垂直平分线的性质
线段的垂直平分线性质(第一课时)

已知点$P$是线段AB的垂直平分线上 的一点,若$PA = 2cm$,则点$P$到
线段AB中点的距离是____$cm$.
答案与解析
1、答案
2、答案
3、答案
4、答案
到这条线段两个端点的距离相 等;解析:根据线段的垂直平 分线的定义,垂直平分线上的 任意一点到线段两个端点的距 离相等。
$2cm$;解析:由于点$P$是 线段$AB$的垂直平分线上任意 一点,根据垂直平分线的性质, 有$PA = PB$,所以$PA + PB = AB = 2cm$.
在数学问题中的应用
01
02
03
解决几何问题
利用垂直平分线的性质, 可以解决各种几何问题, 例如证明线段相等、角相 等、平行线等。
解决代数问题
在代数问题中,可以利用 垂直平分线的性质来解决 一些问题,例如解方程、 不等式等。
解决三角函数问题
利用垂直平分线的性质, 可以解决一些三角函数问 题,例如求三角形的边长、 角度等。
THANKS
感谢观看
线段的垂直平分 线性质(第一课时)
目录
• 引言 • 线段的垂直平分线定义 • 线段的垂直平分线的性质证明 • 线段的垂直平分线的应用 • 练习题与答案
01
引言
课程目标
理解线段垂直平分线 的定义和性质。
会利用线段垂直平分 线的性质解决实际问 题。
掌握线段垂直平分线 的作法。
学习重点与难点
学习重点
05
练习题与答案
练习题
1、题目
线段垂直平分线上的点到这条 线段两个端点的距离相等吗?
为什么?
2、题目
已知$AB = 2cm$,点$P$是线段 $AB$的垂直平分线上任意一点,则 $PA + PB$的值是多少?
角平分线和线段垂直平分线的性质

1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称.3、关于三角形三边垂直平分线的定理(1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.例1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( ) A .6cm B .8cm C .10cm D .12cm4、角平分线的性质定理:角平分线的性质定理:角平分线上的点到这个角的两边的距离相等. . 定理的作用:①证明两条线段相等;②用于几何作图问题; 角是一个轴对称图形,它的对称轴是角平分线所在的直线.6、关于三角形三条角平分线的定理:(1)关于三角形三条角平分线交点的定理:三角形三条角平分线相交于一点,并且这一点到三边的距离相等.定理的作用:①用于证明三角形内的线段相等;②用于实际中的几何作图问题.(2)三角形三条角平分线的交点位置与三角形形状的关系:三角形三个内角角平分线的交点一定在三角形的内部.m图1DABC图4CDOB FE FDIP RQ A一、选择题:1.如图1,在△ABC 中,AD 平分∠CAE ,∠B=30︒,∠CAD=65︒,则∠ACD 等于 ( ) A .50︒B .65︒C .80︒D .95︒2.如图2,在△ABD 中,AD=4,AB=3,AC 平分∠BAD ,则:ABC ACD S S ∆∆= ( ) A .3:4 B .4:3 C .16:19 D .不能确定3.如图3,在△ABC 中,∠C=90︒,AD 平分∠BAC ,DE ⊥AB 于E ,则下列结论:①AD 平分∠CDE ;②∠BAC=∠BDE ;③DE 平分∠ADB ;④BE+AC=AB 。
《线段垂直平分线的性质》

在几何图形中的应用
确定点与线段的距离
利用线段垂直平分线的性质,可以确定一个点到线段两端 点的距离相等,从而确定点的位置。
三角形中垂线定理
在三角形中,通过三角形顶点向对边作垂直平分线,该垂 直平分线将与对边相交于一点,该点将相对边分为两段相 等的线段,这是三角形中垂线定理。
角的平分线性质
角的平分线上的点到角的两边距离相等,利用这一性质可 以将角平分,从而将几何图形划分为两个相等的部分。
在日常生活中的应用
01
确定物体的对称点
在建筑、艺术和设计等领域中,常常需要找到一个物体的对称点,以实
现物体的平衡和美感。线段垂直平分线的性质可以用来确定这些对称点
。
02
测量距离
在道路、桥梁和建筑物等工程中,需要测量两点之间的距离。通过找到
这两点的垂直平分线,可以确定这两点之间的最短路径,从而得到准确
性质
总结词
如果一个点与线段两端点的距离相等,那么这个点必然位于线段的垂直平分线 上。
详细描述
这是对性质1和性质2的综合应用。如果一个点与线段两端点的距离相等,那么 这个点必然位于线段的垂直平分线上。这一性质在解决几何问题时也非常重要 ,尤其是在处理与中点和对称性相关的问题时。
03
线段垂直平分线的应用
定理
ห้องสมุดไป่ตู้
总结词
该定理描述了线段垂直平分线的性质,即如 果一条直线经过线段两端点,并且与经过中 点的垂直线相交,则这条直线也是该线段的 垂直平分线。
详细描述
在几何学中,这个定理进一步揭示了线段垂 直平分线的性质。如果一条直线同时经过线 段的两端点,并且与经过中点的垂直线相交 ,那么这条直线也是该线段的垂直平分线。 这个定理对于理解线段垂直平分线的性质和 判定方法非常重要。
垂直平分线与角平分线

线段的垂直平分线与角平分线知识要点详解1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等. 几何语言:∵ CD 是线段AB 的垂直平分线 ∴CA=CB 定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称. 2、线段垂直平分线性质定理的逆定理(1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上. 几何语言:∵ CA=CB ∴ 点C 在线段AB 的垂直平分线定理的作用:证明一个点在某线段的垂直平分线上. 3、关于三角形三边垂直平分线的定理 (1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的数学表示:如图3,若直线,,i j k 分别是△ABC 三边AB 、BC 、CA 的垂直平分线,则直线,,i j k 相交于一点O ,且OA =OB =OC. 定理的作用:证明三角形内的线段相等. 4、角平分线的性质定理:角平分线的性质定理:角平分线上的点到这个角的两边的距离相等. 几何语言表示:∵ OE 是∠AOB 的平分线,CF ⊥OA ,DF ⊥OB ∴CF =DF. 定理的作用:①证明两条线段相等;②用于几何作图问题; 角是一个轴对称图形,它的对称轴是角平分线所在的直线. 5、角平分线性质定理的逆定理:角平分线性质定理的逆定理:在角的内部,且到角的两边距离相等的点在这个角的角平分线上. 几何语言表示:∵ PC ⊥OA ,PD ⊥OB , PC =PD ,∴点P 在∠AOB 的平分线上. 定理的作用:用于证明两个角相等或证明一条射线是一个角的角平分线注意角平分线的性质定理与逆定理的区别和联系. 6、关于三角形三条角平分线的定理:(1)关于三角形三条角平分线交点的定理:三角形三条角平分线相交于一点,并且这一点到三边的距离相等.定理的作用:①用于证明三角形内的线段相等;②用于实际中的几何作图问题.图1图2图4线段垂直平分线练习题1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm , 求AC 的长度 2已知:1)如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点 E ,如果△EBC 的周长是24cm , 那么BC=2) 如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果BC=8cm ,那么△EBC 的周长是3)如图,AB=AC,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果∠A=28度,那么∠EBC 是3、已知:在△ABC 中,ON 是AB 的垂直平分线,OA=OC 。
垂直平分线性质公开

垂直平分线与三角形的关系
三角形中垂线与垂直平分线的重合
在三角形中,中垂线与垂直平分线重合,这是三角形的一个重要性质。
三角形中垂线与垂直平分线的性质的应用
这个性质可以用于证明一些重要的定理,如三角形的中垂线性质定理。
2023
PART 03
垂直平分线的应用
REPORTING
在几何图形中的应用
三角形
平行线之间的同位角相等、 内错角相等、同旁内角互 补。
证明方法
通过构造两个相似三角形, 并利用相似三角形的性质 证明。
应用
在几何证明和解题中,经 常利用平行线的性质定理 来解决问题。
平行四边形的性质定理
平行四边形的性质定理
01
平行四边形的对边相等、对角相等、对角线互相平分。
证明方法
02
通过构造两个三角形,并利用三角形的全等定理证明。
三角形垂直平分线的证明
定义
性质
证明
三角形垂直平分线是过三角形各边的 中点并与相对边垂直的直线。
垂直平分线上的任意一点到三角形各 边的距离相等。
在三角形垂直平分线上任取一点,分 别连接该点与三角形各边的中点,由 于垂直平分线的性质,三角形两直角 边相等,所以斜边也相等,满足勾股 定理。再利用角平分线的性质,证明 该点到三角形各边的距离相等,从而 证明了三角形垂直平分线的性质。
由于垂直平分线性质,三角形两直角边相等,所以斜边也相等,满足勾
股定理。
角平分线的证明
定义
角平分线是将一个角分为两个相等的角的射线。
性质
角平分线上的任意一点到角的两边距离相等。
证明
在角平分线上任取一点,分别作垂线到角的两边,由于角平分线的性质,两垂线段相等, 再利用勾股定理证明该点到角的顶点距离也相等,从而证明了角平分线的性质。
线段的垂直平分线性质及其应用

线段的垂直平分线性质及其应用一、基础知识归纳1 线段的垂直平分线的性质定理线段垂直平分线的性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.说明:它是证明两条线段相等的重要的方法之一,在证明线段相等时,不要再证明两个三角形全等了,方便了证明的过程.2 线段的垂直平分线的性质定理的逆定理逆定理:到线段两个端点距离相等的点在这条线段的垂直平分线上.说明:(1)关于线段垂直平分线性质定理的逆定理实际就是线段垂直平分线的判定定理;区分线段垂直平分线性质定理和判定定理的区别的关键在于区分它们的题设和结论;(2)要想证明一条直线是一条线段的垂直平分线,只要证明这条直线上任意一点到这条线段的两个端点距离相等即可;(3)关于线段垂直平分线的判定定理的证明有多种思路,如①过点P作已知线段AB的垂线PC,再证明PC平分AB;②取AB的中点C,证明PC⊥AB;③作∠APC的平分线PC,证明PC⊥AB,且AC=AB.3 三角形的三边的垂直平分线定理:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.说明:(1)上面的定理是由实践操作(折纸)发现猜想,然后又经过逻辑推理而获得的,它是由实践到理论,从感性到理性的认识过程;(2)该定理综合了线段垂直平分线性质定理和判定定理,是两个定理的升华;(3)锐角三角形的三条边的垂直平分线相交三角形的内部的一点,直角三角形的三条边的垂直平分线相交三角形斜边的中点,钝角三角形的三条边的垂直平分线相交三角形的外部的一点,但无论这个点在什么位置,它到这个三角形的三个顶点的距离是相等的.二、典型例题剖析典例1:如图1,在△ABC中,AB=AC,∠A=120°,AB的垂直平分线MN分别交BC、AB于点M、N.求证:CM=2BM .图11/ 22 / 2【研析】:由于MN 为线段AB 的垂直平分线,所以如果连接MA ,就可以得到MA=MB ,然后通过△M AC 把CM 和MA 联系起来.证明:连接AM ,∵AB =AC ,∠BAC =120°,∴∠B =∠C =30°,∵MN 垂直平分AB , ∴MB =MA ,∴∠B =∠MAB =30°,∴∠MAC =90°,∴AM =21CM , ∴CM =2BM典例2:城A 和城B 相距24千米,如今政府为便利两城居民生活,决定修建一个仓库,使得仓库到两城距离相等,请问这样的仓库位应该修建在什么位置?仓库的位置唯一吗?若要求仓库到两城距离均为15千米,则仓库的位置惟一吗?【研析】:这是一个把数学知识运用到生活中的实际问题,也就是找一个点到线段AB 的两个端点的距离相等,因此仓库的位置在线段AB 的垂直平分线上,这样的点有无数个,所以仓库的位置不唯一;若仓库到两城距离均为15千米,则AM=BM=15,AC=BC=12,所以MC=9,所以仓库可以修建在点M 的位置,同理也可以修建在点N 的位置,故仓库到两城距离均为15千米,则仓库的位置也唯一.典例3: 已知:三个村庄分别是A 、B 、C ,其位置如图所示,现在三个村庄联合打一机井向三个村庄供水,从各自的利益考虑,都为了使机井到自己的村庄的距离最近,请你帮助他们设计一个方案.【研析】:这是一个实际问题,它的本质就是寻求一个点到A 、B 、C 三个点的距离都最小,实际就是找一个点P 到A 、B 、C 三个点的距离相等,因此,可以作三边的垂直平分线,相交于点P.图2。
垂直平分线的性质与判定教案

垂直平分线的性质与判定教案第一章:垂直平分线的定义与性质1.1 垂直平分线的定义介绍线段垂直平分线的概念,即垂直平分线是线段所在的直线,且垂直平分线上的每一点到线段的两个端点的距离相等。
1.2 垂直平分线的性质性质1:线段的垂直平分线垂直于线段所在的直线。
性质2:线段的垂直平分线上的每一点到线段的两个端点的距离相等。
性质3:线段的垂直平分线段将线段平分成两个相等的部分。
第二章:垂直平分线的判定2.1 线段垂直平分线的判定条件判定1:如果一条直线垂直于线段所在的直线,并且通过线段的中点,这条直线是线段的垂直平分线。
判定2:如果一条直线上的每一点到线段的两个端点的距离相等,这条直线是线段的垂直平分线。
2.2 垂直平分线的判定方法方法1:使用直角三角形的性质,通过构造直角三角形来判断直线是否为垂直平分线。
方法2:使用尺规作图,通过作图来判断直线是否为垂直平分线。
第三章:垂直平分线与线段的关系3.1 垂直平分线与线段的交点介绍垂直平分线与线段的交点,即垂直平分线与线段相交的点,这个点到线段的两个端点的距离相等。
3.2 垂直平分线与线段的垂直关系介绍垂直平分线与线段的垂直关系,即垂直平分线与线段所在的直线垂直。
3.3 垂直平分线与线段的中点介绍垂直平分线与线段的中点的关系,即垂直平分线通过线段的中点,并且将线段平分成两个相等的部分。
第四章:垂直平分线的应用4.1 垂直平分线在几何作图中的应用介绍垂直平分线在几何作图中的应用,例如利用垂直平分线来作图求解几何问题。
4.2 垂直平分线在证明中的应用介绍垂直平分线在几何证明中的应用,例如利用垂直平分线的性质和判定来证明几何定理。
4.3 垂直平分线在实际问题中的应用介绍垂直平分线在实际问题中的应用,例如利用垂直平分线来解决生活中的问题。
第五章:总结与拓展5.1 垂直平分线的性质与判定的总结对垂直平分线的性质和判定进行总结,加深学生对垂直平分线的理解。
5.2 垂直平分线的拓展与应用介绍垂直平分线的拓展与应用,例如垂直平分线在平面几何中的重要作用,以及与垂直平分线相关的其他几何概念。
垂直平分线的定理

垂直平分线的定理
1 垂直平分线的定义
经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线,又称“中垂线”。
垂直平分线可以看成到线段两个端点距离相等的点的集合,垂直平分线是线段的一条对称轴。
2 垂直平分线定理
经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线,又称“中垂线”。
垂直平分线定理为:垂直平分线垂直且平分其所在线段。
垂直平分线上任意一点,到线段两端点的距离相等。
三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等。
3 垂直平分线的逆定理
到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
4 垂直平分线的判定方法
1、利用定义:经过某一条线段的中点,并且垂直于这条线段的直线是线段的垂直平分线。
2、到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.(即线段垂直平分线可以看成到线段两端点距离相等的点的集合)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.1.2 线段的垂直平分线的性质
学习目标:
1.掌握线段垂直平分线的性质和判定.
2.运用线段垂直平分线的性质和判定解决问题.
一、自主回顾:
1.如图1,△ABC和△A′B′C′关于直线MN轴对称,则直线MN与线段A A′有怎样的关系?
2.直线MN与线段B B′、CC′又有怎样的关系?
图1 图2
二、合作探究:
1.如图2,直线l垂直平分线段AB,P
1,P
2
,P
3
,是上的点,分别量一量点,P
1
,
P 2,P
3
到点A与B的距离,你有什么发现?
2.证明你发现的结论.
已知:直线MN垂直平分_____,垂足为C,点C在直线
MN上.
求证:AC=________.
3.如右图,若PA=PB,那么点P在线段
A B
AB的垂直平分线上吗?你能证明吗?
O B
A
P3
P1
P2
P
M
N
C B
A
通过上述的证明你又能得到什么结论?
三、学以致用:
如图,要在河边修建一个水泵站,分别向张村、李庄送水。
修在河边什么地方,可使水泵站到张村、李庄的距离相等?试在图中确定水泵站的位置,并说明你的理由。
四、达标检测:
1、如图,△ABC 中,AD 垂直平分边BC , AB =5,那么AC =_________.
2. 如右图所示,直线MN 和DE 分别是线段 AB 、 BC 的垂直平分线,它们交于P 点,请问PA 和 PC 相 等吗?为什么?
3.△ABC 中,DE 是AC 的垂直平分线,垂足为E, 交AB 于点D ,AE=5cm ,△CBD 的周长为24cm , 求△ABC 的周长。
五、分层巩固:
A 组:P 65 6、9 、12
B 组:P 62 2 P 65 6
C 组:P 65 1
张村
李庄
l
A
B
E
D C
B
A。