C 重合).连接AD ,将AD 绕着点D 逆时针旋转90°,得到DE ,连接BE ,过点D 作DF ∥AC 交AB 于点F ,可知△ADF ≌△EDB ,则∠ABE 的大小为________.并说明理由.探究:如图②,在△ABC 中,∠C =α(0°<α<90°),AC =BC ,D 是边BC 上一点(点D 不与点B ,C 重合),连接AD ,将AD 绕着点D 逆时针旋转α,得到DE ,连接BE ,求证:∠ABE =α. 应用:设图②中的α=60°,AC =2.当△ABE 是直角三角形时,AE =________.并说明理由.26. (本题12分)某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y 1与投资成本x 成正比例关系,种植花卉的利润y 2与投资成本x 的平方成正比例关系,并得到了表格中的数据:(1)分别求出利润y 1与y 2关于投资量x 的函数关系式;(2)如果这位专业户计划用8万元资金投入种植花卉和树木,设他投入种植花卉金额m 万元,种植花卉和树木共获利润w 万元,求出w 与m 之间的函数关系式,并求他至少获得多少利润?他能获取的最大利润是多少?(3)若该专业户想获利不低于22万元,在(2)的条件下,直接写出投资种植花卉的金额m 的范围.。

2018-2019学年度第一学期九年级数学上期中试卷

2018-2019学年度第一学期九年级数学上期中试卷

2018-2019学年度九年级数学上期中试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1. 下列标志中不是中心对称图形的是2. 已知反比例函数y =6x ,下列各点在该函数图象上的是A .(2,-3)B .(2,3)C .(-1,6)D .132(-,)3. 若关于x 的方程x 2-mx +6=0的一个根是2,则另一个根是A .2B .-2C .-3D .3 4. 下列说法中,正确的是A .周长相等的圆是等圆B .过任意三点可以画一个圆C .相等的圆心角所对的弧相等D .平分弦的直径垂直于弦5. 小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%.他明天将参加一场比赛,下面几种说法正确的是A .小亮明天的进球率为10%B .小亮明天每射球10次必进球1次C .小亮明天有可能进球D .小亮明天肯定进球 6. 已知圆锥的母线长为5cm ,高为4cm ,则这个圆锥的侧面积为A .12π cm 2B . 15π cm 2C .20π cm 2D . 25π cm 27. 如果k b a cc a b c b a =+=+=+,且a +b +c ≠0.则k 的值为( ) A .31 B .21 C .21或-1 D .-18. 如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CF =14CD ,下列结论:①∠BAE =30°,②△ABE ∽△AEF ,③AE ⊥EF ,④△ADF ∽△ECF .其中正确结论的个数为( ) A .1 B .2 C .3 D .4第8题 第14题 第15题 第16题 第17题9. 抛物线y =x 2+bx +c (其中b ,c 是常数)过点A (2,6),且抛物线的对称轴与线段y =0(1≤x ≤3)有交点,则c 的值不可能是 A .4 B .6 C .8 D .1010.一条抛物线过P 1(-3,y 1),P 2(-1,y 2),P 3(1,y 3),P 4(3,y 4)四点,若y 3<y 2<y 4,则可能的最值情况是 A .y 3最小,y 1最大 B .y 3最小,y 4最大 C .y 1最小,y 4最大 D .y 2最小,y 4最大二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡...相应位置....上) 11.若x =1是一元二次方程x 2+2x +m =0的一个根,则m 的值为 .12.若反比例函数y =2k -1x的图象经过第二、四象限,则k 的取值范围是 .13.在平面直角坐标系中,将函数y =2x 2的图象先向右平移1个单位长度,再向上平移5个单位长度,所A BCFDE A . B . C . D .得图象的函数解析式为 .14.如图,在矩形ABCD 中,AD =3,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE =EF ,则AB 的长为 .15.在△ABC 中,P 是AB 上的动点(P 异于A ,B ),过点P 的一条直线截△ABC ,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P 的△ABC 的相似线.如图,∠A =36°,AB =AC ,当点P 在AC 的垂直平分线上时,过点P 的△ABC 的相似线最多有_______条.16.如图,一座拱桥的轮廓是抛物线型.当拱顶离水面2 m 时,水面宽4 m .则水面下降1 m 时,水面宽17.如图,点A 、B 、E 在⊙O 上,半径OC ⊥AB 于点D ,∠CEB =22.5°,OD =2.则图中阴影部分的面(结果保留π)18.若抛物线y =x 2-1与直线y =-x 的两交点横坐标分别为p ,q ,则代数式2223p q p -+的值为 . 三、解答题(本大题共10小题,共96分.请在答题卡指定区域.......内.作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)解方程:(1)x (x -1)=1-x ; (2)2x 2-3x -1=0. 20.(本小题满分8分)已知关于x 的一元二次方程x 2+2x +m =0.(1)若方程有两个相等的实数根,求m 的值; (2)当m =-3时,求方程的根. 21.(本小题满分8分)如图,在边长为1的正方形网格中,△ABC 的顶点均在格点上,点A 、B 的坐标分别是A (4,3)、B (4,1),把△ABC 绕点C 逆时针旋转90°后得到△A 1B 1C . (1)画出△A 1B 1C ,直接写出点A 1、B 1的坐标; (2)求在旋转过程中,点B 所经过的路径的长度.22.(本小题满分8分)如图,在△ABC中,CD⊥AB于点D,AD=4,DB=9,CD=6.求证:△ABC为直角三角形.23.(本小题满分8分)有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6.(1)若从中随机抽取一张,求取出的数字是偶数的概率;(2)若随机抽取一张后,放回并混在一起,再随机抽取一张,求第二次取出的数字能够整除第一次取出的数字的概率.25.(本小题满分10分)在△ABC中,∠ACB=90°,D是AC边上的任一点,CE⊥AB于点E,CF⊥BD于点F,连结EF.求证:∠BFE=∠AABC DEF26.(本小题满分10分)已知二次函数y=x2+mx+n(m,n为常数).CA D B(1)若m =-2,n =-4,求二次函数的最小值;(2)若n =3,该二次函数的图象与直线y =1只有一个公共点,求m 的值;(3)若n =m 2,且3m +4<0,当x 满足m ≤x ≤m +2时,y 有最小值13,求此时二次函数的解析式. 27.(本小题满分13分)如图1,△ABC 是边长为4 cm 的等边三角形,边AB 在射线OM 上,且OA =6 cm ,点D 从点O 出发,沿OM 的方向以1 cm/s 的速度运动,当D 不与点A 重合时,将△ACD 绕点C 逆时针方向旋转60°得到△BCE ,连接DE ,设运动时间为t s . (1)求证:△CDE 是等边三角形;(2)当6<t <10时,如图2,△BDE 周长是否存在最小值?若存在,求出△BDE 的最小周长; 若不存在,请说明理由.(3)当点D 在射线OM 上运动时,如图3,是否存在以D 、B 、E 为顶点的三角形是直角三角形? 若存在,求出此时t 的值;若不存在,请说明理由.图1 图2 图328.(本小题满分13分)在平面直角坐标系xOy 中,点P 的坐标为(a ,b ),点P 的变换点P '的坐标定义如下: 当a >b 时,点P '的坐标为(-a ,b );当a ≤b 时,点P '的坐标为(-b ,a ).(1)点A (3,1)的变换点A '的坐标是 ;点B (-4,2)的变换点为B ',连接OB ,OB ',则∠BOB '= °;(2)已知抛物线y =-(x +2)2+m 与x 轴交于点C ,D (点C 在点D 的左侧),顶点为E .点P 在抛物线y =-(x +2)2+m 上,点P 的变换点为P '.若点P '恰好在抛物线的对称轴上,且四边形ECP 'D 是菱形,求m 的值;(3)若点F 是函数y =-2x -6(-4≤x ≤-2)图象上的一点,点F 的变换点为F ',连接FF ',以FF '为直径作⊙M ,⊙M 的半径为r ,请直接写出r 的取值范围.MA CO ECEM ACB ODM2018~2019学年度九年级期中试卷 数学试题参考答案与评分标准说明:本评分标准每题给出了一种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.11.-3 12.k <1213.y =2(x -1)2+5 14.15.0.950 16.4 17.12π-1 18.8三、解答题(本大题共10小题,共96分) 19.(本小题满分8分)解:(1)x (x -1)+(x -1)=0. --------------------------------------------------------------------------------------- 1分(x -1) (x +1)=0. ------------------------------------------------------------------------------------------- 3分 所以x 1=1,x 2=-1. ------------------------------------------------------------------------------------- 4分 (2)因为a =2,b =-3,c =-1,所以b 2-4ac =(-3)2-4×2×(-1)=17>0.-------------------------------------------------------- 6分所以x 1=3+17 4,x 2=3-174. ------------------------------------------------------------------- 8分20.(本小题满分8分)解:(1)由题意得,△=0 即 4-4m =0,m =1 ------------------------------------------------------------------------------------------------ 4分(2)当m =-3时,x 2+2x -3=0,解得x 1=1,x 2=-3. ------------------------------------------------ 8分 21(1)画图. ---------------------------------------------------------------------------------- 2分A 1(-1,4),B 1(1,4). ------------------------------------------------------ 4分 (2)BC =3,∠BCB 1=90°,∴点B 所经过的路径长为:90331802ππ⨯=.-------------------------------- 8分22.(本小题满分8分)解:设小路宽为x 米,由题意,得(32-2x )(20-x )=570. ------------------------------------------------ 4分解之得x 1=1,x 2=35. --------------------------------------------------------------------------------------- 6分 ∵32-2x >0,20-x >0 ∴0<x <16.∴x =1 -------------------------------------------------------------------------------------------------------------- 7分 答:小路的宽为1米. ------------------------------------------------------------------------------------------------ 8分 23.(本小题满分8分)解:(1)∵ON =1,MN ⊥x 轴,∴M 点横坐标为x =1, ------------------------------------------------------------------------------------------ 1分 把1x =代入到1y x =+中得:y =2, ∴M 点的坐标为(1,2), -------------------------------------------------------------------------------------- 2分把M (1,2)代入到ky x=中得到k =2,∴反比例函数的表达式为2y x=. ----------------------------------------------------------------------------- 5分(2)x >1 --------------------------------------------------------------------------------------------------------------- 8分24.(本小题满分10分)解:(1)从中随机抽取一张有6种等可能结果:1,2,3,4,5,6.其中偶数的有三种:2,4,6.所以P (偶数)=36=12.-------------------------------------------------------------- 4分(2)列表或画树形图(略) ----------------------------------------------------------------------------------------- 6分 所有可能的结果共36种,且都是等可能的,其中第二次取出的数字能够整除第一次取出的数字(记为事件A )共14种. --------------------------------------------------------------------------------------------------- 8分∴P (A )=1436=718. ----------------------------------------------------------------------------------------------- 10分25.(本小题满分10分)解:(1)直线DE 与⊙O 相切. --------------------------------------------------------------------------------- 1分(1)当m =-2,n =-4时,y =x 2-2x -4=(x -1)2-5∴当x =1时,y 最小值=-5. --------------------------------------------------------------------------------------- 3分(2)当n =3时,y =x 2+mx +3,令y =1,则x 2+mx +3=1.由题意知,x 2+mx +3=1有两个相等的实根, 则△=m 2-8=0.m = 6分 (3)由3m +4<0,可知m <43-,∴m ≤x ≤m +2<23.抛物线y =x 2+mx +m 2的对称轴为x =2m -, ∵m <43-,∴2m ->23∴对称轴为x =2m ->23. -------------------------------------------------------------------------------------- 7分∴在m ≤x ≤m +2时,y 随着x 的增大而减小.∴当x =m +2时,y 有最小值为13. ------------------------------------------------------------------------- 8分∴(m +2)2+m (m +2)+m 2=13,即m 2+2m -3=0. ------------------------------------------------------ 9分解得m =1或m =-3.而m <43-,∴m =-3.此时,y =x 2-3x +9. --------------------------------------------------------------------------------------------- 10分 27.(本小题满分13分)解:(1)证明:∵△BCE 是由△ACD 绕点C 逆时针方向旋转60°所得, ∴∠DCE =60°,DC =EC ,∴△CDE 是等边三角形. ---------------------------------------------------------- 3分 (2)存在,当6<t <10时,由旋转可知, BE =AD .C △DBE =BE +DB +DE =AB +DE =4+DE ,又由(1)可知,△CDE 是等边三角形. ∴DE =CD ,∴C △DBE =CD +4,由垂线段最短可知,当CD ⊥AB 时,△BDE 的周长最小,此时,CD =32cm ,∴△DBE 的最小周长C △DBE =CD +4=32+4(cm ). ---------------------- 7分 (3)存在,①∵当点D 与点A 重合时,D 、E 、B 不能构成三角形;当点D 与点B 重合时,显然不合题意. ∴t ≠6s ,t ≠10s , ----------------------------------------------------------------------------------------------------------- 8分 ②当0≤t <6s 时,由旋转可知∠ABE =60°,∠BDE <60°,从而∠BED =90°,由(1)可知△CDE 是等边三角形, ∴∠DEB =60°,∴∠CEB =30°, ∵∠CEB 是∠CDA 在旋转下的像, ∴∠CDA =30°,∵∠CAB =60°,∴∠ACD =∠ADC =30°, ∴DA =CA =4,∴OD =OA -DA =6-4=2,∴t =2÷1=2s , -------------------------------------------- 10分 ③当6<t <10s 时,由∠DBE =120°>90°,∴此时不存在; --------------------------------------------- 11分 ④当t >10s 时,由旋转可知∠DEB =60°,又由(1)知∠CDE =60°, ∴∠BDE =∠CDE +∠BDC =60°+∠BDC ,而∠BDC >0°, ∴∠BDE >60°, ∴只能∠BDE =90°,从而∠BCD =30°, ∴BD =BC =4,∴OD =14cm ,∴t =14÷1=14s 。

广东省河源中学实验学校2018届九年级上学期期中考试数学试题

广东省河源中学实验学校2018届九年级上学期期中考试数学试题

绝密★启用前广东省河源中学实验学校2018届九年级上学期期中考试数学试题试卷副标题考试范围:xxx ;考试时间:81分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,并且关于x 的一元二次方程ax 2+bx+c ﹣m=0有两个不相等的实数根,下列结论: ①b 2﹣4ac <0;②abc >0;③a ﹣b+c <0;④m >﹣2, 其中,正确的个数有( )A .1B .2C .3D .42、在平面直角坐标系中,若点P (m ,m ﹣n )与点Q (﹣2,3)关于原点对称,则点M (m ,n )在( )A .第一象限B .第二象限C .第三象限D .第四象限3、如图,△OAB 绕点O 逆时针旋转80°到△OCD 的位置,已知∠AOB=45°,则∠AOD 等于( )A .55°B .45°C .40°D .35°4、有下列关于x 的方程:①ax 2+bx+c=0,②3x (x ﹣4)=0,③x 2+y ﹣3=0,④+x=2,⑤x 3﹣3x+8=0,⑥x 2﹣5x+7=0,⑦(x ﹣2)(x+5)=x 2﹣1.其中是一元二次方程的有( )A .2B .3C .4D .55、已知m ,n 是方程x 2-2x-1=0的两实数根,则m+n=的值为( )A .-2B .-C .D .26、抛物线y =(x +1)2的图象向左平移2个单位,再向上平移2个单位,所得图象的解析式为y =x 2+bx +c ,则b 、c 的值为( )A .b =6,c =7B .b =-6,c =﹣11C .b =6,c =11D .b =﹣6,c =117、若抛物线y=x 2﹣x ﹣1与x 轴的交点坐标为(m ,0),则代数式m 2﹣m+2017的值为( ) A .2019 B .2018 C .2017 D .20168、下列方程有两个相等的实数根的是( ) A .x 2+x +1=0 B .4x 2+2x +1=0 C .x 2+12x +36=0 D .x 2+x -2=09、如图,在长70m ,宽40 m 的矩形花园中,欲修宽度相等的观赏路(阴影部分),要使观赏路面积占总面积的,则路宽x 应满足的方程是( )A .(40-x )(70-x )=350B .(40-2x )(70-3x )=2450C .(40-2x )(70-3x )=350D .(40-x )(70-x )=245010、二次函数y =(x -4)2+5的图象的开口方向、对称轴、顶点坐标分别是( )A .向上,直线x =4,(4,5)B .向上,直线x =-4,(-4 ,5)C .向上,直线x =4,(4,-5)D .向下,直线x =-4,(-4,5)11、在同一坐标系内,一次函数y =ax +b 与二次函数y =ax 2+8x +b 的图象可能是( )A .B .C .D .12、下列图形中,是中心对称图形的是( )A .B .C .D .第II 卷(非选择题)二、填空题(题型注释)13、如图是二次函数y=ax 2+bx+c 的部分图象,由图象可知不等式ax 2+bx+c >0的解集是____.14、某药厂2015年生产1t 甲种药品的成本是6000元.随着生产技术的进步,2017年生产1t 甲种药品的成本是4860元.设生产1t 甲种药品成本的年平均下降率为x,则x 的值是_________________15、已知二次函数y=a (x ﹣2)2+c (a >0),当自变量x 分别取1.5、3、0时,对应的函数值分别为y 1,y 2,y 3,则y 1,y 2,y 3的大小关系是___________.16、把正方形摆成如图所示的形状,若从上至下依次为第1层,第2层,第3层,…,第n 层,若第n 层有210个正方体,则n =_______.三、解答题(题型注释)17、已知关于x 的方程x 2-(m+2)x+(2m-1)=0. (1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求出以此两根为边长的直角三角形的周长.18、(本题10分)如图,直线y =x +m 和抛物线y =+bx +c 都经过点A (1,0),B (3,2).(1)求m 的值和抛物线的解析式;(2)求不等式x 2+bx +c >x +m 的解集.(直接写出答案)19、如图,在平面直角坐标系中,△ABC 的三个顶点坐标为A (1,﹣4),B (3,﹣3),C (1,﹣1).(每个小方格都是边长为一个单位长度的正方形) (1)将△ABC 绕点O 旋转180°,画出旋转后得到的△A 1B 1C 1; (2)将△ABC 绕点O 顺时针旋转90°,画出旋转后得到的△A 2B 2C 2;(3)写出点 A 2 , B 2 C 2的坐标。

2018-2019学年度(上)九年级数学期中测试卷(含答案)

2018-2019学年度(上)九年级数学期中测试卷(含答案)

2018-2019学年度(上)九年级数学期中测试卷(含答案)2018-2019学年度(上)九年级数学期中测试卷(含答案)⼀、选择题(每⼩题3分,共30分)1.下列标志中,是中⼼对称图形的是A2.⼆次函数y=x2-2x+2的图象的顶点坐标是( A )A.(1,1) B.(2,2) C.(1,2) D.(1,3)3.正⽅形ABCD在直⾓坐标系中的位置如图所⽰,将正⽅形ABCD绕点A按顺时针⽅向旋转180°后,C点的坐标是( B )A.(2,0) B.(3,0) C.(2,-1) D.(2,1)第3题图4.已知关于x的⼀元⼆次⽅程(m+3)x2+5x+m2-9=0有⼀个解是0,则m的值为BA.-3B.3C.±3D.不确定5.(3分)如图,在⊙O中,相等的弦AB、AC互相垂直,OE⊥AC于E,OD⊥AB 于D,则四边形OEAD为( A )A.正⽅形B.菱形C.矩形D.平⾏四边形6.⼆次函数y=ax2+bc+c的图象如图所⽰,则下列判断中错误的是BA.图象的对称轴是直线x=-1B.当x>-1时,y随x的增⼤⽽减⼩D.⼀元⼆次⽅程ax2+bx+c=0的两个根是-3,17.若⼀次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(-2,0),则抛物线y=ax2+bx的对称轴为( C )A.直线x=1 B.直线x=-2C.直线x=-1 D.直线x=-48.黄⽯市某塑料玩具⽣产公司,为了减少空⽓污染,国家要求限制塑料玩具⽣产,这样有时企业会被迫停产,经过调研预测,它⼀年中每⽉获得的利润y(万元)和⽉份n之间满⾜函数关系式y=-n2+14n-24,则企业停产的⽉份为DA.2⽉和12⽉B.2⽉⾄12⽉C.1⽉D.1⽉、2⽉和12⽉9.关于x的⼀元⼆次⽅程(m-2)x2+(2m+1)x+m-2=0有两个不相等的正实数根,则m的取值范围是( D )A.m>34B.m>34且m≠2C.-12<m<2 D.34<m<210.如图,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A的横坐标是-2,点B的横坐标是3,则以下结论:①抛物线y=ax2(a≠0)的图象的顶点⼀定是原点;②x>0时,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随着x的增⼤⽽增⼤;③AB的长度可以等于5;④△OAB有可能成为等边三⾓形;⑤当-3C.②③④D.③④⑤⼀、填空题(共 6⼩题,每⼩题 3 分,共 18 分)11.有⼀个⾯积为的长⽅形,将它的⼀边剪短,另⼀边剪短,得到⼀个正⽅形.若设这个正⽅形的边长为,则根据题意可得⽅程__;(或)______.12.(3分)⼀元⼆次⽅程x2+3x=0的解是0 -3 .13.如图,⼀个拱形桥架可以近似看作是由等腰梯形ABD8D1和其上⽅的抛物线8组成.若建⽴如图所⽰的直⾓坐标系,跨度AB=44⽶,∠A=45°,AC1=4⽶,点D2的坐标为(-13,-1.69),则桥架的拱⾼OH= 7.24⽶.14.14.设m,n是⼀元⼆次⽅程x2+2x-7=0的两个根,则m2+3m+n=__5_____.[来源:Z+xx15.如图,是的直径,点在上,,若,则的长为____2____.16.在如图所⽰的平⾯直⾓坐标系中,△OA1B1是边长为2的等边三⾓形,作△B2A2B1与△OA1B1关于点B1成中⼼对称,再作△B2A3B3与△B2A2B1关于点B2成中⼼对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+1,).三、解答题(共8⼩题,满分72分)17.按要求解⽅程.(8分)(1)x2+3x+1=0(公式法);解:x1=-,x2=--.(2)(x-3)2+4x(x-3)=0(因式分解法).解:x1=3,x2=.18.(9分)如图,为的直径,为弦,,,.求四边形;过点作,交于点,求∠的值.解:作于,连结,如图,∵,∴,∵直径,∴,在中,,;∴四边形∵,∴,∵,,∴四边形是等腰梯形.作于,则,,在中,由勾股定理得,,∴.∵,,∴四边形是平⾏四边形,∴,,∴.∵∠,∴∠,∴∠.19.(7分)已知关于x的⽅程x2﹣2(m+1)x+m2+2=0.(1)若⽅程总有两个实数根,求m的取值范围;(2)若两实数根x1、x2满⾜(x1+1)(x2+1)=8,求m的值.解:(1)∵关于x的⽅程x2﹣2(m+1)x+m2+2=0总有两个实数根,∴△=[﹣2(m+1)]2﹣4(m2+2)=8m﹣4≥0,解得:m≥.(2)∵x1、x2为⽅程x2﹣2(m+1)x+m2+2=0的两个根,[来∴x1+x2=2(m+1),x1x2=m2+2.∵(x1+1)(x2+1)=8,∴x1x2+(x1+x2)+1=8,∴m2+2+2(m+1)+1=8,整理,得:m2+2m﹣3=0,即(m+3)(m﹣1)=0,解得:m1=﹣3(不合题意,舍去),m2=1,∴m的值为1.20.(10分)设a,b,c是△ABC的三条边,关于x的⽅程x2+x+c-a=0有两个相等的实数根,⽅程3cx+2b=2a的根为x=0.(1)试判断△ABC的形状;(2)若a,b为⽅程x2+mx-3m=0的两个根,求m的值.解:(1)∵x2+x+c-a=0有两个相等的实数根,∴Δ=()2-4×-=0,整理得a+b-2c=0①,⼜∵3cx+2b=2a的根为x=0,∴a=b②,把②代⼊①得a=c,∴a=b=c,∴△ABC为等边三⾓形;(2)a,b是⽅程x2+mx-3m=0的两个根,∴⽅程x2+mx-3m=0有两个相等的实数根∴Δ=m2-4×(-3m)=0,即m2+12m=0,∴m1=0,m2=-12.当m=0时,原⽅程的解为x=0(不符合题意,舍去),∴m=-12.21.(8分)已知抛物线y=ax2-2ax+c与x轴交于A,B两点,与y轴正半轴交于点C,且A(-1,0).(1)⼀元⼆次⽅程ax2-2ax+c=0的解是-1,3;(2)⼀元⼆次不等式ax2-2ax+c>0的解集是-1<x<3;(3)若抛物线的顶点在直线y=2x上,求此抛物线的解析式..解:(1)-1,3(2分)(2)-1<x <3(4分)(3)∵抛物线经过点A (-1,0),∴a +2a +c =0,即c =-3a .∵-b 2a =--2a 2a =1,4ac -b 24a =c -a =-3a -a =-4a ,∴抛物线的顶点坐标是(1,-4a ).(6分)⼜∵顶点在直线y =2x 上,∴-4a =2×1=2,解得a =-12,∴c =-3a=-3×? ????-12=32,∴⼆次函数的解析式为y =-12x 2+x +32.(8分)22.(8分)某⽹店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该⽹店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x 元,每星期的销售量为y 件.(1)求y 与x 之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最⼤,最⼤利润多少元?(3)若该⽹店每星期想要获得不低于6480元的利润,每星期⾄少要销售该款童装多少件?解:(1)y=300+30(60﹣x )=﹣30x+2100.(2)设每星期利润为W 元,W=(x ﹣40)(﹣30x+2100)=﹣30(x ﹣55)2+6750.∴x=55时,W 最⼤值=6750.∴每件售价定为55元时,每星期的销售利润最⼤,最⼤利润6750元.(3)由题意(x ﹣40)(﹣30x+2100)≥6480,解得52≤x ≤58,当x=52时,销售300+30×8=540,。

2018-2019学年上学期期中考试九年级数学试卷及答案

2018-2019学年上学期期中考试九年级数学试卷及答案

九年级上册期中参考答案说明:1.如果考生的解答与本参考答案提供的解法不同,可根据提供的解法的评分标准精神进行评分.2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定对后面给分多少,但原则上不超过后继部分应得分数之半.3.评分标准中,如无特殊说明,均为累计给分.4.评分过程中,只给整数分数.三、解答题:16.(1)解:3x (x -2)=x -2,移项得:3x (x -2)-(x -2)=0 整理得:(x -2)(3x -1)=0 x -2=0或3x -1=0 解得:x 1=2或x 2=1………………………………………………………………5分18.证明:延长AD 交⊙O 于E ,…………………2分 ∵OC ⊥AD ,∴⌒AE =2⌒AC ,AE=2AD ,………………………………4分 ∵⌒AB =2⌒AC , ∴⌒AE =⌒AB, ∴AB=AE ,∴AB=2AD . ………………………………………………………………………9分 19.解:设人行通道的宽度为x 米,依据题意得:……………………………1分 (30-3x )•(24-2x )=480,………………………………………………………4分 整理得:x 2-22x +40=0,解得:x1=2,x2=20,………………………………………………………………7分当x=20时,30-3x=-30,24-2x=-16,不符合题意,………………………8分答:人行通道的宽度为2米.………………………………………………………9分20.解:(1)当S取得最大值时,飞机停下来,则S=60t-1.5t2=-1.5(t-20)2+600,此时t=20因此t的取值范围是0≤t≤20;…………………3分(2)函数图象如图,S=60t-1.5t2=-1.5(t-20)2+600.飞机着陆后滑行600米才能停下来.…………6分(3)因为t=20,飞机着陆后滑行600米才能停下来.当t=14时,s=546,所以600-546=54(米).AD于M,∴旋转角α=360°-60°=300°.综上当α为60°或者300°时,GC=GB.…………………………………………………………10分。

2018-2019学年度九年级上期中数学试题及答案

2018-2019学年度九年级上期中数学试题及答案

第一学期期中阶段性诊断九年级数学试题亲爱的同学:祝贺你完成了一个阶段的学习,现在是展示你的学习成果之时,你可以尽情地发挥,祝你成功!一、选择题:本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一个选项是正确的,请把正确选项的代号填在下面的表格内。

1.一元二次方程2810x x --=配方后可变形为 A .2(4)17x +=B .2(4)15x +=C .2(4)17x -=D .2(4)15x -=2.如图是由6个同样大小的正方体摆成的几何体.将 正方体①移走后,所得几何体 A .主视图改变,左视图改变 B .俯视图不变,左视图不变 C .俯视图改变,左视图改变 D .主视图改变,左视图不变 3.已知四边形ABCD ,下列说法正确的是A .当AD=BC ,AB ∥DC 时,四边形ABCD 是平行四边形 B .当AD=BC ,AB=DC 时,四边形ABCD 是平行四边形 C .当AC=BD ,AC 平分BD 时,四边形ABCD 是矩形 D .当AC=BD ,AC ⊥BD 时,四边形ABCD 是正方形 4.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A 处径直走到B 处,她在灯光照射下的影长l 与行走的路程S 之间的变化关系用图象刻画出来,大致图象是5.在平行四边形ABCD 中,AB=10,BC=14,E ,F 分别为边BC ,AD 上的点,若四边形AECF 为正方形,则AE 的长为A .6或8B .4或10C .5或9D .76.如图,已知直线a ∥b ∥c ,直线m ,n 与a ,b ,c 分别交于点A ,C ,E ,B ,D ,F ,若AC=4,CE=6,BD=3,则DF 的值是( ) A .6 B .5.5 C .5 D .4.5第2题图 第4题图 第9题图第8题图第6题图7.方程0413)2(2=+---x m x m 有两个实数根,则m 的取值范围 A .25>m B .25≤m 且2≠m C .3≥m D .3≤m 且2≠m 8.如图,已知某广场菱形花坛ABCD 的周长是24米,∠BAD=60°,则花坛对角线AC 的长等于A .36米B .6米C .33米D .3米9.如图,以点O 为位似中心,将△ABC 放大得到△DEF .若AD=OA ,则△ABC 与△DEF 的面积之比为A .1:2B .1:4C .1:5D .1:610.将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n 个“龟图”中有245个“○”,则n=A .14B .15C .16D .17 11.一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是A .94 B .31 C .61D .9112.如图,已知△ABC 的面积是12,BC=6,点E 、I 分别在边AB 、AC 上,在BC 边上依次作了n 个全等的小正方形DEFG ,GFMN ,…,KHIJ ,则每个小正方形的边长为 A .1112 B .3212+n C .512D .3212-n二、填空题:本题共6小题,每小题填对得4分,共24分。

2018-2019学年九年级数学期中试卷参考答案

2018-2019学年九年级数学期中试卷参考答案

()22222513.02251---------12255125()-24216533()---------24165---------34455x x x x x x x x --=∴-=∴-+=+∴-=∴-=±分分分()12(1).x+1(23)0---------231,---------42x x x -=∴=-=分分()212(2).x+13(1)0---------2(1)(13)0---------31,2---------4x x x x x -+=∴++-=∴=-=分分分2019~2019年(上)九年级数学期中数学试卷参考答案(仅供参考,其它方法酌情给分)一、选择题:1.B2.C3.A4. B5.B6.B7.B8.C 二、填空题9. 4 ;362 10. x ≥-1 11. 0或2 ; 12.4 13. 5和6. 14. .316.(答案不唯一)范围不写扣1分) 三、计算题:(()17.1=-=分每个化简对均得1分分 (()3233( -a b 223b ----3b2a a ⎫=⋅⋅⎪⎪⎭=-分每个化简对均得1分分四、解方程:18 解:19.解(1) ∵043614)6(422≥-=⨯⨯--=-k k ac b ---------1分 ∴k ≤9 ---------2分(2) ∵k 是符合条件的最大整数且k ≤9 ∴k=9 ---------3分当k=9时,方程x 2-6x +9=0的根为x 1=x 2=3; ---------4分把x=3代入方程x 2+mx -1=0得9+3m-1=0 ---------5分∴m= 38----------6分 20. 解:x 1+x 2=ab-=4;x 1x 2=a c =-1---------2分(1)(x 1+1)(x 2+1) (2)2112x x x x + =x 1x 2+x 1+x 2+1---------3分 =221221x x x x +=-1+4+1 21212212)(x x x x x x -+=---------5分= 4 ---------4分 = -18 ---------6分21. 证明:(1)∵AB ∥DC ∴∠ABE=∠CEB ---------2分 又∵BE 平分∠ABC∴∠ABE=∠CBE --------4分∴∠CBE=∠CEB---------5分 ∴CB=CE---------6分 又∵CO 平分∠BCE∴∠BCO=∠ECO∴OB=OE ---------8分()2⎛ ⎝=分分22. 证明(1)∵E 是AC 的中点∴EC=12AC---------1分 又∵DB=12AC∴DB= EC---------2分 又∵DB ∥AC∴四边形DBEA 是平行四边形---------3分 ∴BC=DE ;(2)△ABC 添加BA=BC证明:同上可证四边形DBEA 是平行四边形---------4分又∵BA=BC ;BC=DE ∴AB=DE---------5分∴四边形DBEA 是矩形---------6分 (3)∠C= 45 0 ---------8分23.思考发现:四边形ABEF 为矩形-------1分;四边形ABEF 的面积是c b a )(21+-------2分实践探究:作图-------3分作图------4分联想拓展:(1)如图4过点E 作PE ∥AB 交BC 与P 交AD 的延长线于Q ,则有S 梯形ABCD =S □ ABPQ = AB ×EF =5×4=20 -------5分(2)作图-------7分取AB 的中点F ,BC 的中点G ,作直线FG 分别交AE ,CD 于点P ,Q , 则可拼成一平行四边形PQDE ------8分24.解:(1)当点P 与点N 重合时,由x 2x 24+=2,得12x 4x 6==-、(舍去)所以x 4=时点P 与点N 重合 ·························································· 2分 (2) 当点Q 与点M 重合时,由x+3x=24,得x=6----------3分此时2DN=x 3624=≥,不符合题意. 故点Q 与点M 不能重合.------ ----4分 (2)由(1)知,点Q 只能在点M 的左侧, ① 当点P 在点N 的左侧时,由224x 3x 242x+x -+=-()(),解得120()2x x ==舍去,.当x =2时四边形PQMN 是平行四边形. ········································· 6分② 当点P 在点N 的右侧时,由224x+3x)(2)24x x -=+-(,解得1233x x =-=-.当x时四边形NQMP 是平行四边形. ····································· 8分 综上:当x =2或x时,以P ,Q ,M ,N 为顶点的四边形是平行四边形.ABDCP QMN。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17. 解方程:x(x-2)=0 18. 解方程:x²-6x=11(用配方法解) 19. 小敏同学先将一张长方形的纸对折、再对折,然后沿图中的虚线剪下,将纸展开,就得到 ▲ (只填序号:①平行 四边形,②矩形,③正方形,④菱形);然后说明理由.
四、解答题(二)
20. 将进货单价40元的商品按50元出售,能卖出500个,已知这种商品每涨价1元,就会少销售10个.为了赚得8000元 的利润,售价应定为多少?这时应进货多少个.
A . 1个 B . 2个 C . 3个 D . 4个
二、填空题
11. 一元二次方程x²=x的解为________. 12. 已知菱形两条对角线的长分别为6cm和8cm,则这个菱形的面积是________. 13. 某班要从甲、乙、丙、丁四位班干部(两男两女)中任意两位参加学校组织的志愿者服务活动,则恰好选中一男一女 的概率是________. 14. 如图,在矩形ABCD中,对角线AC、BD相交于点0,若∠A0B=60°,AC=12,则AB=________.
21. 如图,在Rt△ABC中,∠ACB=90°,CD是∠C的ቤተ መጻሕፍቲ ባይዱ分线,DE⊥BC,DF⊥AC,垂足分别为E,F.求证:四边形 CEDF是正方形.
22. 商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量秃足,某同学去该店购买饮料,每种饮料被选中的可能
性相同.
(1) 若他去买一瓶饮料,则他买到奶汁的概率是 1
广东省河源市紫金县2018-2019学年九年级上学期数学期中考试试卷(B)
一、选择题
1. 下列方程中,属于一元二次方程的是( ) A . 2x+1=0 B . y²+x=1 C . x²+1=0 D . x²+ =1 2. 如果2是方程x²-3x+c=0的一个根,那么c的值是( ) A . 4 B . -4 C . 2 D . -2 3. 一个袋子中装有3个红球和2个黄球,这些球的形状、大小、质地完全相同,在看不到球的条件下,随机从袋子里同 时摸出2个红球的概率是( ) A. B. C. D. 4. 边长为4cm的菱形的周长为( ) A . 16cm B . 12cm C . 9cm D . 0.6cm 5. 若a为方程x²-x-5=0的解,则-a²+a+11的值为( ) A . 16 B . 12 C . 9 D . 6 6. 正方形具有而菱形不具有的性质是( ) A . 对角线相等 B . 对角线互相平分 C . 对角线平分一组对角 D . 对角线互相垂直 7. 一元二次方程x²-4x+5=0的根的情况是( ) A . 有两个不相等的实数根 B . 有两个相等的实数根 C . 只有一个实数根 D . 没有实数根 8. 若正方形的对角线为2cm,则这个正方形的面积为( ) A . 2cm² B . 4cm² C . cm² D . 2 cm² 9. 三角形两边的长是3和4,第三边的长是方程x²-12x+35=0的根,则该三角形的周长为( ) A . 14 B . 12 C . 12或14 D . 以上都不对 10. 如图,E,F,G,H分别是BD,BC,AC,AD的中点,且AB=CD,下列结论:①EG⊥FH;②四边形EFGH是矩 形;③HF平分∠EHG;④EG= (BC-AD);⑤四边形EFGH是菱形,其中正确的个数是( )
的位置,四边形
是平行四边形吗?说出你的结论
和理由;
(3) 在Rt△BCD沿射线BD方向平移的过程中,当点B的移动距离为多少时四边形ABC1D1为矩形?
参考答案
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18. 19. 20. 21. 22.
23.
24. 25.

(2) 若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁
的概率.
五 、 解 答 题 (三 )
23. 已知: ABCD的两边AB,AD的长是关于x的方程x²-mx+ - =0的两个实数根.
(1) 当m为何值时,四边形ABCD是菱形?求出这时菱形的边长; (2) 若AB的长为2,那么 ABCD的周长是多少? 24. 如图,△ABC中,∠ACB=90°,D为AB中点,四边形BCED为平行四边形.DE、AC相交于点F.
(1) 求证:点F为AC中点; (2) 试确定四边形ADCE的形状,并说明理由; (3) 若四边形ADCE为正方形,△ABC应添加什么条件,并证明你的结论. 25. 将两块全等的含30°角的三角尺如图①摆放在一起,设较短的直角边长为3.
(1) 四边形ABCD是平行四边形吗?说出你的结论和理由;
(2) 如图②,将Rt△BCD沿射线BD方向平移到Rt△
15. 某药品原价每盒25元,经过连续两次降价,现在每盒售价16元,则该药品平均每次降价的百分率是________. 16. 如图,某中学准备围建一个矩形面积为72m2的苗圃园,其中一边靠墙,另外三边周长为30m的篱笆围成.设这个 苗圃园垂直于墙的一边长为xm,可列方程为________.
三、解答题(一)
相关文档
最新文档