人教版高中数学必修二知识点归纳

合集下载

数学必修二知识点归纳

数学必修二知识点归纳

数学必修二知识点归纳一、函数的概念与性质1. 函数的定义:函数是从一个集合(称为定义域)到另一个集合(称为值域)的映射,每个定义域中的元素都有一个唯一的值与之对应。

2. 函数的表示方法:常用f(x) = y,其中x是自变量,y是因变量。

3. 函数的性质:包括单调性、奇偶性、周期性和有界性等。

- 单调性:函数在某个区间内单调递增或递减。

- 奇偶性:函数可能是奇函数(f(-x) = -f(x))或偶函数(f(-x) = f(x))。

- 周期性:函数如果存在一个非零常数T,使得对于所有x都有f(x + T) = f(x),则称函数具有周期T。

- 有界性:函数的值在某个范围内,即存在上界和下界。

二、基本初等函数1. 幂函数:形如y = x^n的函数,其中n是实数。

2. 指数函数:形如y = a^x的函数,其中a > 0且a ≠ 1。

3. 对数函数:形如y = log_a(x)的函数,其中a > 0且a ≠ 1。

4. 三角函数:包括正弦函数、余弦函数、正切函数等。

- 正弦函数:y = sin(x)- 余弦函数:y = cos(x)- 正切函数:y = tan(x)三、函数的图像与变换1. 函数图像的绘制:通过坐标系中的点来表示函数的图像。

2. 函数的平移:包括水平平移(左加右减)和垂直平移(上加下减)。

3. 函数的伸缩:包括水平伸缩(y = af(x))和垂直伸缩(y =f(bx))。

4. 函数的对称性:函数图像关于x轴、y轴或原点的对称性。

四、函数的应用1. 实际问题的建模:将实际问题转化为函数关系式进行求解。

2. 最值问题:求解函数的最大值和最小值。

3. 函数的复合:两个或多个函数的组合,如(f ∘ g)(x) = f(g(x))。

五、极限与连续性1. 极限的概念:描述函数在某一点附近的行为。

2. 极限的性质:包括唯一性、局部有界性、保号性等。

3. 连续函数:在定义域内任意一点都连续的函数。

高中数学必修二知识点总结及公式大全

高中数学必修二知识点总结及公式大全

高中数学必修二知识点总结及公式大全高中数学是培养学生逻辑思维和抽象能力的重要学科。

《必修二》作为高中数学课程的重要组成部分,涉及了许多核心知识点和基础公式。

本文将为您详细总结《必修二》的知识点,并整理出一份公式大全,帮助您更好地掌握这门学科。

一、高中数学必修二知识点总结1.函数概念与性质- 函数的定义、表示方法、分类- 函数的性质(单调性、奇偶性、周期性、对称性等)- 反函数及其求法2.指数函数与对数函数- 指数函数的定义、性质、图像- 对数函数的定义、性质、图像- 指数方程与对数方程的解法3.三角函数- 角度制与弧度制互换- 三角函数的定义、图像、性质- 三角恒等变换- 三角方程与不等式的解法4.数列- 等差数列与等比数列的定义、性质、求和公式- 数列的通项公式与求和公式- 数列的极限5.平面向量- 向量的定义、表示、线性运算- 向量的坐标表示与几何表示- 向量的数量积与垂直关系- 向量的平行四边形法则与三角形法则6.解析几何- 直线方程的求法(点斜式、截距式、一般式等)- 圆的方程与性质- 常见图形的面积、周长、体积计算二、高中数学必修二公式大全1.函数类- y=f(x) 的反函数:y=f^(-1)(x)- 幂函数:y=x^a(a 为常数)- 指数函数:y=a^x(a>0 且a≠1)- 对数函数:y=log_a(x)(a>0 且a≠1)2.三角函数类- 正弦函数:y=sin(x)- 余弦函数:y=cos(x)- 正切函数:y=tan(x)- 三角恒等变换公式(和差公式、倍角公式、半角公式等)3.数列类- 等差数列通项公式:a_n=a_1+(n-1)d- 等差数列求和公式:S_n=n/2(a_1+a_n)- 等比数列通项公式:a_n=a_1q^(n-1)- 等比数列求和公式:S_n=a_1(1-q^n)/(1-q)(q≠1)4.向量类- 向量加法:A+B=(a_x+b_x, a_y+b_y)- 向量减法:A-B=(a_x-b_x, a_y-b_y)- 向量数量积:A·B=a_xb_x+a_yb_y- 向量模长:|A|=√(a_x^2+a_y^2)5.解析几何类- 点斜式直线方程:y-y_1=k(x-x_1)- 截距式直线方程:x/a+y/b=1- 圆的标准方程:(x-a)^2+(y-b)^2=r^2总结:本文为您详细总结了高中数学必修二的知识点,并整理了一份公式大全。

高中必修二数学知识点总结

高中必修二数学知识点总结

高中必修二数学知识点总结高中必修二数学知识点总结高中必修二数学是高中数学课程中的一门重要课程,涵盖了很多基础和扩展的数学知识。

下面将从代数、几何、函数、三角、概率与统计几个方面总结高中必修二数学的主要知识点。

一、代数部分:1. 集合与集合运算:定义集合、集合的表示方法、集合的运算。

2. 数与式:整数的加减乘除、有理数的加减乘除、绝对值、代数式的基本概念和运算法则。

3. 线性方程与一元一次方程组:一元一次方程的解法、二元一次方程组及其解法。

4. 不等式:一元一次不等式、一元二次不等式及其解法。

5. 平方根与立方根:平方根的概念及基本性质、开方运算的性质。

二、几何部分:1. 直线与角:直线的性质、六类基本角,互补角和补角。

2. 平行线与三角形:平行线的判定条件、平行线间的性质、三角形的概念及性质。

3. 三角形的相似与全等:相似三角形的判定条件、全等三角形的判定条件。

4. 三角形的中线与垂心:三角形的中线定义、中线的性质、垂心及相关性质。

5. 圆的性质:圆和圆的相关性质、切线定理。

三、函数部分:1. 一元二次函数:一元二次函数的基本概念、一元二次函数的图像的性质。

2. 指数函数与对数函数:指数与对数的基本概念、指数函数和对数函数的图像与性质。

3. 三角函数与其应用:角度的概念、弧度制与角度制的换算、标准位置三角函数、三角函数的图像性质。

4. 幂函数与函数的图像:幂函数的基本性质与图像性质。

四、三角部分:1. 三角恒等变换与二倍角公式:三角函数的基本恒等变换、常用的二倍角公式。

2. 解三角形:解直角三角形、解非直角三角形。

3. 三角函数的图像:三角函数的图像性质、变换、复习与运用。

五、概率与统计部分:1. 概率:基本概念、事件的关系、概率运算与公式、随机事件的概率计算。

2. 统计:统计调查与统计资料、统计图和图表的制作与分析。

通过对高中必修二数学的总结,我们可以发现数学是一门重要且实用的学科,在日常生活中,我们经常会用到数学的知识和方法。

必修二数学必背公式知识点_高中数学知识点

必修二数学必背公式知识点_高中数学知识点

必修二数学必背公式知识点_高中数学知识点必修二数学必背公式知识点空间几何一、立体几何常用公式S(圆柱全面积)=2πr(r+L);V(圆柱体积)=Sh;S(圆锥全面积)=πr(r+L);V(圆锥体积)=1/3Sh;S(圆台全面积)=π(r^2+R^2+rL+RL);V(圆台体积)=1/3[s+S+√(s+S)]h;S(球面积)=4πR^2;V(球体积)=4/3πR^3。

二、立体几何常用定理(1)用一个平面去截一个球,截面是圆面。

(2)球心和截面圆心的连线垂直于截面。

(3)球心到截面的距离d与球的半径R及截面半径r有下面关系:r=√(R^2—d^2)。

(4)球面被经过球心的平面载得的圆叫做大圆,被不经过球心的载面截得的圆叫做小圆。

(5)在球面上两点之间连线的最短长度,就是经过这两点的大圆在这两点间的一段劣弧的长度,这个弧长叫做两点间的球面距离。

高二必修二数学复习知识点1.函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称,高中数学;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;高二数学必修二重要知识归纳空间中的平行问题(1)直线与平面平行的判定及其性质线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

高中数学必修2知识点总结

高中数学必修2知识点总结

高中数学必修2知识点总结高中数学必修二知识点总结1. 一元二次方程一元二次方程的标准形式为ax^2+bx+c=0,并且a≠0。

求解一元二次方程的方法是配方法、公式法和因式分解法。

2. 三角函数常用的三角函数有正弦函数、余弦函数、正切函数和余切函数。

三角函数的定义域和值域以及其性质和图像都是必须掌握的。

3. 三角恒等式包括正弦、余弦和正切等三角函数的恒等式,例如正弦函数的和差公式、倍角公式、半角公式等。

三角恒等式是解决三角函数问题的重要工具。

4. 二次函数的图像和性质二次函数的标准形式为y=ax^2+bx+c,其中a≠0。

二次函数的图像是一个开口朝上或开口朝下的抛物线,其对称轴为x=-b/2a。

必须掌握二次函数的顶点、零点、对称轴等性质,这些性质是判断图像和求解问题的重要方法。

5. 平面向量平面向量包括向量的定义、向量之间的运算、向量的坐标表示等。

向量的运算包括向量的加法、减法、数量积和向量积。

向量的坐标表示是将向量投影在坐标轴上来表示的。

6. 点、直线、平面和空间几何点、直线、平面和空间几何的基本概念和性质是必须掌握的,例如点的坐标、直线的一般式方程、平面的法向量等。

此外,必须掌握两条直线和两个平面之间的位置关系、垂直平分线以及中垂线等概念。

7. 三视图和轴测图三视图是立体图形的三个视图,包括正视图、左视图和俯视图。

轴测图是用于三维图形表示的一种图形表示方法,包括斜二测和等轴测。

8. 四边形和圆的性质四边形和圆的主要性质包括四边形内角和定理、对角线定理、圆的周长和面积计算公式、圆内部和圆外部点与圆的位置关系等。

9. 三角形和圆的性质三角形和圆的主要性质包括三角形内角和、三角形的面积计算公式、圆心角和圆弧、圆的切线和切点等。

10. 函数及其应用函数的概念和图像、定义域和值域、单调性等性质必须掌握。

函数的应用包括函数的极值、最大值和最小值等问题。

以上是高中数学必修二知识点的总结,这些知识点是高中数学教育的重点和难点,学好这些知识点对于提高数学成绩和发展数学思维能力都具有重要的意义。

高中数学必修2知识点归纳

高中数学必修2知识点归纳

高中数学必修2知识点归纳高中数学必修2知识点归纳高中数学必修2是数学学科的一门重要课程,主要内容包括函数、二次函数与一元二次方程、直线和三角形的研究等。

下面是对这些知识点的归纳总结。

一、函数1. 函数的概念:函数是具有输入输出关系的一种映射关系。

通常用f(x)表示函数关系,其中x是自变量,f(x)是因变量。

2. 函数的性质:可递性、奇偶性、周期性、单调性等。

3. 特殊函数:常数函数、一次函数、幂函数、指数函数、对数函数、三角函数等。

4. 函数的运算:函数的四则运算、复合函数、反函数等。

5. 函数的图像:函数的图像可以通过函数的定义域和值域来确定,常见的有常数函数图像、线性函数图像、幂函数图像、指数函数图像、对数函数图像、三角函数图像等。

二、二次函数与一元二次方程1. 二次函数的概念:二次函数是一个带有二次项的函数,一般定义为f(x) = ax² + bx + c,其中a、b、c为常数,a ≠ 0。

2. 二次函数的性质:最值、对称轴、开口方向、零点等。

3. 一元二次方程:一元二次方程是一个以变量x为未知数的二次方程,一般表示为ax² + bx + c = 0,其中a、b、c为常数,且a ≠ 0。

4. 一元二次方程的解:一元二次方程有两个解,可以通过求根公式或配方法求得。

5. 一元二次方程与二次函数的关系:一元二次方程的解即为对应二次函数的零点,可以通过一元二次方程的解来求二次函数的零点。

三、直线1. 直线的表示:直线可以通过斜率截距式、一般式、点斜式等表示。

2. 直线的性质:平行直线、垂直直线、两直线交点的坐标、直线的倾斜角等。

3. 直线方程的求解:通过已知条件,可以利用直线的性质来求解直线的方程。

四、三角形1. 三角形的分类:根据边的长、内角的大小,三角形可以分为等边三角形、等腰三角形、直角三角形、锐角三角形、钝角三角形等。

2. 三角函数:正弦函数、余弦函数、正切函数等。

3. 三角函数关系:倍角公式、半角公式、和差化积公式等。

新教材人教版高中数学必修第二册 知识点梳理

新教材人教版高中数学必修第二册 知识点梳理

高中数学 必修2 第六章平面向量设为所在平面上一点,角所对边长分别为,则(1)为的外心. (2)为的重心.(3)为的垂心. (4)为的内心.【6.1】平面向量的概念1、向量的定义及表示(向量无特定的位置,因此向量可以作任意的平移) (1)定义:既有大小又有方向的量叫做向量.(2)表示:①有向线段:带有方向的线段,它包含三个要素:起点、方向、长度; ②向量的表示:2、向量的有关概念:相等向量是平行(共线)向量,但平行(共线)向量不一定是相等向量 向量名称 定义零向量 长度为0的向量,记作0 单位向量 长度等于1个单位长度的向量平行向量 (共线向量) 方向相同或相反的非零向量,向量a ,b 平行,记作a ∥b ,规定:零向量与任一向量平行相等向量长度相等且方向相同的向量;向量a ,b 相等,记作a =b【6.2】平面向量的运算1、向量的加法(1)定义:求两个向量和的运算. (2)运算法则: 向量求和的法则 图示几何意义三角形法则使用三角形法则时要注意“首尾相接”的条件,而向量加法的平行四边法则应用的前提是共起点已知非零向量a ,b ,在平面内任取一点A ,作AB ⃗⃗⃗⃗⃗ =a ,BC ⃗⃗⃗⃗⃗ =b ,则向量AC ⃗⃗⃗⃗⃗ 叫做a 与b 的和,记作a +b ,即a +b =AB ⃗⃗⃗⃗⃗ +BC⃗⃗⃗⃗⃗ =AC⃗⃗⃗⃗⃗ 平行四边形法则以同一点O 为起点的两个已知向量a ,b ,以OA ,OB 为邻边作▱OACB ,则以O 为起点的向量OC ⃗⃗⃗⃗⃗ (OC 是▱OACB 的对角线)就是向量a 与b 的和(3)规定:对于零向量与任意向量a ,规定a +0=0+a =a .(4)位移的合成可以看作向量加法三角形法则的物理模型;力的合成可以看作向量加法平行四边形ABC ∆,,A B C ,,a b c O ABC ∆222OA OB OC ⇔==O ABC ∆0OA OB OC ⇔++=O ABC ∆OA OB OB OC OC OA ⇔⋅=⋅=⋅O ABC ∆0aOA bOB cOC ⇔++=法则的物理模型.(5)一般地我们有|a +b |≤|a |+|b |,当且仅当a ,b 方向相同时等号成立. (6)向量加法的运算律与实数加法的运算律相同 2、向量的减法(1)相反向量(利用相反向量的定义,-AB ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ 就可以把减法转化为加法) 定义:我们规定,与向量a 长度相等,方向相反的向量,叫做a 的相反向量性质:①对于相反向量有:a +(-a )=0;②若a ,b 互为相反向量,则a =-b ,a +b =0;③零向量的相反向量仍是零向量(2)向量减法运算(向量的减法是向量加法的一种逆运算) 定义:求两个向量差的运算叫做向量的减法.a -b =a +(-b ),减去一个向量就等于加上这个向量的相反向量.几何意义:a -b 表示为从向量b 的终点指向向量a 的终点的向量.3、向量的数乘运算(实数与向量可以进行数乘运算,但不能进行加减运算)(1)定义:规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作:λa ,它的长度和方向规定如下:①|λa |=|λ||a |;②当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反. ③由①可知,当λ=0时,λa =0;由①②知,(-1)a =-a .(2)运算律:设λ,μ为任意实数,则有:①λ(μa )=(λμ)a ;②(λ+μ)a =λa +μa ;③λ(a +b )=λa +λb ;特别地,有(-λ)a =-(λa )=λ(-a );λ(a -b )=λa -λb .(3)向量的加、减、数乘运算统称为向量的线性运算,向量的线性运算结果仍是向 量.对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1 a ±μ2b )=λμ1 a ±λμ2 b .(4)共线向量定理:向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa .也就是说,位于同一直线上的向量可以由位于这条直线上的一个非零向量表示. 4、向量的数量积(1)向量的夹角:两向量的夹角与两直线的夹角的范围不同,向量夹角范围是[0,π],而两直线夹角的范围为[0,π2](2)向量的夹角的定义:已知两个非零向量a ,b ,O 是平面上的任意一点,作向量OA ⃗⃗⃗⃗⃗ =a ,OB ⃗⃗⃗⃗⃗ =b ,则∠a O b =θ(0≤θ≤π)叫做向量a 与b 的夹角. 当θ=0时,a 与b 同向;当θ=π时,a 与b 反向. 如果a 与b 的夹角是π2,我们说a 与b 垂直,记作a ⊥b .(3)向量的数量积及其几何意义:向量的数量积是一个实数,不是向量,它的值可正可负可为0 (4)向量的数量积的定义:已知两个非零向量a 与b ,它们的夹角为θ,我们把数量|a ||b |cosθ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cosθ.规定:零向量与任一向量的数量积为0.(5)投影:如图,设a ,b 是两个非零向量,AB ⃗⃗⃗⃗⃗ =a ,CD ⃗⃗⃗⃗⃗ =b ,我们考虑如下变换:过AB ⃗⃗⃗⃗⃗ 的起点a 和终点b ,分别作CD ⃗⃗⃗⃗⃗ 所在直线的垂线,垂足分别为A 1,B 1得到A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,我们称上述变换为向量a 向向量b 投影,A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ 叫做向量a 在向量b 上的投影向量.(6)向量数量积的性质设a ,b 是非零向量,它们的夹角是θ,e 是与b 方向相同的单位向量,则①a ·e =e ·a =|a |cosθ②a ⊥b ⇔a ·b =0③当a 与b 同向时,a ·b =|a ||b |;当a 与b 反向时,a ·b =-|a ||b |,特别地,a ·a =|a |2或|a |=√a ·a .在求解向量的模时一般转化为模的平方,但不要忘记开方④|a ·b |≤|a |·|b |.(7)运算律:①a ·b =b ·a ;②(a +b )·c =a ·c +b ·c (8)运算性质:类比多项式的乘法公式【6.3】平面向量基本定理及坐标表示1、平面向量基本定理(定理中要特别注意向量e 1与向量e 2是两个不共线的向量) 条件:e 1,e 2是同一平面内的两个不共线向量结论:对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1 e 1+λ2 e 2 基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底 2、平面向量的坐标表示(1)基底:在平面直角坐标系中,设与x 轴、y 轴方向相同的两个单位向量分别为i ,j ,取{i ,j }作为基底.(2)坐标:对于平面内的一个向量a ,由平面向量基本定理可知,有且仅有一对实数x ,y ,使得a =x i +y j ,则有序数对(x ,y )叫做向量a 的坐标. (3)坐标表示:a =(x ,y ).(4)特殊向量的坐标:i =(1,0),j =(0,1),0=(0,0). (5)平面向量的加减法坐标运算(可类比实数的加减运算法则进行记忆) 设向量a =(x 1,y 1),b =(x 2,y 2),λ∈R ,则有下表:设向量a =(x ,y ),则有λa =(λx ,λy ),这就是说实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.(7)平面向量共线的坐标表示:设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.向量a ,b (b≠0)共线的充要条件是x 1 y 2-x 2 y 1=0.(8)中点坐标公式:若P 1,P 2的坐标分别是(x 1,y 1),(x 2,y 2),线段P 1P 2的中点P 的坐标为(x ,y ),则x =x 1+x 22y =y 1+y 22.此公式为线段P 1 P 2的中点坐标公式.(9)两向量的数量积与两向量垂直的坐标表示已知两个非零向量,向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ. 数量积:两个向量的数量积等于它们对应坐标的乘积的和,即:a ·b =x 1 x 2+y 1 y 2 向量垂直:a ⊥b ⇔x 1 x 2+y 1 y 2=0(10)与向量的模、夹角相关的三个重要公式 ①向量的模:设a =(x ,y ),则|a |=√x 2+y 2.②两点间的距离公式:若A (x 1,y 1),B (x 2,y 2),则|AB ⃗⃗⃗⃗⃗ |=√(x 1-x 2)2+(y 1-y 2)2.③向量的夹角公式:设两非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ,则θ=a ·b |a||b|=x 1x 2+y 1y 2√x 12+y 12√x 22+y 22【6.4】平面向量的应用1、平面几何中的向量方法用向量方法解决平面几何问题的“三步曲”(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系;(3)把运算结果“翻译”成几何关系. 2、向量在物理中的应用举例(1)向量与力:向量是既有大小,又有方向的量,它们可以有共同的起点,也可以没有共同的起点.而力是既有大小和方向,又有作用点的量.用向量知识解决力的问题时,往往把向量平移到同一作用点上.(2)向量与速度、加速度、位移:速度、加速度、位移的合成与分解,实质上就是向量的加、减运算.用向量解决速度、加速度、位移等问题,用的知识主要是向量的线性运算,有时也借助于坐标来运算.(3)向量与功、动量:力所做的功是力在物体前进方向上的分力与物体位移的乘积,它的实质是力和位移两个向量的数量积,即W =F ·s =|F ||s |cosθ(θ为F 和s 的夹角).动量m ν实际上是数乘向量. 3、余弦定理、正弦定理(1)余弦定理的表示及其推论(SAS 、SSS 、SSA )文字语言:三角形中任何一边的平方,等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.符号语言:;;.在△ABC 中,有2222cos a b c bc =+-A ,推论:222cos 2b c a bc+-A =(2)解三角形:一般地,三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形. (3)正弦定理的表示(AAS 、SSA )文字语言:在一个三角形中,各边和它所对角的正弦的比相等,该比值为该三角形外接圆的直径. 符号语言:在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则2sin sin sin a b cR C===A B (R 为△ABC 的外接圆的半径)(4)正弦定理的变形形式变形形式是在三角形中实现边角互化的重要公式 设三角形的三边长分别为a ,b ,c ,外接圆半径为R ,正弦定理有如下变形: ①2sin a R =A ,2sin b R =B ,2sin c R C =;②sin 2a R A =,sin 2bR B =,sin 2c C R=;③::sin :sin :sin a b c C =A B ; (5)三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B . (6)相关术语①仰角和俯角:与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯2222cos a b c bc A =+-2222cos b c a ca B =+-2222cos c a b ab C =+-角,如图所示.②方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图1所示).③方位角的其他表示——方向角正南方向:指从原点O出发的经过目标的射线与正南的方向线重合,即目标在正南的方向线上.依此可类推正北方向、正东方向和正西方向.东南方向:指经过目标的射线是正东和正南的夹角平分线(如图2所示).(7)解三角形应用题解题思路:基本步骤:运用正弦定理、余弦定理解决实际问题的基本步骤如下:①分析:理解题意,弄清已知与未知,画出示意图(一个或几个三角形);②建模:根据已知条件与求解目标,把已知量与待求量尽可能地集中在有关三角形中,建立一个解三角形的数学模型.③求解:利用正弦定理、余弦定理解三角形,求得数学模型的解.④检验:检验所求的解是否符合实际问题,从而得出实际问题的解.第七章复数【7.1】复数的概念1、数系的扩充和复数的概念(1)复数的定义:形如a +bi (a ,b ∈R )的数叫做复数,其中i 叫做虚数单位,全体复数所构成的集合C ={a +bi |a ,b ∈R }叫做复数集.(2)复数通常用字母z 表示,代数形式为z =a +bi (a ,b ∈R ),其中a 与b 分别叫做复数z 的实部与虚部.(3)复数相等:在复数集C ={a +bi |a ,b ∈R }中任取两个数a +bi ,c +di (a ,b ,c ,d ∈R ),我们规定:a +bi 与c +di 相等当且仅当a =c 且b =d . (4)复数的分类①对于复数a +bi (a ,b ∈R ),当且仅当b =0时,它是实数;当且仅当a =b =0时,它是实数0;当b ≠0时,叫做虚数;当a =0且b ≠0时,叫做纯虚数.这样,复数z =a +bi (a ,b ∈R )可以分类如下:复数{实数(b =0)虚数(b ≠0)(当a =0时为纯虚数),②集合表示:2、复数的几何意义(1)复平面(复平面中点的横坐标表示复数的实部,点的纵坐标表示复数的虚部)(2)复数的几何意义①复数z =a +bi (a ,b ∈R )一一对应↔ 复平面内的点z (a ,b ). ②复数z =a +bi (a ,b ∈R )一一对应↔ 平面向量OZ⃗⃗⃗⃗⃗ . (3)复平面上的两点间的距离公式:(,).(4)复数的模①定义:向量OZ⃗⃗⃗⃗⃗ 的模叫做复数z =a +bi (a ,b ∈R )的模或绝对值. 12||d z z =-=111z x y i =+222z x y i =+②记法:复数z =a +bi 的模记为|z |或|a +bi |. ③公式:|z |=|a +bi |=√a 2+b 2(a ,b ∈R ).如果b =0,那么z =a +bi 是一个实数,它的模就等于|a |(a 的绝对值).(5)共轭复数:一般地,当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数,虚部不等于0的两个共轭复数也叫做共轭虚数.复数z 的共轭复数用z̅表示,即如果z =a +bi ,那么z̅=a -bi .(6)两个实数可以比较大小,但两个复数如果不全是实数就不能比较大小。

人教版高中数学必修2第二章知识点汇总

人教版高中数学必修2第二章知识点汇总

人教版高中数学必修二第二章知识点汇总第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。

3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为A∈LB∈L => L α A∈α B∈αLA· α DCBAα公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。

符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A∈α、B∈α、C∈α。

公理2作用:确定一个平面的依据。

(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

符号表示为:P∈α∩β =>α∩β=L,且P∈L 公理3作用:判定两个平面是否相交的依据 2.1.2空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。

2 公理4:平行于同一条直线的两条直线互相平行。

符号表示为:设a 、b 、c 是三条直线a∥bC·B ·A· α P·αLβ共面直线 =>a ∥cc∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为简便,点O 一般取在两直线中的一条上;② 两条异面直线所成的角∈(0, );③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∴ S侧面积=
1 2
〔c
l
+
(c-c
’)cc-c’’l

= 1(c+c ’)l
2
=∏(r+r ’)l
§1.3.2 球的体积和表面积
教学目标 (1)能运用球的面积和体积公式灵活解决实际问题。 (2)培养学生的空间思维能力和空间想象能力。 教学重点、难点 重点:引导学生了解推导球的体积和面积公式所运用的基本思想方法。 难点:推导体积和面积公式中空间想象能力的形成。
证明:将圆台补成圆锥. 作其侧面展开图,设OA=x
∴ S侧面积
= 1 c(l+x)—
2
1 2
c ’x
= 1 cl+ 1(c-c ’)x
2
2
又∵
c c
’ =
X X+l
∴x=
c ’l c-c ’
定理3:如果圆台的上、下底面半径是r’、r,周长是 c’、c,侧面母线长是l,那么它的侧面积是: S侧面积 = (12 c ’+c)l=∏(r ’+r)l
2、平面的基本性质,注意他们的条件、结论、作用、图形语言及符号语言。 难点:平面基本性质的掌握与运用。
三、主要知识点 1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。 2、公理2:过不在一条直线上的三点,有且只有一个平面。 3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点 的公共直线。
高中数学必修(2)章节分析

结构






三视图
空 间
三视图和直观图

直观图


表面积和体积
表面积
体积
第一章:空间几何体
1.1柱、锥、台、球的结构特征
一、教学目标 (1)通过实物操作,增强学生的直观感知。 (2)能根据几何结构特征对空间物体进行分类。 (3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。 (4)会表示有关于几何体以及柱、锥、台的分类。 二、教学重点、难点 重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。 难点:柱、锥、台、球的结构特征的概括。
4、注意求体积的一些特殊方法:分割法、补体法、转化法等,它们是解决一些 不规则几何体体积计算常用的方法,应熟练掌握。
5、利用三棱锥的“等体积性”可以解决一些点到平面的距离问题,即将点到平 面的距离视为一个三棱锥的高,通过将其顶点和地面进行转化,借助体积的不变 性解决问题。
如果圆柱的底面半径是r,周长是c,侧面母线 长是l,那么它的侧面积是 S侧面积=cl=2∏rl
4、本节课还需要学生能够较熟练的掌握几何符号语言,可以通过一些简单的例 子加以训练巩固。比如课本43页的第3题。
§2.1.2 空间中直线与直线之间的位置关系
一、教学目标: (1)了解空间中两条直线的位置关系; (2)理解异面直线的概念、画法,培养学生的空间想象能力; (3)理解并掌握公理4; (4)理解并掌握等角定理; (5)异面直线所成角的定义、范围及应用。 二、教学重点、难点 重点:1、异面直线的概念;
截面问题
• 用一个平面α去截一个球O,截面是圆面
球的截面的性质:
球心和截面圆心的连线垂直于截面 球心到截面的距离为d,球的半径为R,则
r2 R2 d 2
O
Rd
ß
r
平面(公理1、2、3、4) 空间直线、平面的位置关系
直线与直线的位置关系
线线平行 线线垂直
直线与平面的位置关系 平面与平面的位置关系
三、主要知识点
柱体、锥体、台体的表面积和体积公式
难点突破
1、在求多面体的侧面面积时,应该对每一个侧面展开再分别求解后再相加。 比如长方体。
2、在解决台体的有关计算问题时,注意应用“还台为锥”的处理策略。 比如求圆台的表面积。
3、计算柱体、锥体的体积,关键是根据条件找出相应的底面面积和高,应注意 充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题求解。
球体的结构特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
1.2空间几何体的三视图
一、教学目标 (1)掌握画三视图的基本技能 (2)丰富学生的空间想象力 二、教学重点、难点 重点:画出简单组合体的三视图 难点:识别三视图所表示的空间几何体
三、主要知识点 把光由一点向外散射形成的投影叫中心投影,中心投影的投影线交于一点;把在一束平行 光线照射下的投影叫平行投影,平行投影的投影线是平行的。
棱锥的结构特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其 相似比等于顶点到截面距离与高的比的平方。 圆锥的结构特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一 个扇形。
棱台的结构特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于 原棱锥的顶点。 圆台的结构特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面 展开图是一个弓形。
似的看成是边长分别是
R和R的矩形 .
那么圆的面积就近似等 于R2 .
球的体积
当所分份数不断增加时,精确程度就越来越高;当份数无穷大时,就 得到了圆的面积公式.
分割
求近似和
化为准确和
下面我们就运用上述方 法导出球的体积公式
即先把半球分割成n部分,再求出每一部分的近似体积,并将这些近似值 相加,得出半球的近似体积,最后考虑n变为无穷大的情形,由半球的近似体 积推出准确体积.
V半球 R 3 [1
n
n]
6
当n 时, 1 0. n
V半球
2 R 3
3
从而V 4 R 3 .
3
定理:半径是R的球的体积为:V 4 R3
3
球的表面积
球面不能展开成平面图形,所以求球的表面积无法用展开图求出,如何求球的表 面积公式呢?回忆球的体积公式的推导方法,是否也可借助于这种极限思想方法来推导 球的表面积公式呢?
Si
hi
O
O
Vi
Vi
1 3
S
i
hi
由第一步得:
V V1 V2 V3 Vn
V
1 3
S1h1
1 3
S2h2
1 3
S3h3
1 3
Snhn


S i
步: hi

Vi

准 确 和
O
Si
R
Vi
球的表面积
如果网格分的越细,则: “小锥 体”就越接近小棱锥
hi的值就趋向于球的半径 R
Vi
1 3
Si
R
Vi
ri 2
R n
R 3
n
[1 ( i
1)2 ], i n
1,2, n
V半球 V1 V2 Vn
R 3
12 22 (n 1)2
[n n
n2
]
R3 1 (n 1) n (2n 1)
n [n n2
6
]
R3[1
1 n2
(n
1)(2n 6
1) ]
球的体积
1
1
(1 )(2 )
球的表面积
S i
o o
球的表面积
第 一 步: 分 割
球面被分割成n个网格,表面积分别为:
S1,S2,S3 ,, Sn
则球的表面积: O
S S1 S2 S3 Sn
设“小锥体”的体积为 Vi
Si
O Vi
则球的体积为:
V V1 V2 V3 Vn
第 二 步: 求 近 似 和
球的表面积
四、主要知识点 ⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。 ⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互 相平行,由这些面所围成的多面体叫做棱柱。 ⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体 叫做棱台
V
1 3
Si R
1 3
S2R
1 3
S3R
1 3
Sn R
1 3
R(Si
S2
S3
...
Sn
)
1 3
RS
又球的体积为:V 4 R3
3
4 R 3 1 RS , 从而S 4R 2
3
3
基本计算问题
1.如图,圆柱的底面直径与高都等于球的直
径,求证:
O
(1)球的表面积等于圆柱的侧面积.
(2)球的表面积等于圆柱全面积的三分之二.
难点突破
1、运用实物使学生感受几何体的结构特征,并引导他们从底面、侧面等方面总 结不同几何体的本质结构特征,再分别以选择题、填空题、解答题的形式巩固。
棱柱的结构特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四 边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。 圆柱的结构特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂 直;④侧面展开图是一个矩形。
难点突破
1、从实例出发引申出几何里的平面,重点说明几何里的平面是无限延伸的。
2、通过让学生自己画平面巩固平面的表示方法,因为平面是由无数个点组成的, 所以点与面之间是属于或者不属于的关系,而线也是由点组成的集合,所以线与 面之间是包含或者不包含的关系。
3、本节课学生学习的是三条公理,不需要证明,只要学生能根据实际经验理解 即可,以后可以直接应用在证明中。
球的体积 A
O
A
C2
O
B2
r1 R2 R,
r2
R2 ( R)2 , n
r3
R2 (2R)2 , n
A
球的体积
ri
O
相关文档
最新文档