基于双三唑甲烷的两种新型Cu髤配合物的结构和性质_英文_田丽

合集下载

以甲氧基苯甲酸为配体的两个双核铜配合物的合成、晶体结构和理论计算

以甲氧基苯甲酸为配体的两个双核铜配合物的合成、晶体结构和理论计算

以甲氧基苯甲酸为配体的两个双核铜配合物的合成、晶体结构和理论计算张琦;于良民;夏树伟;李霞;闫星辰;倪春花【期刊名称】《无机化学学报》【年(卷),期】2015(031)003【摘要】以2-甲氧基苯甲酸(HL1)、2,3-二甲氧基苯甲酸(HL2)及甲醇为配体,合成了配合物Cu2(L1)4(CH3OH)2(1)和Cu2(L2)4(CH3OH)2(2),并通过红外、元素分析、X-射线粉末和单晶衍射等研究手段表征了其结构.配合物1属单斜晶系,空间群P21/n;配合物2属三斜晶系,空间群P1-.2个配合物都具有双核铜结构,由2个铜离子、4个L配体分子和2个甲醇配体分子组成,其中配体L通过双齿配位模式与铜离子配合.研究了2个配合物的热稳定性,并通过Gaussian 09软件密度泛函理论B3LYP方法进行了理论研究.【总页数】9页(P585-593)【作者】张琦;于良民;夏树伟;李霞;闫星辰;倪春花【作者单位】中国海洋大学,海洋化学理论与工程技术教育部重点实验室,青岛266100;中国海洋大学,海洋化学理论与工程技术教育部重点实验室,青岛 266100;中国海洋大学,海洋科学与技术青岛协同创新中心,青岛 266100;中国海洋大学,海洋化学理论与工程技术教育部重点实验室,青岛 266100;中国海洋大学,海洋化学理论与工程技术教育部重点实验室,青岛 266100;中国海洋大学,海洋科学与技术青岛协同创新中心,青岛 266100;中国海洋大学,海洋化学理论与工程技术教育部重点实验室,青岛 266100;中国海洋大学,海洋化学理论与工程技术教育部重点实验室,青岛266100【正文语种】中文【中图分类】O614.121【相关文献】1.基于3,5-二((4′-羧基苄基)氧)苯甲酸和4′-(4-吡啶基)-2,2′∶6′,2″-三联吡啶为混合配体的两个配合物的水热合成与晶体结构 [J], 乔宇;尉兵;王璐瑶;李秀颖;车广波;刘春波;张兴晶2.两个由2-(4 '-氯-苯甲酰基)苯甲酸和双咪唑基配体构筑的锰、镉配合物的合成及晶体结构 [J], 李国峰;李秀梅;纪建业;牛艳玲;王庆伟3.以邻氯苯甲酸及联吡啶为配体的双核铜配合物的水热合成、晶体结构及量子化学研究 [J], 石智强;季宁宁;何国芳;韩银锋4.两个由双咪唑基配体构筑的镉配合物的合成、晶体结构及理论计算 [J], LI Xiu-Mei;PAN Ya-Ru;LIU Bo;ZHOU Shi5.两个含有2,6-二氟苯甲酸配体稀土配合物的合成及晶体结构 [J], 彭雄鑫; 王文敏; 钟宇菲; 肖伟; 鲍光明; 袁厚群因版权原因,仅展示原文概要,查看原文内容请购买。

两种1,2,3-三唑衍生物的配合物合成策略:晶体结构和表面分析

两种1,2,3-三唑衍生物的配合物合成策略:晶体结构和表面分析

两种1,2,3-三唑衍生物的配合物合成策略:晶体结构和表面分析冯超;张舵;周士艳;陈金梅;左泽浩;赵红【摘要】在不同反应条件下反应得到了两种1,2,3-三唑衍生物的配合物[Co(H2O)6][Co(L1)3]2·4H2O(1)和Cu(L2)2(2)(HL1=5-methyl-1-phenyl-1H-1,2,3-triazole-4-carboxylic acid;HL2=1-(4-iodophenyl)-5-methyl-1H-1,2,3-triazole-4-carboxylic acid).通过X射线单晶衍射和红外光谱确定了晶体结构,同时对配合物1和2进行了表面作用分析(Hirshfeld surface analysis),在二维指纹图谱中可以清楚的看到配合物中的主要分子间作用.【期刊名称】《无机化学学报》【年(卷),期】2016(032)007【总页数】8页(P1215-1222)【关键词】1H-1,2,3-三唑衍生物;晶体结构;表面分析;二维指纹区【作者】冯超;张舵;周士艳;陈金梅;左泽浩;赵红【作者单位】东南大学化学化工学院,南京211189;东南大学化学化工学院,南京211189;东南大学化学化工学院,南京211189;东南大学化学化工学院,南京211189;东南大学化学化工学院,南京211189;东南大学化学化工学院,南京211189【正文语种】中文【中图分类】O614.81+2;O614.121The construction of coordination compounds with intriguing structuralmotifsand functionalbehaviorshas attracted considerable attention for chemists[1-5].During the past years,a substantial amount ofwork based on coordination assembled systems has emerged,which enrich the inorganic-organic hybrid materials with novel networks and properties[6-11].From the standpoint of synthetic methodology,the access to such multicomponent supramolecular systems mainly depends upon the selection of appropriate chemical building blocks.Meanwhile,1-substituted-1,2,3-triazole-4-carboxylic acid have played as good building blocks in constructing supramolecular architectures[12-14],and our group have chosen a pyridyl conjugated 1,2,3-triazole ligand 5-methyl-1-(pyridine-3-yl)-1H-1,2,3-triazole-4-carboxylic acid asorganic ligand and resulted series ofnew coordination polymers previously[15].Due to the flexible nature of the carboxyl group,1-substituted-1,2,3-triazole-4-carboxylic acid ligands may exhibit kinds of conformations in different complexes to meet the requirements of coordination geometry.Besides, the self-assembly processes are usually influenced by many other factors such as the coordination geometry of metal ion,temperature,counter anion,pH value, and solventmedium[16-20].As our ongoing task,studying the influences of substituent triazole ligands,herein,we synthesized two kinds of 1-substituted-1,2,3-triazole-4-carboxylic acid according to different design concepts.Firstly,the phenyl was introduced to the 1-position of triazole acid,and 5-methyl-1-phenyl-1H-1,2,3-triazole-4-carboxylic acid(HL1)was obtained.In order toinvestigate the influence of the electron-withdrawing group on coordination ability,the iodo-group was decorated to the benzenering,which resulted in 1-(4-iodophenyl)-5-methyl-1H-1,2,3-triazole-4-carboxylic acid(HL2).We also synthesized two new complexes[Co(H2O)6][Co(L1)3]2·4H2O(1),Cu(L2)2(2).For the purpose of investigating the intermolecular interactions of complexes,we also study the Hirshfeld surface analysis for 1 and 2.1.1 Materials and measurementsAll reagents and solvents were obtained from commercial sources and used without further purification.The ligandswere synthesized according to literatures[21].Elemental analyses of carbon,hydrogen, and nitrogen were carried out with a Perkin-Elmer 240Celementalanalyzer.IR spectrawereobtained with KBr pellets from 4 000 to400 cm-1usinga Nicolet5700 spectrophotometer.Crystal structures were determined with Rigaku SCXminidiffractometer.1.2 Preparations1.2.1 [Co(H2O)6][Co(L1)3]2·4H2O(1)A solution of CoCl2·6H2O(0.023 8 g,0.1 mmol) in water(8 m L)was added into a solution of HL1(0.040 6 g,0.2 mmol)in anhydrous ethanol(8 mL), then the mixture was left at room temperature.After one week,red block crystals were obtained and dried in air.Yield:42%(based onCoCl2·6H2O).Anal. Calcd.for C60H68Co3N18O22(%):C,45.86;H,4.33;N, 16.05.Found(%):C,45.78;H,4.41;N,16.01.IR (KBr,cm-1):3 440(w),1 618(s),1 600(vs),1 582 (s),1 563(m),1 485(m),1 403(w),1 365(m),1 323 (s),1 300(m),1241(m),1 133(m),830(m),766(m).1.2.2 Cu(L2)2(2)The synthesis of complex 2 is similar with 1,just using CuCl2·2H2O(0.017 2 g,0.1 mmol)and HL2(0.065 6 g,0.2mmol)instead of CoCl2·6H2O and HL1. Yield:46%(based on CuCl2·2H2O).Anal.Calcd.forC40H28Cu2I2N12O8(%):C,33.35;H,1.95;N,11.67.Found(%):C,33.12;H,2.02;N,11.71.IR(KBr; cm-1):3 440(w),1 621(s),1 605(s),1 492(m),1 421 (s),1 370(m),1 303(s),1 309(m),1 240(m),1 136(m), 1018(w),830(m),and 755(m).1.3 Crystal structure determ inationSingle-crystal X-ray diffraction measurements for complexes were carried out using a Rigaku SCX mini diffractometer with Mo Kαradiation(λ=0.071 073 nm).The c rystal size is 0.23 mm×0.21 mm×0.20 mmfor 1 and0.25mm×0.23mm×0.20 mm for 2.The structure was solved by directmethodswith SHELXS-97 and refined by full-matrix least-squares on F2with SHELXL-97[22].All non-hydrogen atoms were refined with anisotropic displacement parameters.Hydrogen atoms were added theoretically and refined with riding model and fixed isotropic thermal parameters.The crystallographic parameters and structural determination of 1 and 2 are summarized in Table1. Selected bond lengths and bond angles of 1 and 2 are listed in Table2.CCDC:1400174,1;1400175,2.2.2 Com putational detailsMolecular Hirshfeld surface calculations were performed by using theCrystalExplorer program[23]. The principles of Hirshfeld surfaces were reported in the literature[23].When the cif files of 1 and 2 were read into the CrystalExplorer program for analysis,all bond lengths to hydrogen were automatically modified to typical standard neutron values(C-H 0.108 3 nm and N-H 0.100 9 nm).In this study,all the Hirshfeld surfaces were generated using a standard(high) surface resolution.The 2D fingerprint plots were displayed by using the standard 0.06~0.26 nm view with the deand didistance scales displayed on the graph axes.2.1 Crystal structural descriptionX-ray single crystal diffraction confirms the complex 1 crystallizes in triclinic system with P1 space group.The asymmetric unit of 1 consists of a [Co(L1)3]-anion,half[Co(H2O)6]2+counter cation and two lattice H2O molecules as shown in Fig.1.The Co(Ⅱ)cation of the[Co(L1)3]-anion is coordinated to three HL1ligands.Each ligand coordinated to theCo(Ⅱ)cation adopts the coordination mode of bidentate chelating.The coordination geometry around the Co(Ⅱ)is best described as a distorted octahedral geometry. The[Co(H2O)6]2+unit in 1 plays as a counter ion to balance the charge on the[Co(L1)3]-anion.The Co2 is surrounded by six water molecules,with the distance of Co2-O from 0.205 6(3)to 0.2102(3)nm.It gives a nearly standard octahedral geometry with water molecules on six vertexes.This similar counter ion is involved in many documents[24-25].It is surprisingly found that O atoms of[Co(H2O)6]2+are only electron donors,not acceptors.Hydrogen bonds of O7-H7B…O4i,O8-H8B…O3iiand O9-H9B···O1iii(Symmetry codes:i1-x,2-y,1-z,iix,y,-1+z,iii-x+1,-y+2, -z+1)between the discrete[Co(L1)3]-anions(A)and[Co(H2O)6]2+cations(B)form an[A-B-A]terminal. Each Crystallographic independent lattice water molecule(C)connected the[A-B-A]terminals into zigzag chains-[A-B-A]-[C]-[A-B-A]-through O-H…O hydrogenbonds(Fig.2,Table3),thus the supramolecular architecture of 1 is constructed.The crystal structure of 2 shows that each unit contains two(L2)-anions and one Cu.The local coordination geometry around Cu can be described as a slightly distorted quadrilateral(Fig.3).The Cu coordinates to two ligands with a Cu-O distance of 0.193 5(3)~0.196 0(3)nm and two triazole nitrogensof two(L2)-ligands in a trans fashion with Cu-N distance 0.1966(3)~0.197 8(3)nm.The O-Cu1-O1 angle is 174.85(14)°,whereas the N-Cu-O angle s around the Cu center range from 82.03(13)°to 97.43(13)°.In 2, the(L2)-is bidentate with one oxygen of carboxylate and one nitrogen of 1,2,3-triazole ring chelating to Cu, resulting in the formation of a stable five-numbered ring(Cu1-O1-C1-C2-N1)and it takes the coordination mode as bidentate chelating.In the crystal packing of 2,the coordinated O3 of carboxylate forms a strong contact(0.373 53(19)nm)with theiodine,resulting in a 1D zigzag chain,and adjacent chains formed into a 2D layer by C19…O2 contacts(Fig.4).In the 2D network,the Cu…Cu distances through intermolecular contacts are 1.239 1 and 1.354 4 nm,respectively.In addition,there also exists C-I…πstacking interactionswith a distance of0.3858(2)nm.2.2 Hirshfeld surface analysis for 1 and 2In order to compare the interactions in the crystal structures of compounds 1 and 2,the Hirshfeld surface analysis and the two-dimensional(2D) fingerprint plots generated,based on the deand didistances(deand diare the distances from the Hirshfeld surface to the nearest atom outside and inside the surface,respectively),were carried out using CrystalExplorer 2.0.This analysis shows that in both compounds,the intermolecular H…H contacts have a major contribution to the crystal packing(Fig. 5).These contacts comprise 37.6%and 18.8%of the total Hirshfeld surfaces of molecules 1 and 2, respectively.The shortest contacts of this type show up in the fingerprint plots as characteristic spikes.The structures are also dominated by O…H/H…O contacts which comprise 26.7%and 12.9%of total Hirshfeld surface areas as sharp pound 1 occupiesmore proportion of C…Hcontacts(18.0%)than 2,which contains only 16.2%.The structure of 1 is also dominated by N…H/H…N contacts which comprise 10.6%of total Hirshfeld surface areas. C ompared with 1,the contacts of I…H,I…O and I… N in 2 comprise 12.9%,6.4%and 5.2%,respectively.By comparison in Fig.6,compounds 1 and 2 have different cases about Hirshfeld surfaces.Two major differences are as follows.On the one hand,thedistributions of hydrogen bonds indicate that although both of 1 and 2 have H…H and O…H/H…O contacts,the interactionsmake bigger contributions to the whole Hirshfeld surface in 1.This may be raised from differentmolecular structures of both compounds, while 1 contains a counter cation and free water molecules,but 2 is very clear.On the otherhand,2 has I…X(X=H,O,and N)interactions.The reason for this phenomenon is still the special conformation in crystal structure of 2.This phenomenon indicates that through proper design principles,it can be possible to exploit the presumably weak interactions in the design of supramolecular architectures.The Hirshfeld surfaces certainly allow a much more detailed scrutiny by displaying all the intermolecular interactions within the crystal and this methodology has very important promise in crystal engineering.In summary,we have synthesized and structurally characterized two complexes with 1,2,3-triazole derivatives by rational designing.We further investigated the Hirshfeld surfaceofcomplexes 1 and 2, and surprisingly find that the main intermolecular interactions in the two complexes are O…H and H…H contacts.Moreover,higher dimensional supramolecular networks can further be achieved via hydrogen bonds and intermolecular close packing interactions. Accordingly,these resultsmay offer new insights into the design and assembly of such supramolecular crystals,and we believe that it could make a contribution to the strategy ofcrystalengineering.Acknow ledg ments:We gratefully acknowledge the financial support of the Fundamental Research Funds for Central Universities(GrantNo.3207045420)and the financial support from Jiangsu Ainaji Neoenergy Science&Technology Co.,Ltd(Grant No.8507040091).References:[1]Zhu Q L,Xu Q.Chem.Soc.Rev.,2014,43(16):5468-5512[2]Du M,Chen M,Wang X,et al.Inorg.Chem.,2014,53(14): 7074-7076[3]Mondal SS,Bhunia A,Kelling A,et al.J.Am.Chem.Soc., 2014,136(1):44-47[4]Suh M P,Park H J,Prasad T K,et al.Chem.Rev., 2012,112(2),782-835[5]Cui Y,Yue Y,Qian G,et al.Chem.Rev.,2012,112(2): 1126-1162[6]EddaoudiM,Sava D F,Eubank JF,et al.Chem.Soc.Rev., 2015,44(1):228-249[7]DVries R F,Iglesias M,Snejko N,et al.Inorg.Chem.,2012, 51(21):11349-11355[8]Du M,Li C P,Chen M,et al.J.Am.Chem.Soc.,2014,136 (31):10906-10909[9]Wang C,Liu D,Lin W.J.Am.Chem.Soc.,2013,135(36): 13222-13234[10]Horike S,Umeyama D,Kitagawa S.Acc.Chem.Res.,2013, 46(11):2376-2384[11]You W,Guo JH,Li C P,et al.Polyhedron,2015,91:104-109[12]Zhao H,Zhou SY,Feng C,et al.Inorg.Chim.Acta,2014, 421:169-175[13]Zhou S Y,Qu Z R,Ma H J,et anomet.Polym.,2014,24(3):656-663[14]Feng C,Gao G Y,Qu Z R,et anomet.Polym.,2015,25(5):1233-1238[15]Hong JL,Qu ZR,Ma H J,et al.Bull.Korean Chem.Soc., 2014,35(5):1495-1500[16]Wang X Y,Wang L,Wang Z M,et al.J.Am.Chem.Soc., 2006,128(3):674-675[17]Khavasi H R,Sadegh B M M.Inorg.Chem.,2010,49(12): 5356-5358[18]Fang S M,Zhang Q,Hu M,et al.Inorg.Chem.,2010,49 (20):9617-9626[19]Long LS.CrystEngComm,2010,12(5):1354-1365[20]Chen S C,Zhang Z H,Huang K L,et al.Cryst.Growth Des.,2008,8(9):3437-3445[21](a)Zhao H,Chen JM,Lin J R,et al.J.Coord.Chem., 2011,64(15):2735-2745(b)Wang G G,Zhao H.Acta Crystallogr.Sect.E,2010,E66: o3001[22]Sheldrick G M.SHELXL-97,Program for X-ray Crystal Structure Refinement,University of Göttingen,Göttingen, Germany,1997.[23]Wolff S K,Grimwood D J,McKinnon J J,et al. CrystalExplorer2.0,University ofWestern Australia,Perth, Australia,2007.[24]Worl S,Hellwinkel D,Pritzkow H,et al.Dalton Trans., 2004:2750-2757[25]Shiu K B,Yen C H,Liao F L,et al.Acta Crystallogr.Sect. E,2004,E60:m35。

含联苯三羧酸及二咪唑基吡啶配体的两个锌配位聚合物的合成、结构及荧光性质

含联苯三羧酸及二咪唑基吡啶配体的两个锌配位聚合物的合成、结构及荧光性质

含联苯三羧酸及二咪唑基吡啶配体的两个锌配位聚合物的合成、结构及荧光性质王淑菊;田彦文;由立新;丁茯;孙亚光【期刊名称】《无机化学学报》【年(卷),期】2014(030)003【摘要】以3,3',5-联苯三羧酸(biphenyl-3,3',5-tricarboxylic acid,H3bpta)、2,6-二(1-咪唑基)吡啶(2,6-bis(imidazole-1-yl)pyridine,bip)、Zn(NO3)2·6H2O和ZnCl2为原料,在水热条件下合成了配位聚合物{[Zn3(H2O)7(bpta)2]· 5H2O}n(1)和[[Zn2Cl(bpta)(bip)2]· 2H2O}n(2).并利用红外、元素分析和X-射线单晶衍射等对其结构进行表征.X-射线单晶衍射分析表明:化合物1属于单斜晶系,C2/c空间群,a=3.317 1(11) nm,b=1.495 7(5) nm,c=0.695 1(2) nm,β=91.50°,2=4;化合物2属于单斜晶系,P2/c空间群,a=1.960 4(4) nm,b=1.035 7(2) nm,c=1.9987(4) nm,β=101.97(3)°,Z=4.化合物1通过bpta桥联Zn(Ⅱ)形成1D链,通过配位水与羧基氧之间的氢键作用构筑成3D结构.化合物2中bip桥联Zn(Ⅱ)构成1D螺旋链状结构,进一步通过bpta桥连形成2D网状结构.此外,对化合物1和2进行了热稳定性分析和荧光性质研究.【总页数】6页(P511-516)【作者】王淑菊;田彦文;由立新;丁茯;孙亚光【作者单位】沈阳化工大学应用化学学院,沈阳 110142;东北大学材料与冶金学院,沈阳 110004;东北大学材料与冶金学院,沈阳 110004;沈阳化工大学应用化学学院,沈阳 110142;沈阳化工大学应用化学学院,沈阳 110142;沈阳化工大学应用化学学院,沈阳 110142【正文语种】中文【中图分类】O614.24+1【相关文献】1.基于3,5-吡啶二羧酸和双咪唑配体构筑的锌(Ⅱ)配位聚合物的合成、晶体结构及其荧光性质 [J], 王莉;李少华;王瑞雪;李楠楠;刘斌;袁粉粉;王帅;闫彬2.基于3,3',5,5'-(1,3-苯基)-联苯四羧酸配体构筑的具有四重dmd穿插结构的锌配位聚合物的合成、晶体结构和荧光性质 [J], 王记江;侯向阳;高楼军;张美丽;任宜霞;付峰3.以4’-羟基-联苯-4-羧酸和1,3-二(4-吡啶基)丙烷构筑的一维锌配位聚合物的晶体结构与荧光性质 [J], 刘道森;梁法库;王志武4.苯基多羧酸及含氮配体构筑的三维框架结构锌配位聚合物的合成、晶体结构和荧光性质 [J], 汪鹏飞;方勤;吴国志;汪新5.由咪唑-4,5-二羧酸和1,4-双(咪唑基-1-甲基)-苯配体构筑的一个三维镉(Ⅱ)配位聚合物的合成、晶体结构及荧光性质 [J], 刘宏文;卢文贯因版权原因,仅展示原文概要,查看原文内容请购买。

新型苦味酸铜(Ⅱ)配合物的合成、晶体结构及其热性能

新型苦味酸铜(Ⅱ)配合物的合成、晶体结构及其热性能

晶衍射及 T -T GD A表征 。1 属单斜 晶系 ,2 1/ 空间群 , P ( )c 晶胞参数 a 1856 4 nl b 1599 3 u , = .9 ( ) l, = .0 ( )l T n
c 15 40 3 m, =14 9 6 3 。 V= .7 ( 6 m , = .4 ( )a 0 .1 ( ) , 4 2 05 1 )a . z=2 Mr 9 .4, e .3 c 3 , =20 95 D =16 3g・ m一, = 10 4l .9 m~, ( 0 )= 4 , 0 0 1 , R= .2 。 在 D n F 0 0 21 R= .5 w 0 18 1 6 9 MF和 D S M O中的室温摩尔 电导值分别为2 . 56
Q~ ・m t l e ・ o o 和 3. 72Q~ ・ n ・ o~。 为四核配合物 , 4 C ( 离子 , 个 配体单元 ( c tl 1 l o 由 个 o Ⅱ) 2 提供 N0 22
给予体)4 , 个苦味酸根离子 ,个配位水分子 ,个结晶丙酮分子和 2 2 2 个结晶水分子组成。以每个铜原子为中

研 究论文 ・
新型苦味酸铜 ( 配合物的合成 、 Ⅱ) 晶体结构及其热性能
冯建华
( 滁州学 院 材料与化学工程学院 , 安徽 滁州 2 9 0 ) 3 00 摘要 :以丙酮为溶剂 , 型双肟型 Sl ’ 新 ae n衍生物 H L{ : 6 6- H L= , 二甲氧基 ., [ 13亚丙基 ) 氧双( 2 2一 ( ,- 二 氮次 甲
S n h ss y t e i ,Cr sa tu t e a e m a o e t y t lS r cur nd Th r lPr p r y
o oe PcaeC p e ( f N vl i t o p r Ⅱ)C mpe a r o l x

双三唑和双功能四唑配体的金属-有机骨架材料的合成和性质研究的开题报告

双三唑和双功能四唑配体的金属-有机骨架材料的合成和性质研究的开题报告

双三唑和双功能四唑配体的金属-有机骨架材料的合成和性
质研究的开题报告
研究背景:
金属-有机骨架材料是一种新兴的多孔材料,在气体储存、分离、催化、传感等领域有着广泛的应用前景。

其中,双三唑和双功能四唑等杂环配体具有良好的刚性和平面性,是合成金属-有机骨架材料的理想配体。

然而,这些杂环配体在构建金属-有机骨架材料时,往往需要使用高温和高压条件,且晶体结构不稳定,难以得到符合要求的材料。

因此,本研究旨在寻找一种适合低温和无压条件下合成双三唑和双功能四唑配体的方法及其应用于金属-有机骨架材料构建的潜力。

研究内容:
1. 采用一种简单的合成方法,制备出稳定的双三唑和双功能四唑配体;
2. 进一步构建具有不同金属离子的金属-有机骨架材料,并用X射线衍射、扫描电镜等手段表征其结构和形貌;
3. 测试材料在气体吸附、分离和催化等方面的性能;
4. 探究材料的光、电、磁等性质,并计算其理论表面积、孔径大小和连通性等参数。

意义与价值:
本研究所合成的双三唑和双功能四唑配体及其构建的金属-有机骨架材料具有低温、低压、高稳定性、高催化活性等优势,有望应用于气体分离、储存、传感、催化等方面,同时为合成新型的金属-有机骨架材料提供新的思路和方法。

基于3,5-双(4-吡啶基)-吡啶的两个钴(Ⅱ)配合物的合成与晶体结构

基于3,5-双(4-吡啶基)-吡啶的两个钴(Ⅱ)配合物的合成与晶体结构

基于3,5-双(4-吡啶基)-吡啶的两个钴(Ⅱ)配合物的合成与晶体结构张春丽;王红艳;郑和根【期刊名称】《无机化学学报》【年(卷),期】2016(032)005【摘要】用3,5-双(4-吡啶基)-吡啶(BPYPY)分别与反式-1,4-环己烷二甲酸(trans-H2chdc)和4,4'-联苯醚二甲酸(H2oba)组成混合配体,用温和的溶剂热法与Co(NO3)2· 6H2O合成了2个配合物[Co(BPYPY)2(H2O)4]·(trans-chdc)·4H2O (1)和{[Co(BPYPY)(H2O)4]·(oba))n(2),利用X射线单晶衍射、元素分析对它们进行了表征.结果显示,配合物1为单核结构,属于单斜晶系,P21/n空间群;配位聚合物2是一维链通过O-H…O氢键形成的三维超分子结构,属于正交晶系,Pccn空间群.【总页数】5页(P859-863)【作者】张春丽;王红艳;郑和根【作者单位】宿州学院化学化工学院,宿州 234000;宿州学院化学化工学院,宿州234000;南京大学化学化工学院,人工微结构科学与技术协同创新中心,南京210093【正文语种】中文【中图分类】O614.81+2【相关文献】1.两个基于双(4-吡啶-4-苯基)胺的钴(Ⅱ)、锌(Ⅱ)配合物的合成和晶体结构 [J], 张春丽;郑和根2.基于3,5-二((4′-羧基苄基)氧)苯甲酸和4′-(4-吡啶基)-2,2′∶6′,2″-三联吡啶为混合配体的两个配合物的水热合成与晶体结构 [J], 乔宇;尉兵;王璐瑶;李秀颖;车广波;刘春波;张兴晶3.1H-3-(3-吡啶基)-5-(3'-吡啶基)-1,2,4-三唑的钴(Ⅱ)配合物的合成、晶体结构、热稳定性及配体的DFT计算 [J], 孙琳;刘怀贤;周惠良;刘翔宇;宋伟明;李冰;胡奇林4.含有4-对溴苯基-3,5-二(2-吡啶基)-1,2,4-三氮唑钴配合物的合成,晶体结构和磁性 [J], 齐丽;朱敦如;解大景;吴艳飞;沈旋5.新的二[4-对甲基苯基-3,5-二(2-吡啶基)-1,2,4-三氮唑]双硫氰根合锰配合物的合成,晶体结构和磁性 [J], 朱敦如;王天维;仲盛来;许岩;游效曾因版权原因,仅展示原文概要,查看原文内容请购买。

含双二苯基膦甲烷双核铜(i)配合物的合成及性质

含双二苯基膦甲烷双核铜(i)配合物的合成及性质

在《刺激响应吡啶三氮唑铜(Ⅰ)发光配合物的合成与表征》文中研究指明刺激响应发光材料因在光学传感、环境检测、信息存储和安全保护等方面的良好潜在应用而备受关注。

因此,应用铜(Ⅰ)配合物来发展刺激响应发光材料具有非常重要的理论研究意义和实际应用价值。

本论文应用吡啶三氮唑基螯合配体,结合有机辅助膦配体(双(二苯基膦)甲烷和N,N-双(二苯基膦)胺),设计合成了两类刺激响应铜(Ⅰ)发光配合物,并对它们的结构和性能进行了系统研究。

具体研究内容如下:1.应用5-叔丁基-3-(2’-吡啶基)-1,2,4-三氮唑(bptzH)和双(二苯基膦)甲烷(dppm),设计合成了一个双核铜(Ⅰ)配合物1,它的阳离子部分含有一个{Cu(dppm)2Cu}框架结构,两个铜(Ⅰ)离子通过两个dppm配体桥连,形成一个船-椅式构型的Cu2P4C2八元环。

此外,配合物1中的三氮唑上NH和ClO4 ̄之间存在NHO氢键作用。

配合物1表现出可通过机械研磨和二氯甲烷蒸汽控制的刺激响应发光变色性质,显示出可逆的蓝-绿-黄三色发光转换。

同时,配合物1也表现出特殊的热激活延迟荧光特性。

可逆的蓝-绿双色发光转换可归因于晶格中CH2Cl2溶剂分子的失去和恢复,这一点已被很好的证实。

首先是因为配合物1的晶格中存在大的孔道,CH2Cl2溶剂分子可以自由出入这些大的孔道;其次是发光变化前后样品的1H NMR 中的二氯甲烷信号的消失和恢复。

研究表明,配合物1所表现的可逆的绿-黄双颜色发光转换则可能与机械研磨和CH2Cl2蒸汽引起的NH...O氢键的断裂和重建所导致的配合物分子有序堆积排列的破坏和恢复密切相关。

2.应用吡啶三氮唑基配体和N,N-双(二苯基膦)胺(dppa),合成得到了4个结构新颖的双核铜(Ⅰ)发光配合物2-5。

在这些配合物中,吡啶三氮唑基配体均采用单阴离子类型的μ-η1(N),η2(N,N)三齿配位模式。

配合物2-5均含有一个船-椅式构型的Cu2N2P4八元环。

2-(1H-1,2,4-三氮唑)乙酸Cu(Ⅱ)配合物的水热合成、晶体结构及性质

2-(1H-1,2,4-三氮唑)乙酸Cu(Ⅱ)配合物的水热合成、晶体结构及性质
G nuPo i e C l g h m t n h mi nier g N  ̄ w s N r lU iesy L nh u7 0 7 ) as r n , ol eo C e  ̄r adC e c E gnei , o h et oma nvr t az o 30 0 vc e f y l a n i,
o y e tm o fu it c — i a d t e e y fr n D n t o k sr cu e T e c c i o a x g n a o f m o r si t l n , h r b o mi g a2 e w r t t r . h y l v h mmercb h v o r d n L g u c t e a ir i
ti cm l : o o l i,p c ru 2 n a O4 1 ( n , = . 1 () m, = . 3 () m,3 105 88。 hs o pe m n ci c sa e o p 1 , = .8 2 m b 11 6 n c O9 5 n / 0 . (), x n g P / 3) 5 1 99 = 2 V 05 1 () m , = , (0 ) 3 8 D = .3 ・m , ia oF 11 9 R1O 2 , R20 7 . h rs l = .4 5 n Z 2 F0 0= 1 , 1 7g e Fn l o = .0 , = . 76 w = . 5 T ec t 4 9 G 0 0 6 y a s u tr so stec p e()a m i s —oriae y tot ao io e tm a d f rcroya ru t cue hw h o p rI t s i codn t b w r zl nt gn ao n o abx l e go p r 1 o x d i e r u t
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

收稿日期:2012-07-06。

收修改稿日期:2013-03-01。

天津市自然科学基金(No.12JCZDJC27600)资助项目。

*通讯联系人。

E -mail :hxxytl@基于双三唑甲烷的两种新型Cu 髤配合物的结构和性质田丽*周尚永(天津师范大学化学学院,天津市功能分子结构与性能重点实验室,无机-有机杂化功能材料化学省部共建教育部重点实验室,天津300387)摘要:本文利用柔性配体双三唑甲烷(btm),在水热条件下合成了2个新的配合物[Cu 0.5(btm)Cl]n (1)和[Cu(btm)Cl 2]n (2)。

实验表明,氯离子的配位模式会随着金属和配体的比例的不同而改变,从而得到了两种结构不同的配合物。

化合物1为一维链状结构,链与链之间通过四重Cl …H-C 氢键组合成了三维超分子结构。

化合物2为二维(4.4)连接的网状结构,单重氢键Cl …H-C 将二维层连接为三维结构。

两种配合物用单晶X -衍射、元素分析、热重、顺磁共振等技术进行了表征。

关键词:铜配合物;晶体结构;双三唑甲烷中图分类号:O614.121文献标识码:A文章编号:1001-4861(2013)06-1255-08DOI :10.3969/j.issn.1001-4861.2013.00.178Crystal Structures and Properties of Two Novel Copper Compounds Constructed from Bistriazole MethaneTIAN Li *ZHOU Shang -Yong(Tianjin Key Laboratory of Structure and Performance for Functional Molecules;Key Laboratory of Inorganic -Organic Hybrid Functional Material Chemistry,Ministry of Education;College of Chemistry,Tianjin Normal University,Tianjin 300387,China )Abstract:Using a flexible bis -triazole ligand bis(1,2,4-triazol -1-y1)metane (btm),two new copper 髤coordination polymers [Cu 0.5(btm)Cl]n (1)and [Cu (btm)Cl 2]n (2)have been synthesized under hydrothermal conditions.The coordinating mode of chlorine anions can be tuned as a result of changing the metal/ligand ratio in the reaction system,which ultimately forms two novel structures.1possesses infinite 1D chain structure,and uncommonly four -fold Cl …H-C hydrogen bonds help the chains form a 3D supramolecular architecture.2features 2D (4.4)net framewok.Hydrogen bonds (Cl …H-C)reside among the 2D layers,which link the 2D layers to lead to a 3D supramolecular architecture.For 1and 2,X -ray crystallography,elemental analysis,thermal stability and EPR spectra have been carried DC:932333,1;932332,2.Key words:Cu 髤complex;crystal structure;bis(1,2,4-triazol -1-y1)metaneIn recent years,metal complexes have aroused much interest as materials with potentially new electronic,optical,magnetic,or catalytic properties,etc [1-9].A key step for the construction of polymeric transition metal complexes is to select the multidentate bridging ligands [10-12].Recently,new flexible bispoly -azole -type ligands such as 1-or 4-substituted 1,2,4-triazole rings tethered by analkyl spacer,can be used to obtain a wide variety of polynuclear molecules and linear coordination polymers based on its bridging function [13-14].A large number of mononuclear,oligonu -clear,and polynuclear metal coordination compounds第29卷第6期2013年6月Vol .29No .61255-1262无机化学学报CHINESE JOURNAL OF INORGANIC CHEMISTRY第29卷无机化学学报with bis(1,2,4-triazole)derivatives have been prepared and characterized due to their interesting magnetic properties and novel topologies[15-32].Bis(1,2,4-triazol-1-yl)methane(abbreviated as btm)is a flexible ligand, the flexibility of btm offer the possibility for construction of an unpredictable and interesting framework.As we know,the final structures of coordination polymers are not only dependent upon the geometrical and electronic properties of the metal ions and ligands,but also can be strongly influenced by other factors such as the counterion,the solvent system and the metal-to-ligand ratio.We report herein the self-assembly of the flexible ligand bis(1,2,4-triazol-1-yl)metane(btm),CuCl2at different metal/ligand ratio.Two copper髤complexes [Cu0.5(btm)Cl]n(1)and[Cu(btm)Cl2]n(2)with two different topological structures were fabricated and structurally characterized by X-ray single crystal analyses.The thermal stability and EPR spectra have also been discussed.1Experimental1.1General considerationsDeionized water was used as solvent in this work. The reagents and solvents employed were commer-cially available and used as received without further purification.Ligand btm was synthesized as reported previously[33].The elemental analyses(C,H,and N) were carried out on a Perkin-Elmer elemental analyzer. FT-IR spectra was recorded from KBr pellets in the range4000~400cm-1on a Bio-Rad FTS135spectro-meter.The EPR spectra were measured on a BRUKER EMX-6/1EPR spectrometer.1.2PreparationBoth1and2were obtained by mixing of btm(9 mg,0.06mmol),CuCl2·2H2O(0.06mmol for1,0.24 mmol for2),H2O(2mL)and CH3CN(2mL)in a parr Teflon-lined stainless steel vessel(15mL),then the vessel was sealed and heated to90℃,and kept for3 days.After that the autoclave was cooled to room temperature at a rate of1℃·h-1.Blue crystalline products1and2were obtained.Anal.Calcd.for C5H6ClCu0.5N6(217.38)(1)(%): C,27.63;H, 2.78;N,38.66.Found:C,27.32;H, 3.15;N,38.22.Anal.Calcd.for C5H6Cl2CuN6(284.6)(2)(%):C, 33.19;H,4.09;N,15.49.Found:C,33.52;H,4.27; N,16.02.1.3X-ray crystallographySingle-crystal X-ray diffraction measurements of 1and2were carried out with a Bruker Smart Apex CCD diffractometer and a graphite crystal monochro-mator situated in the incident beam for data collection at298(2)K.Lorentz polarization and absorption corrections were applied.The structures were solved by direct methods and refined by full-matrix least-squares techniques using the SHELXS-97and SHELXL-97programs.All the non-hydrogen atoms were refined with anisotropic displacement parameters, and the hydrogen atoms of the ligands were calculated and refined as riding modes.Crystallographic data for1and2are summarized in Table 1.Selected bond distances and angles of complexes1and2are listed in Table DC-1867266and CCDC-2867267contain the supplement-ary crystallographic data for this paper.These data can be obtained free of charge via dc. /conts/retrieving.html(or from the Cambridge Crystallographic Centre,12Union Road,Cambridge CB21EZ,UK;fax:+441223336033;or deposit@ccdc ).2Results and discussion2.1Synthesis and IR spectraCompounds1and2were both synthesized by the hydrothermal reaction of CuCl2and btm in a mixture of water and acetonitrile with the different starting metal-to-btm molar ratio(1∶1for compound1and4∶1 for compound2),suggesting that the metal-to-ligand molar ratio is an important factor determining the final product in this system.The infrared spectra of compound1and2exhibit weak absorption at2020 and2025cm-1,respectively(1and2),due to the ν(C=N)vibration of the triazole.It deserves noting that the sharp peak appearing in the range of3100~1256第6期田丽等:基于双三唑甲烷的两种新型Cu髤配合物的结构和性质3200cm-1is typically characteristic for the1-triazole ligand,which should be attributed to the aromatic C-H stretching vibration(3142cm-1for1and3127 cm-1for2).2.2Crystal structures2.2.1Crystal structure of[Cu0.5(btm)Cl]n(1)1is a double-stranded chain which is composed of ribbons of16-membered rings,each ring involving two copper atoms and two btm molecules.As shown in Fig.1a,the Cu髤center lies in a little distorted CuN4Cl2octahedral environment,which is provided by two chlorine atoms occupying the axial positions, while the equatorial positions are finished by four different nitrogen donors from four btm ligands.TheTable1Crystallographic data and structure refinement details for complex1and212Empirical formula C5H6ClCu0.5N6C5H6Cl2CuN6Formula weight217.38284.6Crystal system Monoclinic OrthorhombicSpace group P21/c Pbcaa/nm0.81157(4) 1.54426(5)b/nm 1.38441(6)0.70168(3)c/nm0.76095(4) 1.76254(7)β/(°)100.066(5)V/nm30.84180(7) 1.90985(12)Z48D c/(Mg·m-3) 1.715 1.980μ/mm-1 1.638 2.813F(000)4381128θrange/(°) 2.55~25.01 2.64~25.01Limiting indices-9≤h≤7,-10≤k≤16,-5≤l≤9-18≤h≤18,-5≤k≤8,-20≤l≤15 Reflns collected/unique3171/1478(R int=0.0282)4709/1688(R int=0.0383)GOF on F2 1.0440.901R1/wR2[I>2σ(I)]R1=0.0322,wR2=0.0806R1=0.0291,wR2=0.0586R1/wR2(all data)R1=0.0430,wR2=0.0836R1=0.0451,wR2=0.0613Table2Selected bond lengths(nm)and bond angles(°)for complex1and21Cu1-N6i0.2007(2)Cu1-N10.2037(2)Cu1-Cl1iv0.2776(2) Cu1-N6ii0.2007(2)Cu1-N1iii0.2037(2)Cu1-Cl1v0.2776(2)N6i-Cu1-N189.20(10)N6i-Cu1-N1iii90.80(10)N1-Cu1-N1iii180.0(2)N6ii-Cu1-N190.80(10)N6ii-Cu1-N1iii89.20(10)N6i-Cu1-N6ii180.00(16)2Cu1-N10.1991(3)Cu1-Cl20.23342(8)N6-Cu1iv0.1976(3) Cu1-N6i0.1976(3)Cu1-Cl2ii0.26727(8)Cu1-Cl10.22812(9)Cl2-Cu1iii0.26726(8)N1-Cu1-N6i16.28(10)N6i-Cu1-Cl289.54(8)N6i-Cu1-C2ii88.56(8)N1-Cu1-Cl190.80(10)N1-Cu1-Cl290.81(8)Cl1-Cu1-Cl2ii106.75(3)Cl2-Cu1-Cl2ii105.03(3)N6i-Cu1-Cl290.82(10)Cu1-Cl2-Cu1iii110.23(3)N6i-Cu1-Cl190.78(8)Cl1-Cu1-Cl2148.21(3)N1-Cu1-Cl290.87(8)N1-Cu1-Cl2ii87.78(7)1257第29卷无机化学学报Fig.1(a)Molecule structure of1,showing the coordination environments of Cu2+and btm ligand;Symmetry codes:i-x+1, -y,-z;ii x-1,y,z;iii-x,-y,-z;iv-x,-y+1,-z;v x,y-1,z;(b)1D chain of1along a direction;Symmetry codes:ii-x+1.5,y+0.5,z;viii x+1,y,z;ix x+2,y,z;(c)Four-fold Cl…H-C hydrogen bonds in the neighbour chains of1;Symmetry codes:iii-x,-y,-z;v x,y-1,z;vi-x+1,y-0.5,-z+0.5;x x+1,y-1,z;xi x+2,y-1,z;xii-x+1,-y,-z;xiii-x+2,y-0.5,-z+0.5;xiv-x+2,-y,-z;xv-x+3,y-0.5,-z+0.5;(d)3D supramolecular framework of1viewedfrom a direction(pink dotted line,C-H…Cl)bond distance of Cu1-Cl1(0.2776(2)nm)is a little longer than the normal Cu-Cl distance,the coordination environment of copper ions can be described as the“4+2”coordination mode[34-37].The btm ligand adopts a G conformation with the dihedral angles of78.1°between the two triazole rings.The torsion angles N2-N3-C3-N4and C4-N4-C3-N3are92.76(9)and112.4(9)°,respectively. Acting as a bidentate chelating-bridging ligand,a pair of btm ligands chelate Cu1center by triazolyl N1and 1258第6期Fig.2(a)Coordination environments of 2,showing the coordination modes of Cu 2+and btm ligand;(b)2D layer of compound 2viewed from a direction;(c)Cl …H-C hydrogen bonds in the neighbour layers of 2;Symmetry codes:iii-x +1.5,y -0.5,z;vix ,y -1,z ;viix +0.5,-y -0.5,-z +1;viii x +0.5,-y -1.5,-z +1;ix-x +2,y -0.5,-z +1.5;x-x +1.5,-y -1,z +0.5;xix ,-y -1.5,z +0.5;xiix +0.5,y ,-z +1.5;xiiix ,-y -0.5,z +0.5;xivx +0.5,y -1,-z +1.5;xv -x +2,-y -1,-z +2;xvi-x +1.5,y -0.5,z +1;xvii-x +2,-y -1,-z +1;xviiix ,-y -1.5,z -0.5;xixx +0.5,y -1,-z +0.5;xxx ,-y -0.5,z -0.5;xxix +0.5,y ,-z +0.5;(d)3D supramolecular structure of 2viewed from b direction (brown dot line,hydrogenbonding)田丽等:基于双三唑甲烷的两种新型Cu 髤配合物的结构和性质N6donors with the Cu …Cu separation of 0.8116(4)nm,which lead to an infinite 1D chain (Fig.1b).Two neighboring chains have four -fold Cl …H-C hydrogen bonds,in which every chloride atoms act as four hydrogen -bonding acceptors to link two hydrogen atoms from the same chain and two hydrogen atoms1259第29卷无机化学学报Symmetry codes:1,v x ,y -1,z ;vi-x +1,y -0.5,-z +0.5;vii1+x ,-y -0.5,z +0.5;2,v x -0.5,-y -0.5,-z +1.InteractionH …A /nm D …A /nm D-H …A /(°)1C1-H1…Cl1vi 0.26710.3321128.15C2-H2…Cl1vii 0.27540.3354123.19C4-H4…Cl1v 0.27020.3427135.71C3-H3A …Cl1v0.27880.3654147.962C5-H5…Cl1v0.27170.3462136.63Table 3Selected hydrogen bond data for complex 1and 2from neighboring chain (Fig.1c and Fig.1d).Cl …H distances are 0.267(5)nm (Cl(1)…H(1)),0.275(5)nm (Cl(1)…H(2)),0.270(5)nm (Cl(1)…H(4))and 0.279(5)(Cl(1)…H(3A)),respectively (Table 3).Each 1D chain is connected with four other 1D chains through the nonclassical Cl …H-C hydrogen bonds,thus forms a 3D supermolecular framework (Fig.1d).2.2.2Crystal structure of [Cu(btm)Cl 2]n (2)The structure of 2is a two dimensional network with (4.4)topology.The repeated unit in 2consists of one crystallographically independent Cu 2+ion.As viewed in Fig.2a,Cu1is five -coordinated in a distorted trigonal bipyramidal coordination sphere that is defined by two nitrogen atoms from two btm ligands occupying the axial positions,while the equatorial positions are finished by three chlorine atoms.All the Cu -N and Cu -Cl bond lengths fall in the normal range except the Cu1-Cl2distance is 0.2673(3),the coor -dination environment of copper ions can be described as the “4+1”coordination mode.The basic grid of the two dimensional network is puckered due to the trans conformations with the shortest N1…N6distances of 0.5833nm,and dihedral angle of the two triazole ring of 106.5°.In 2,each triazole ligand links two Cu 髤ions by its two terminal nitrogen atoms acting as a bidentate bridging ligand,while the Cl2anion also act as a bridge,so a 2D (4.4)layer forms (Fig.2b).The adjacent 2D layers repeat in an …ABAB …stacking sequence along the [010]direction with an interlayer distance (A …A or B …B)of 1.543nm.The neighboring layers are connected by unclassical hydrogen bonds (C5-H5…Cl1)to form a 3D supramolecular framework (Fig.2c and Fig.2d).2.2.3Comparision of the structuresIt is interesting to note that when the metal/ligand ratio transformed from 1∶1to 4∶1,the coordina -tion mode of one of the chlorine anions changing from monodendate to bidendate.The monodentate chlorine anions gives 1as double -stranded chains,while the bidendate chlorine anions give 2as 2D (4,4)layers.It could be concluded again that the metal/ligand ratio is a main factor in affecting the frameworks of the coordinating complexes.What ′s more,the flexibility of the triazole is also a factor for the different frameworks of 1and 2.2.3EPR spectra and thermal analysesThe EPR spectra of powdered samples of 1and 2have been measured at the room temperature and are shown in Fig.3.The simulations were carried out by the EasySpin software [38].The obtained spectra are characteristic for the copper 髤centres,which is simulated assuming the axial symmetry of g and A tensors.The simulated spectra were obtained by employing the following parameters:g 1=2.17,g 2=2.08,g 3=2.06and A ∥=90G for compound 1,g 1=2.21,g 2=2.09,g 3=2.07,A ∥=140G and A ⊥=25G for compound 2.Both 1and 2have three g values,so the Cu 髤ions in them exist as unsymmetrically structures.From the EPR of the two Cu 髤complexes,no half -field signals were observed at RT.So they didn't show strong magnetic properties.The thermal behaviors of these new crystalline materials were studied by thermogravimetric analysis (TGA)under nitrogen atmosphere and their thermogravimetric curves are shown in Fig.4.Below1260第6期Fig.3Experimental and simulated X-band EPR spectra of powdered samples of1and2at room temperatures 田丽等:基于双三唑甲烷的两种新型Cu髤配合物的结构和性质Fig.4TGA curve for1and2,Sample was heated to800℃at the heating rate of1.5℃·min-1the decomposition temperatures of1and2,no weight losses observed from the curves because there are no solvent molecules in1and2.The TG curves for complexes1and2reveal that they are stable up to about250and235℃,respectively.With further heating,a gradual weight loss occurs,which is due to the decomposition of organic ligands.3ConclusionsIn summary,two novel coordination polymers [Cu0.5(btm)Cl]n(1)and[Cu(btm)Cl2]n(2)have been constructed in the presence of flexible btm based spacers.1is a double-stranded chain,and uncommonly four-fold Cl…H-C hydrogen bonds help the chains form a3D supramolecular architecture.2features2D (4.4)net framewok.Hydrogen bonds(Cl…H-C)reside among the2D layers,which link the2D layers to lead to a3D supramolecular architecture.Acknowledgment:This work was supported financially by the Natural Science Foundation of Tianjin(No. 12JCZDJC27600),PR China.Reference:[1]Savaki T,Dewa T,Aoyama Y.J.Am.Chem.Soc.,1998,120:8539-8540[2]De SáG F,Malta O L,Mello DonegáC de,et al.Coord.Chem.Rev.,2000,196:165-195[3]Ikkala O,Brinke G.Science,2002,295:2407-2409[4]Ishikava N,Sugita M,Ishikawa T,et al.J.Am.Chem.Soc.,2003,125:8694-8695[5]Zhang J P,Lin Y Y,Zhang W X,et al.J.Am.Chem.Soc.,2005,127:14162-14163[6]Kitagawa S,Noro S I,Nakamura T,mun.,2006,11:701-707[7]Kepert C mun.,2006,11:695-700[8]Morris W,Doonan C J,Furukawa H,et al.J.Am.Chem.Soc.,2008,130:12626-12627[9]Ockwig N W,Delgado-Friedrichs O,O′Keeffe M,et al.Acc.Chem.Res.,2005,38:176-182[10]Biradha K,Sarkar M,Rajput mun.,2006,11:4169-4179[11]Ye B H,Tong M L,Chen X M.Coord.Chem.Rev.,2005,249:545-565[12]SUN Hai-Xia(孙海霞),LIU Dong-Ju(刘冬菊),ZHANG Yan(张琰),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao), 2012,28(10):2205-2210[13]Albada G V,Guijt R C,Haasnoot J G,et al.Eur.J.Inorg.Chem.,2000:121-126[14]Garcia Y,Koningsbruggen van P J,Bravic G,et al.Eur.J.Inorg.Chem.,2003:356-362[15]Liu J C,Fu D G,Zhuang J Z,et al.Dalton Trans.,1999,29:2337-2342[16]Hagrman P J,Bridges C,Greedan J E,et al.Dalton Trans.,1999,29:2901-2903[17]Drabent K,Ciunik mun.,2001,6:1254-1255[18]Yi L,Ding B,Zhao B,et al.Inorg.Chem.,2004,43:33-43[19]Li B,Zhu X,Zhou J,et al.Polyhedron,2004,23:3133-3141[20]Wang X,Li B,Zhu X,et al.Eur.J.Inorg.Chem.,2005:1261第29卷无机化学学报3277-3286[21]Huang Y Q,Ding B,Song H B,et mun.,2006,11:4906-4908[22]Zhu X,Ge H,Zhang Y,et al.Polyhedron,2006,25:1875-1883[23]Ding J G,Ge H Y,Zhang Y M,et al.J.Mol.Struct.,2006,782:143-149[24]Ding B,Huang Y Q,Liu Y Y,et mun.,2007,10:7-10[25]Tian A X,Ying J,Peng J,et al.Cryst.Growth Des.,2008,8:3717-3724[26]Habib H A,Hoffmann A,H觟ppea H A,et al.Dalton Trans.,2009,39:1742-1751[27]Tian L,Zhang Z J,Yu A,et al.Cryst.Growth Des.,2010,10:3847-3849[28]Tian L,Yang N,Zhao G mun.,2010,14:1497-1500[29]Yang E C,Feng W,Wang J Y,et al.Inorg.Chim.Acta,2010,363:308-316[30]DING Bin(丁斌),CHANG Ruo-Nan(常若男),WU Xiang-Xia(吴向侠),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2011,27(1):189-192[31]DU Xiao-Di(杜晓迪),LI Chun-Yang(李春阳),CHANG Jia-Zhong(常加忠),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2012,28(10):2223-2228[32]Tian L,Chen Z,Yu A,et al.CrystEngComm.,2012,14:2032-2039[33]Torres J,Lavandera J L,Cabildo P,et al.J.Heterocyc.Chem.,1988,25:771-782[34]Wu G,Wang X F,Okamura T A,et al.Inorg.Chem.,2006,45:8523-8532[35]Gu Z G,Xu Y F,Zhou X H,et al.Cryst.Growth Des.,2008,8:1306-1312[36]Bronisz R.Inorg.Chem.,2005,44:4463-4465[37]Tian A X,Ying J,Peng J,et al.Inorg.Chem.,2009,48:100-110[38]Thakurta S,Roy P,Rosair G,et al.Polyhedron,2009,28:695-7021262。

相关文档
最新文档