电感器用材料介绍

合集下载

电感磁环材料种类和特性分析

电感磁环材料种类和特性分析

电感磁环材料种类和特性分析电感器是一种电磁感应组件,用绝缘的导线在绕线支架或铁芯上绕制一定匝数的线圈而成,此线圈称为电感线圈或电感器。

根据电磁感应原理,当线圈与磁场有相对运动,或是线圈通过交流电流产生交变磁场时,会产生感应电压来抵抗原磁场变化,而此抑制电流变化的特性就称为电感,其与磁导率、绕组匝数N的平方、及等效磁路截面积Ae成正比,而与等效磁路长度le成反比。

电感的种类很多,各适用于不同的应用之中;电感量与线圈绕组的形状、大小、绕线方式、匝数、及中间导磁材料的种类等有关。

电感依铁芯形状不同有环型、E型及工字鼓型;依铁芯材质而言,主要有陶瓷芯及两大软磁类,分别是铁氧体及粉末铁芯等。

依结构或封装方式不同有绕线式、多层式及冲压式,而绕线式又有非遮蔽式、加磁胶之半遮蔽式及遮蔽式等。

二、电感铁芯种类用于开关转换器的电感器属于高频磁性组件,中心的铁芯材料最是影响电感器之特性,如阻抗与频率、电感值与频率、或铁芯饱和特性等。

以下将介绍几种常见的铁芯材料及其饱和特性之比较,以作为选择功率电感的重要参考:1. 陶瓷芯陶瓷芯是常见的电感材料之一,主要是用来提供线圈绕制时所使用的支撑结构,又被称为。

因所使用的铁芯为非导磁材料,具有非常低的温度系数,在操作温度范围中电感值非常稳定。

然而由于以非导磁材料为介质,电感量非常低,并不是很适合电源转换器的应用。

2. 铁氧体一般高频电感所用的铁氧体铁芯是含有镍锌或锰锌之铁氧体化合物,属于矫顽磁力低的软磁类铁磁材料。

图1为一般磁铁芯之磁滞曲线,磁性材料的矫顽磁力HC亦称为保磁力,系指当磁性材料已磁化到磁饱和后,使其磁化强度减为零时所需的磁场强度。

矫顽力较低代表抵抗退磁能力较低,也意味着磁滞损失较小。

图1:磁铁芯之磁滞曲线。

变压器、电感器的磁性材料介绍与选用原则

变压器、电感器的磁性材料介绍与选用原则

科技与创新┃Science and Technology &Innovation·98·2019年第24期文章编号:2095-6835(2019)24-0098-03变压器、电感器的磁性材料介绍与选用原则李文海(厦门柏恩氏电子有限公司,福建厦门361000)摘要:20世纪70年代以来,中国的计算机、电子科技、智能化领域进行了强化与发展,研制出了众多具有先进水平的设备和零部件,其中以非晶态软磁合金为重要的研究代表。

分析了变压器、电感器的磁性材料特性,并说明了常用软磁磁芯的特点及应用,得出了变压器、电感器磁性材料的选用原则,望为同行提供参考。

关键词:软磁材料;磁性能;典型应用;选用原则中图分类号:TM27文献标识码:ADOI :10.15913/ki.kjycx.2019.24.0431软磁材料的主要特性1.1软磁材料的B-H 曲线软磁材料主要的组成物有铁粉、合金粉、锰锌或镍锌氧化物。

软磁材料在外力磁场(H )中会产生与之相关的磁感应强度(B ),磁感应强度(B )随着外力磁场(H )自身的变化而不断变化,产生相应的变化曲线为B -H 曲线。

值得注意的是,磁化曲线是非线性的闭合曲线,会呈现出磁饱和及磁滞两种不同的情况。

软磁材料不同,磁化曲线也不同,其Bs 值也不相同。

但软磁材料不变,其Bs 值也是不变的。

B -H 曲线如图1所示。

图1B -H 曲线1.2软磁材料的磁性能饱和磁感应强度Bs :磁化到饱和状态时的磁通密度或磁感应强度。

剩余磁感应强度Br :从饱和状态去除磁场强度后,剩余的磁感应强度(H 回到0时的B 值)。

矫顽力Hc :软磁材料自身的成分与优劣对于材料磁化的影响,主要表现为被磁化的难易程度。

磁导率μ:在磁滞回线上B 与H 一一对应的数值(B /H )。

初始磁导率μi :指磁性材料的磁导率在静态磁化曲线始端的极限值(即B /H 的极限值,在这里H 值无限趋向零),可表述为:HB0H 0i lim 1→=μμ。

电感磁芯结构

电感磁芯结构

电感磁芯结构
电感磁芯是一种用于增强电感线圈磁导率的材料,它可以极大地提高电感器的感量(L)。

电感磁芯的结构主要有以下几种:
1. 铁氧体磁芯:铁氧体磁芯是以Fe2O3为主成分的亚铁磁性氧化物,有Mn-Zn、Cu-Zn、Ni-Zn 等几类,其中Mn-Zn 最为常用。

铁氧体磁芯具有良好的磁性能和较高的电阻率,广泛应用于高频变压器、小功率的储能电感等。

2. 硅钢片磁芯:硅钢片磁芯是在纯铁中加入少量的硅(一般在 4.5%以下)形成的铁硅系合金。

硅钢片磁芯具有较高的饱和磁通和较低的电阻率,常用于电力变压器、低频电感、CT等。

3. 铁镍合金磁芯:铁镍合金磁芯又称坡莫合金或MPP,通常指铁镍系合金,镍含量在30~90%范围内。

铁镍合金磁芯具有很高的磁导率和损耗很低,高频性能好,但成本较高。

4. 铁粉芯磁芯:铁粉芯磁芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料,存在分散气隙(效果类似与铁磁材料开气隙)。

常用铁粉芯是由碳基铁磁粉及树脂碳基铁磁粉构成。

铁粉芯磁芯磁导率随频率的变化较为稳定,随直流电感量较大,适用于功率电感器、变压器、电抗器等。

这些磁芯结构在不同的应用场景中具有各自的优点和特点,可以根据实际需求选择合适的电感磁芯结构。

铁氧体磁芯生产工艺

铁氧体磁芯生产工艺

铁氧体磁芯生产工艺
铁氧体磁芯是一种常用于电感器和变压器等电子器件的磁性材料。

下面简要介绍一下铁氧体磁芯的生产工艺。

首先,原料的准备。

铁氧体磁芯主要由三大组分组成:氧化铁、氧化钙和氧化硅。

这些原料按照一定的比例混合,并经过粉碎和筛分操作,使其颗粒大小均匀。

其次,混合原料的烧结。

将混合均匀的原料放入烧结炉中,在高温下进行煅烧,使其形成密实的磁芯。

然后,磁芯的成型。

将经过煅烧的原料粉末放入成型模具中,经过压制形成具有一定形状和尺寸的磁芯。

这一步骤中的压力和温度需要根据具体要求进行控制。

接着,磁芯的烧结。

将成型后的磁芯放入烧结炉中进行再次烧结,使其更加致密,并增强其磁性能。

最后,磨光和包装。

经过烧结的磁芯表面一般不够光滑,需要进行磨光处理,以提高外观质量。

然后,将磁芯按照一定的规格和要求进行包装,以方便使用和搬运。

以上是铁氧体磁芯生产工艺的主要步骤和流程。

当然,在实际生产中还有一些细节和工艺参数需要根据具体情况进行调整和控制,以确保最终产品的质量和性能达到要求。

各种合金金属磁芯非晶微晶磁芯介绍

各种合金金属磁芯非晶微晶磁芯介绍

各种合金金属磁芯非晶微晶磁芯介绍合金金属磁芯是一种用于电感器和变压器中的磁性材料。

相比于传统的磁性材料,合金金属磁芯具有更高的饱和磁感应强度、更低的矫顽力以及更大的导磁系数。

这些特性使得它们在电子设备中得到广泛应用。

合金金属磁芯主要分为非晶磁芯和微晶磁芯两种类型。

非晶磁芯是指由非晶态合金制成的磁性材料。

非晶态合金是指在快速冷却过程中形成的无定形结构合金。

非晶磁芯具有高饱和磁感应强度、低矫顽力、高导磁系数等优越的磁性能。

这些特性使得非晶磁芯在高频电感器和高效率变压器中被广泛应用。

非晶磁芯具有较高的磁导率和很低的磁阻,能够有效地减小磁芯的体积和重量,提高电感器和变压器的效率。

微晶磁芯是一种由非晶态合金通过热处理形成的微晶结构的磁性材料。

微晶磁芯具有较高的饱和磁感应强度、较低的矫顽力和较高的导磁系数。

相比于非晶磁芯,微晶磁芯具有更好的磁导磁性能。

微晶磁芯的磁导率在高频范围内仍保持稳定,适用于高频变压器和滤波电感器。

此外,微晶磁芯的磁芯损耗较小,能够有效地减小电感器和变压器的热耗。

在合金金属磁芯中,最常见的材料是铁基合金,如Fe-Si-B、Fe-Si-Al等。

这些合金金属具有较高的饱和磁感应强度和导磁系数,适用于广泛的应用。

另外,还有一些稀土合金金属,如Nd-Fe-B、Sm-Co等,在磁性能上具有更优越的特性。

总体来说,合金金属磁芯具有较高的磁性能和导磁性能,能够满足电子设备对高频和高效率的要求。

非晶磁芯和微晶磁芯是合金金属磁芯中的两种主要类型,各自具有特定的优势和应用领域。

随着科学技术的不断进步,合金金属磁芯的性能将进一步提升,为电子设备的发展提供更好的支持。

电感器分类

电感器分类

电感器分类
电感器可以根据不同的方式进行分类:
1. 按照电感器的形状分类:
- 线圈电感器:线圈电感器是最常见的一类电感器,它由绝缘的铜线或铜箔绕成一个圆筒形或矩形形状。

- 扁平电感器:扁平电感器是一种比较特殊的电感器,它由多圈薄铜箔片堆叠而成,可以实现空间上的节省。

- 磁环电感器:磁环电感器是一种将绕组缠绕在磁环上的电感器,通常用于高频电路。

2. 按照电感器的用途分类:
- 滤波电感器:用于电路中的滤波器,可以去除噪声或干扰信号。

- 耦合电感器:用于将两个或多个电路耦合在一起,通常用于放大电路。

- 感应电感器:用于感应电流或电压,通常用于传感器或电流/电压变换器中。

3. 按照电感器的材料分类:
- 氧化铝电感器:通常用于低功率电路中。

- 铁氧体电感器:通常用于高频电路中。

- 陶瓷电感器:通常用于微波电路中。

- 薄膜电感器:通常用于高精度电路中。

1j50软磁合金材料参数

1j50软磁合金材料参数

1j50软磁合金材料参数1j50软磁合金是一种铁-镍-钴合金,具有优异的软磁性能,可用于制造高精度变压器、电感器等电子元器件。

本文介绍了1j50合金的物理性能、化学成分及其对合金性能的影响等方面的内容。

一、1j50合金的物理性能1j50合金是一种具有优异磁性能的软磁合金,具有高饱和磁感应强度、低磁滞损耗和高电阻率等特点,在变压器、电感器等电子元器件中得到广泛应用。

1.饱和磁感应强度1j50合金的饱和磁感应强度为1.35T,高于一般钢材的磁感应强度,可用于制造高性能的电子元器件。

2.低磁滞损耗1j50合金具有低磁滞损耗,可在高频环境下工作,保证电子元器件的高效率和稳定性。

3.高电阻率1j50合金的电阻率为55μΩ•cm,是一种高阻合金,可用于制造高精度的电子元器件。

二、1j50合金的化学成分1j50合金的化学成分如下表所示:元素 C Si Mn P S Cr Ni Co Fe含量≤0.03 ≤0.30 ≤0.60 ≤0.020 ≤0.020 ≤0.20 44.5~46.5 49.0~51.0 余量由上表可以看出,1j50合金主要由镍、钴和铁组成,其中镍和钴共同形成了合金的主要磁性制约因素,铁则是合金的主要基体材料。

三、化学成分对1j50合金性能的影响化学成分是影响1j50合金性能的主要因素,下面介绍主要元素对1j50合金性能的影响。

1.镍镍是1j50合金中的主要元素之一,具有良好的磁学特性和化学稳定性,可以提高合金的饱和磁感应强度和电阻率。

但过多的镍会降低磁滞损耗,使得合金难以形成饱和磁化。

2.钴钴是1j50合金中的主要元素之一,具有良好的磁学特性和耐腐蚀性,可以提高合金的磁性能和化学稳定性。

但过多的钴会增加制造成本,并使得合金加工难度增大。

3.碳碳是合金成分中的杂质元素,它会降低1j50合金的电阻率和磁性能,同时对合金热处理过程中的机械性能和冷加工性能也有影响。

四、1j50合金的应用1j50合金主要用于制造高精度变压器、电感器等电子元器件,因其具有优异的磁性能、高阻性能和低磁滞损耗等特点,可保证电子元器件的高效率和稳定性。

电感基本知识(定义、分类、原理、性能参数、应用、磁芯等主要材料、检测)

电感基本知识(定义、分类、原理、性能参数、应用、磁芯等主要材料、检测)

一、电感器的定义。

1.1 电感的定义:电感线圈是由导线一圈靠一圈地绕在绝缘管上,导线彼此互相绝缘,而绝缘管可以是空心的,也可以包含铁芯或磁粉芯,简称电感。

用L表示,单位有亨利(H)、毫亨利(mH)、微亨利(uH),1H=10^3mH=10^ 6uH。

滤波作用,因为开关电源利用的是PWM都是百K级的频率,而且是开关状态产生高次谐波干扰,高次谐波干扰对电网和电路都是污染,因此要滤掉,利用电感的通低频隔高频和电容的通高频隔低频滤掉高次谐波,因此要在开关电源中串入电感,并上电容,电感等效电阻Rl=2*PI*f*L,电容等效电阻Rc=1/(2 *PI*f*C),一般取电感10-50mH(前提是电感不能磁饱和),电容取0.047uF,0.1uF等,假设电感取10mH,电容取0.1uF,则对于1MHz的谐波干扰,电感Rl=2*3.14*1Meg*10mH=62.8Kohm,电容Rc=1/(2*3.14*1Meg *0.1uF)=1.59ohm。

显然,高频信号经过电感后会产生很大的压降,通过电容旁路到地,从而滤掉两方面的杂波,一个是来自电源电路,一个是来自电力网。

电感是利用电磁感应的原理进行工作的.当有电流流过一根导线时,就会在这根导线的周围产生一定的电磁场,而这个电磁场的导线本身又会对处在这个电磁场范围内的导线发生感应作用.对产生电磁场的导线本身发生的作用,叫做"自感";对处在这个电磁场范围的其他导线产生的作用,叫做"互感".电感线圈的电特性和电容器相反,"阻高频,通低频".也就是说高频信号通过电感线圈时会遇到很大的阻力,很难通过;而对低频信号通过它时所呈现的阻力则比较小,即低频信号可以较容易的通过它.电感线圈对直流电的电阻几乎为零.电阻,电容和电感,他们对于电路中电信号的流动都会呈现一定的阻力,这种阻力我们称之为"阻抗"电感线圈对电流信号所呈现的阻抗利用的是线圈的自感.电感线圈有时我们把它简称为"电感"或"线圈",用字母"L"表示.绕制电感线圈时,所绕的线圈的圈数我们一般把它称为线圈的"匝数".电感线圈的性能指标主要就是电感量的大小.另外,绕制电感线圈的导线一般来说总具有一定的电阻,通常这个电阻是很小的,可以忽略不记.但当在一些电路中流过的电流很大时线圈的这个很小的电阻就不能忽略了,因为很大的线圈会在这个线圈上消耗功率,引起线圈发热甚至烧坏,所以有些时候还要考虑线圈能承受的电功率电感是导线内通过交流电流时,在导线的内部及其周围产生交变磁通,导线的磁通量与生产此磁通的电流之比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档