24.1.2_垂直于弦的直径(2)PPT课件
合集下载
垂直于弦的直径课件(共21张PPT)

C E A
O
D
B
三 垂径定理的有关计算 例2 如图,⊙ O的弦AB=8cm ,直径CE⊥AB于
D,DC=2cm,求半径OC的长.
解:连接OA,∵ CE⊥AB于D, ∴
1 1 AD AB 8 4 (cm) 2 2
E
方程思想
A
D C
Hale Waihona Puke O ·设OC=xcm,则OD=x-2,根据 勾股定理,得 x2=42+(x-2)2, 解得 x=5, 即半径OC的长为5cm.
试一试:根据刚刚所学,你能利用垂径定理求出引入 中赵州桥主桥拱半径的问题吗?
7.23米
37米
解:如图,用AB表示主桥拱,设 AB所在圆的圆心为O,半径为R. 经过圆心O作弦AB的垂线OC 垂足为D,与弧AB交于点C, 则D是AB的中点,C是弧AB的 中点,CD就是拱高. ∴ AB=37m,CD=7.23m.
C B O A
D
定理及推论,总结: 一条直线只需满足: (1)过圆心 (2)垂直于弦 (3)平分弦 (4)平分弦所对的优弧 (5)平分弦所对的劣弧 上述条件中的任意两个条件,就能推 出其它三个.
五 学以致用
例2 赵州桥(图24.1-7)是我国隋代建造白石拱桥,距今 约有1 400年的历史,是我国古代人民勤劳与智慧的结晶.它 的主桥拱是圆弧形,它的跨度(弧所对的弦的长)为37 m,拱高 (弧的中点到弦的距离)为7.23 m,求赵州桥主桥拱的半径(结果 保留小数点后一位).
一 三 垂径定理的有关计算 例1 如图,OE⊥AB于E,若⊙O的 半径 AB 为10cm, 16 61 cm. OE=6cm,则 半径为 AB=
A
E
B
解析:连接OA, ∵ OE⊥AB, ∴∠AEO=90°,AB=2AE
九年级上数学《24.1.2 垂直于弦的直径》课件

M
C A O 证明:作直径MN垂直于弦AB D ∵ AB∥CD B ∴ 直径MN也垂直于弦CD ⌒ ⌒ ∴AM=BM, ⌒ ⌒ CM=DM ⌒ ⌒ ⌒ ⌒ ∴AM-CM =BM-DM ⌒ ⌒ 即 AC=BD
N
两条弦在圆心的同侧
垂径定理的推论2 有这两种情况: O A C D A O C D B B
E
O
题设
③平分弦 ④平分弦所对的优弧 ⑤平分弦所对的劣弧 结论
垂径定理的推论1
① 直径过圆心 ③ 平分弦 C ② 垂直于弦 ④ 平分弦所对优弧 ⑤ 平分弦所对的劣弧
A
E
O B
已知:CD是直径,AB是弦,CD平分AB 求证:CD⊥AB,AD=BD,AC=BC
⌒ ⌒ ⌒ ⌒
D
(1)平分弦(不是直径)的直径垂直于弦, 并且平分弦所对的两条弧.
① 直径过圆心 ③ 平分弦 ⑤ 平分弦所对的劣弧
② 垂直于弦 ⑤ 平分弦所对的劣弧
① 直径过圆心 ③ 平分弦 ④ 平分弦所对优弧
(4)垂直于弦并且平分弦所对的一条弧的 直径过圆心,并且平分弦和所对的另一条弧.
③ 平分弦 ④ 平分弦所对优弧
① 直径过圆心 ② 垂直于弦 ⑤ 平分弦所对的劣弧
③ 平分弦 ⑤ 平分弦所对的劣弧
B
在 a , d , r, h中,已知其中任 意两个量,可以 求出其它两个量 .
B
⌒ 点O就是AB的圆心.
O
你 能 破 镜 重
m
n
A
C
圆
吗?
B O
作法: 作弦AB、AC及它们的垂直平分线m、n, 交于O点;以O为圆心,OA为半径作圆. 依据: 弦的垂直平分线经过圆心,并且平分弦 所对的两条弧.
垂径定理三角形
C A O 证明:作直径MN垂直于弦AB D ∵ AB∥CD B ∴ 直径MN也垂直于弦CD ⌒ ⌒ ∴AM=BM, ⌒ ⌒ CM=DM ⌒ ⌒ ⌒ ⌒ ∴AM-CM =BM-DM ⌒ ⌒ 即 AC=BD
N
两条弦在圆心的同侧
垂径定理的推论2 有这两种情况: O A C D A O C D B B
E
O
题设
③平分弦 ④平分弦所对的优弧 ⑤平分弦所对的劣弧 结论
垂径定理的推论1
① 直径过圆心 ③ 平分弦 C ② 垂直于弦 ④ 平分弦所对优弧 ⑤ 平分弦所对的劣弧
A
E
O B
已知:CD是直径,AB是弦,CD平分AB 求证:CD⊥AB,AD=BD,AC=BC
⌒ ⌒ ⌒ ⌒
D
(1)平分弦(不是直径)的直径垂直于弦, 并且平分弦所对的两条弧.
① 直径过圆心 ③ 平分弦 ⑤ 平分弦所对的劣弧
② 垂直于弦 ⑤ 平分弦所对的劣弧
① 直径过圆心 ③ 平分弦 ④ 平分弦所对优弧
(4)垂直于弦并且平分弦所对的一条弧的 直径过圆心,并且平分弦和所对的另一条弧.
③ 平分弦 ④ 平分弦所对优弧
① 直径过圆心 ② 垂直于弦 ⑤ 平分弦所对的劣弧
③ 平分弦 ⑤ 平分弦所对的劣弧
B
在 a , d , r, h中,已知其中任 意两个量,可以 求出其它两个量 .
B
⌒ 点O就是AB的圆心.
O
你 能 破 镜 重
m
n
A
C
圆
吗?
B O
作法: 作弦AB、AC及它们的垂直平分线m、n, 交于O点;以O为圆心,OA为半径作圆. 依据: 弦的垂直平分线经过圆心,并且平分弦 所对的两条弧.
垂径定理三角形
人教版九年级数学上册课件:24.1.2垂径定理(共15张PPT)

船能过拱桥吗
AB 7.2,CD 2.4, HN 1 MN 1.5.
AD 1 AB 1 7.2 3.6,
2
2
2
OD OC DC R 2.4.
在Rt△OAD中,由勾股定理,得
OA2 AD2 OD 2 ,
即R2 3.62 (R 2.4)2.
A
D
E C
O
B
自学指导(二)
认真阅读课本8 2页赵州桥问题,并思考:
1、解决赵州桥求半径问题做了什么辅助过线圆?心作弦的垂线 2、由图24.1-8知主桥拱是__A_B____, 跨度是__弦_A_B__,拱 高是__C_D__,弦心距是__O_D___,半径是__O_A_,_O_B___ , AD= _B_D___.
任意知道两个量,可根据垂径定理求出第三个量:
必做题:课本P83练习1、2题。 选做题:课本P89第2题。 思考题:课本P89第8题。
判断下列说法的正误
①平分弧的直径必平分弧所对的弦 ②平分弦的直线必垂直弦 ③垂直于弦的直径平分这条弦 ④平分弦的直径垂直于这条弦 ⑤弦的垂直平分线是圆的直径 ⑥弦的垂直平分线一定经过圆心
2、如图,直径为10cm的圆中,圆心到弦 AB的距离OM为4cm,求弦AB的长。
O
A
M
B
相信自己,我能行
破镜重圆
自学指导(一)
认真阅读课本81页—82页“赵州桥问 题” 上面的内容: 1、圆是______图形, __________都是它 的对称轴,对称轴有____条.
2、垂径定理的内容是_________________.
3、对照24.1-6用符号语言表示垂径定理 ? 4、垂径定理的推论是什么?
24.1.2垂径定理_课件ppt(新人教版九年级上)

E
E
O
O
B
A
A
D
D
B
C
C
• 例2.如图是一条排水管的截面。已知排 水管的半径10cm,水面宽AB=12cm。 求水的最大深度.
O
E
A
D
B
求圆中有关线段的长度时,常借助垂径定 理转化为直角三角形,从而利用勾股定理 来解决问题.
提高练习: 1. 已知⊙O的半径为10,弦AB∥CD, AB=12,CD=16,则AB和CD的距离 为 2或14 .
练习反馈
• 1、判断:
驶向胜利 的彼岸
• ⑴垂直于弦的直线平分这条弦,并且平分弦所对的两 条弧. ( ) • ⑵平分弦所对的一条弧的直径一定平分这条弦所对的 另一条弧. (√ )
• ⑶经过弦的中点的直径一定垂直于弦.(
)
• ⑷圆的两条弦所夹的弧相等,则这两条弦平行 . ( )
• ⑸弦的垂直平分线一定平分这条弦所对的弧. ( √ )
某地有一座圆弧形拱桥圆心为O,桥下水面宽度为7、2 m ,过O 作OC ⊥ AB 于D, 交圆弧于C,CD=2、4m, 现有一艘宽3m,船舱顶部为方形并高出水面(AB)2m的 货船要经过拱桥,此货船能否顺利通过这座拱桥?
C M H A E D F B O N
说出你这节课的收获和体验,让大家 与你一起分享!!!
2 2 2 2
O
A
E
B
答:⊙O的半径为5cm.
a r d 2
2 2 2
若下面的弓形高为h, 则r、d、h之间有怎 样的关系?
2.如图,在⊙O中,AB、AC为互相垂直且相等的 两条弦,OD⊥AB于D,OE⊥AC于E,求证四边形 ADOE是正方形.
E
O
O
B
A
A
D
D
B
C
C
• 例2.如图是一条排水管的截面。已知排 水管的半径10cm,水面宽AB=12cm。 求水的最大深度.
O
E
A
D
B
求圆中有关线段的长度时,常借助垂径定 理转化为直角三角形,从而利用勾股定理 来解决问题.
提高练习: 1. 已知⊙O的半径为10,弦AB∥CD, AB=12,CD=16,则AB和CD的距离 为 2或14 .
练习反馈
• 1、判断:
驶向胜利 的彼岸
• ⑴垂直于弦的直线平分这条弦,并且平分弦所对的两 条弧. ( ) • ⑵平分弦所对的一条弧的直径一定平分这条弦所对的 另一条弧. (√ )
• ⑶经过弦的中点的直径一定垂直于弦.(
)
• ⑷圆的两条弦所夹的弧相等,则这两条弦平行 . ( )
• ⑸弦的垂直平分线一定平分这条弦所对的弧. ( √ )
某地有一座圆弧形拱桥圆心为O,桥下水面宽度为7、2 m ,过O 作OC ⊥ AB 于D, 交圆弧于C,CD=2、4m, 现有一艘宽3m,船舱顶部为方形并高出水面(AB)2m的 货船要经过拱桥,此货船能否顺利通过这座拱桥?
C M H A E D F B O N
说出你这节课的收获和体验,让大家 与你一起分享!!!
2 2 2 2
O
A
E
B
答:⊙O的半径为5cm.
a r d 2
2 2 2
若下面的弓形高为h, 则r、d、h之间有怎 样的关系?
2.如图,在⊙O中,AB、AC为互相垂直且相等的 两条弦,OD⊥AB于D,OE⊥AC于E,求证四边形 ADOE是正方形.
垂直于弦的直径ppt课件

∵ OM ⊥ AB,∴ AM=BM.
∵ AC=BD,∴ CM=DM.
又∵ OM ⊥ CD,∴ OC=OD.
∴△ OCD 为等腰三角形 .
感悟新知
知2-练
3-1. [模拟·鼓楼区] 如图,AB是⊙O的弦,半径OD⊥AB,
垂足为H,BC⊥AB, 交AD延长线于点C.
感悟新知
(1)求证:D是AC的中点;
⌒
⌒
⌒
⌒
直于 AB,并且AC = CB, AD = DB .
可用几何语言表述为:
⊥ ,
是直径
=⌒,
= ⇒ ⌒
⌒
=⌒ .
不是直径
感悟新知
拓宽视野
对于圆中的一条直线,如果具备下列五个条件
中的任意两个,那么一定具备其他三个:
(1)过圆心;
(2)垂直于弦;
么可用几何语言表述为:
= ,
是直径, ⇒ ⌒
=⌒,
⊥ ,
⌒
=⌒ .
感悟新知
知2-练
例2 如图24.1-9,弦CD垂直于⊙ O的直径AB,垂足
为点H,且 CD=2 , BD= ,则 AB 的长为
(
A. 2
)
B. 3
C. 4
D. 5
思路导引:
感悟新知
1.垂径定理
垂直于弦的直径平分弦,并且平分弦所对的两条弧 .
感悟新知
知1-讲
特别提醒
1. “垂直于弦的直径”中 的“直径”,其实质是:
过圆心且垂直于弦的线段、直线均可.
2. “两条弧”是指弦所对 的劣弧和优弧或两个半圆.
感悟新知
知1-讲
2.示例
如图 24.1-8, CD ⊥ AB 于点 E, CD 是⊙ O 的直径,那
∵ AC=BD,∴ CM=DM.
又∵ OM ⊥ CD,∴ OC=OD.
∴△ OCD 为等腰三角形 .
感悟新知
知2-练
3-1. [模拟·鼓楼区] 如图,AB是⊙O的弦,半径OD⊥AB,
垂足为H,BC⊥AB, 交AD延长线于点C.
感悟新知
(1)求证:D是AC的中点;
⌒
⌒
⌒
⌒
直于 AB,并且AC = CB, AD = DB .
可用几何语言表述为:
⊥ ,
是直径
=⌒,
= ⇒ ⌒
⌒
=⌒ .
不是直径
感悟新知
拓宽视野
对于圆中的一条直线,如果具备下列五个条件
中的任意两个,那么一定具备其他三个:
(1)过圆心;
(2)垂直于弦;
么可用几何语言表述为:
= ,
是直径, ⇒ ⌒
=⌒,
⊥ ,
⌒
=⌒ .
感悟新知
知2-练
例2 如图24.1-9,弦CD垂直于⊙ O的直径AB,垂足
为点H,且 CD=2 , BD= ,则 AB 的长为
(
A. 2
)
B. 3
C. 4
D. 5
思路导引:
感悟新知
1.垂径定理
垂直于弦的直径平分弦,并且平分弦所对的两条弧 .
感悟新知
知1-讲
特别提醒
1. “垂直于弦的直径”中 的“直径”,其实质是:
过圆心且垂直于弦的线段、直线均可.
2. “两条弧”是指弦所对 的劣弧和优弧或两个半圆.
感悟新知
知1-讲
2.示例
如图 24.1-8, CD ⊥ AB 于点 E, CD 是⊙ O 的直径,那
24.1.2 垂直于弦的直径(2)

O · E D B
平分弦(不是直径)的直径垂直于
弦,并且平分弦所对的两条弧。 (2)“不是直径”这个条件能去掉吗?如 果不能,请举出反例。
C A O · B D
① CD是直径, ② CD⊥AB, ③ AE=BE ⌒ ⌒ ⌒ ⌒ ⑤AD=BD. ④AC=BC,
C A E└
●
B
O
① ②
③ ④ ⑤
D
CD是直径 CD⊥AB
① CD是直径, ② CD⊥AB, ③ AE=BE ⌒ ⌒ ⌒ ⌒ ⑤AD=BD. ④AC=BC,
C
A E
●
B
O
④ ⑤
① ② ③
D
AC=BC AD=BD
CD是直径 CD⊥AB AE=BE
C
① CD是直径, ② CD⊥AB, ③ AM=BM ⌒ ⌒ ⌒ ⌒ ⑤AD=BD. ④AC=BC,
A
└ M
●
点C是AB的中点,则OC的长为
。
A
C · O
B
2、 下列命题错误的是(
)
A、平分弧的直径平分这条弧所对的弦
B、平分弦的弦垂直于这条弦 C、垂直于弦的直径平分这条弦 D、弦的中垂线过圆心
3、如图,⊙O中CD是弦,AB是直径, AE⊥CD于E,BF⊥CD于F,求证:CE=DF。
A O C F E M D
C
A E
●
B
O
① ④
② ③ E AD= BD
D
AC=BC
① ⑤
② ③ ④
① CD是直径, ② CD⊥AB, ③ AE=BE ⌒ ⌒ ⌒ ⌒ ⑤AD=BD. ④AC=BC,
C
A E
●
B
O
② ③
① ④ ⑤
平分弦(不是直径)的直径垂直于
弦,并且平分弦所对的两条弧。 (2)“不是直径”这个条件能去掉吗?如 果不能,请举出反例。
C A O · B D
① CD是直径, ② CD⊥AB, ③ AE=BE ⌒ ⌒ ⌒ ⌒ ⑤AD=BD. ④AC=BC,
C A E└
●
B
O
① ②
③ ④ ⑤
D
CD是直径 CD⊥AB
① CD是直径, ② CD⊥AB, ③ AE=BE ⌒ ⌒ ⌒ ⌒ ⑤AD=BD. ④AC=BC,
C
A E
●
B
O
④ ⑤
① ② ③
D
AC=BC AD=BD
CD是直径 CD⊥AB AE=BE
C
① CD是直径, ② CD⊥AB, ③ AM=BM ⌒ ⌒ ⌒ ⌒ ⑤AD=BD. ④AC=BC,
A
└ M
●
点C是AB的中点,则OC的长为
。
A
C · O
B
2、 下列命题错误的是(
)
A、平分弧的直径平分这条弧所对的弦
B、平分弦的弦垂直于这条弦 C、垂直于弦的直径平分这条弦 D、弦的中垂线过圆心
3、如图,⊙O中CD是弦,AB是直径, AE⊥CD于E,BF⊥CD于F,求证:CE=DF。
A O C F E M D
C
A E
●
B
O
① ④
② ③ E AD= BD
D
AC=BC
① ⑤
② ③ ④
① CD是直径, ② CD⊥AB, ③ AE=BE ⌒ ⌒ ⌒ ⌒ ⑤AD=BD. ④AC=BC,
C
A E
●
B
O
② ③
① ④ ⑤
24.1.2垂直于弦的直径.ppt精编版

的中点,⌒C是AB的中点,CD就是
拱∴ 高A.B=37m,
O
C∴DA=D7=.213/m2 AB=18.5m,OD=OC-
∵CD=ORA-27.2O3D2 AD2
R2 18.52 R 7.232
解得R≈27.3(m)即主桥拱半径约为27.3m.
四、当堂检测 巩固新知
1.(绍兴·中考)已知⊙O的半径为5,弦AB的弦心距 为3,则AB的长是( D ) A.3 B.4 C.6 D.8
解:连接OA,∵ OE⊥AB A E B
∴ AE = OA 2+OE 2
O·
= 102+62 = 8cm
∴ AB=2AE=16cm
3、如图,在⊙O中,弦AB的长为8cm, 圆心O到AB的距离为3cm,求⊙O的半径。
解:过点O作OE⊥AB于E,连接
OA ∴ AE
=
1 AB 2
= 4cm
OE = 3cm
活动二
如图,AB是⊙O的一条弦,做直径CD,使CD⊥AB,垂足为E. (1)这个图形是轴对称图形吗?如果是,它的对称轴是什么? (2)你能发现图中有那些相等的线段和弧?为什么?
(1)是轴对称图形.直径CD所在的
C
直线是它的对称轴
(2弧):线A⌒段C:=BA⌒EC=BE,A⌒D=B⌒D
·O
E
⌒ ⌒ 把圆沿着直径CD折叠时,CD两侧的两个半圆重合,
则AE=BE,CE=DE.
AE-CE=BE-DE.
所以,AC=BD
五、课堂小结
通过本课时的学习,需要我们: 1.理解圆的轴对称性及垂径定理的推证过程; 能初步应用垂径定理进行计算和证明. 2.掌握垂径定理的推论,明确理解“知二推三” 的意义.利用垂径定理及其推论解决相应的数学问题.
拱∴ 高A.B=37m,
O
C∴DA=D7=.213/m2 AB=18.5m,OD=OC-
∵CD=ORA-27.2O3D2 AD2
R2 18.52 R 7.232
解得R≈27.3(m)即主桥拱半径约为27.3m.
四、当堂检测 巩固新知
1.(绍兴·中考)已知⊙O的半径为5,弦AB的弦心距 为3,则AB的长是( D ) A.3 B.4 C.6 D.8
解:连接OA,∵ OE⊥AB A E B
∴ AE = OA 2+OE 2
O·
= 102+62 = 8cm
∴ AB=2AE=16cm
3、如图,在⊙O中,弦AB的长为8cm, 圆心O到AB的距离为3cm,求⊙O的半径。
解:过点O作OE⊥AB于E,连接
OA ∴ AE
=
1 AB 2
= 4cm
OE = 3cm
活动二
如图,AB是⊙O的一条弦,做直径CD,使CD⊥AB,垂足为E. (1)这个图形是轴对称图形吗?如果是,它的对称轴是什么? (2)你能发现图中有那些相等的线段和弧?为什么?
(1)是轴对称图形.直径CD所在的
C
直线是它的对称轴
(2弧):线A⌒段C:=BA⌒EC=BE,A⌒D=B⌒D
·O
E
⌒ ⌒ 把圆沿着直径CD折叠时,CD两侧的两个半圆重合,
则AE=BE,CE=DE.
AE-CE=BE-DE.
所以,AC=BD
五、课堂小结
通过本课时的学习,需要我们: 1.理解圆的轴对称性及垂径定理的推证过程; 能初步应用垂径定理进行计算和证明. 2.掌握垂径定理的推论,明确理解“知二推三” 的意义.利用垂径定理及其推论解决相应的数学问题.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若油面宽AB = 600mm,求油的最大深度.
A
O
┌E
D
D
600
C
B
在直径为650mm的圆柱形油槽内装入一些油后,截面的油面宽 AB = 600mm,求油的最大深度.
④⑤ ①②③ 平分弦所对的两条弧的直线经过圆心,并且垂直平分弦.
一、判断是非:
(1)平分弦的直径,平分这条弦所对的弧。
(2)平分弦的直线,必定过圆心。
(3)一条直线平分弦(这条弦不是直径),
那么这 条直线垂直这条弦。
A
C
C
C
OD
(1) B
•O
A
Байду номын сангаас
B
(2) D
•O
A
B
(3) D
(4)弦的垂直平分线一定是圆的直径。
B
M
OM⊥AB,ON⊥AC,垂足分别为M,
A
N,且OM=2,0N=3,则A6B= , AC=4 ,OA= 13
ON C
练习:5.在⊙O中,AB、AC为互相垂直且相等的两条弦, OD⊥AB于D,OE⊥AC于E.
求证:四边形ADOE是正方形.
C
E
O
D
A
B
1.在直径为650mm的圆柱形油槽内装入一些油后,截面如图所示.
(5)平分弧的直线,平分这条弧所对的 弦。 (6)弦垂直于直径,这条直径就被弦平分。 (7)平分弦的直径垂直于弦
•O ACB
(4)
B
•O D
C
A
(5)
C
•O A EB
D (6)
填空:
1、如图:已知AB是⊙O的直径,弦CD与AB相交于点E,若 _______A_B__⊥__C_D__(__或__A_C__=_A_D__,__或__B_C_=__B_D_)_________________, 则CE=DE(只需填写一个你认为适当的条件)
中的一个为条件,另两个为结论构成三个命题,其中真命题的
个数为 ( A )
A
A、3 B、2 C、1 D、0
。 O
C
D
B
1. 平分已知弧 AB .
你会四等分弧AB吗? A
B
(1)如图,已知⊙O的半径为 6 cm,弦 AB与半径 OA的夹角为
30 °,求弦 AB 的长.
O
6O
A 30°
B
E
M
A
B
C
(2)如图,已知⊙O的半径为 6 cm,弦 AB与半径 OC互相平分,
D
⑤ 平分弦所对的劣弧
那么,由五个条件中的任何两个条件都可以推出其他
三个结论。
推论:平分弦(不是直径)的直径垂直于弦,并且 平分弦所对的两条弧。
C
垂径定理及推论 A M└ B
条件 结论
●O
命题
①② ③④⑤ 垂直于弦的直径平分弦,并且平分弦所的两条弧. ①③ ②④⑤ 平分弦(不是直径)的直径垂直于弦,并且平 分弦所对的两D条弧.
2
2
E 根据勾股定理,得 OC 2 CF 2 OF 2,即
F
●
O
R2 3002 R 902.
D 解这个方程,得R 545. 这段弯路的半径约为545m.
(3).如图,有一圆弧形桥拱,拱形的半径为10米,
桥拱的跨度AB=16米,则拱高为 4
米。
C
A
·D B O
练习:半径为5的圆中,有两条平行弦 AB 和CD,并且AB =6,CD=8,求AB 和CD间的距离.
交点为 M , 求 弦 AB 的长.
• 例1、如图,一条公路的转弯处是一段圆弧(即图中弧CD,点O 是弧CD的圆心),其中CD=600m,E为弧CD上的一点,且 OE⊥CD垂足为F,EF=90m.求这段弯路的半径.
解:连接OC.
设弯路的半径为Rm,则OF (R 90)m.
OE CD,
C
CF 1 CD 1 600 300(m).
2
2
OD OC DC R 2.4.
在Rt△OAD中,由勾股定理,得
OA2 AD2 OD2 ,
即R2 3.62 (R 2.4)2.
解得 R≈3.9(m). 在Rt△ONH中,由勾股定理,得
OH ON 2 HN 2 , 即OH 3.92 1.52 3.6. DH 3.6 1.5 2.1 2. ∴此货船能顺利通过这座拱桥.
1.过⊙o内一点M的最长的弦长为10㎝,最短弦长为8 ㎝,那么⊙o的半径是 5㎝ 2.已知⊙o的弦AB=6㎝,直径CD=10㎝,且AB⊥CD, 那么C到AB的距离等1于㎝或9㎝
3.已知⊙O的弦AB=4㎝,圆心O到AB的中点C的距离为1 ㎝,那么⊙O的半径为 5 Cm
4.如图,在⊙O中弦AB⊥AC,
C
.E
D
O
A FB (1)
A FB
C
.E D
O
(2)
做这类问题是,思考问题一定要 全面,考虑到多种情况.
挑战自我
1. 如图,⊙O 与矩形 ABCD 交于 E , F ,G ,H , AH=4, HG=6,BE=2.求EF的长.
A4H 6 G
D
M
2
BE
·N
F
C
0
船能过拱桥吗?
例3.如图,某地有一圆弧形拱桥,桥下水面宽为7.2米,拱顶高出水 面2.4米.现有一艘宽3米、船舱顶部为长方形并高出水面2米的 货船要经过这里,此货船能顺利通过这座拱桥吗?
①④ ②③⑤ 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的 ①⑤ ②③④ 另一条弧.
②③ ①④⑤ 弦的垂直平分线经过圆心,并且平分这条弦所对的两条弧.
②④ ②⑤ ③④ ③⑤
①③⑤ 垂直于弦并且平分弦所对的一条弧的直线经过圆心,并且
①③④ 平分弦和所对的另一条弧.
①②⑤ 平分弦并且平分弦所对的一条弧的直线经过圆心,垂直于 ①②④ 弦,并且平分弦所对的另一条弧.
2、如图:已知AB是⊙O的弦,OB=4cm,∠ABO=300,则O
到AB的距离是____2_______cm,AB=___4______cm.
A
C
D
E
。
O
B 第1题图
。
O
A
H
B
第2题图
选择:
如图:在⊙O中,AB为直径,CD为非直径的弦,对于(1) AB⊥CD (2)AB平分CD (3)AB平分CD所对的弧。若以其
垂径定理
定理 垂直于弦的直径平分弦,并且平分弦所对的两条弧.
C
A M└ ●O
如图∵ CD是直径, CD⊥AB,
B
∴AM=BM, A⌒C =B⌒C, A⌒D=B⌒D.
D
根据垂径定理与推论可知:对于一个圆和一条直 线来说,如果具备:
C
① 经过圆心
A M└
B ② 垂直于弦
●O
③ 平分弦
④ 平分弦所对的优弧
船能过拱桥吗
解:如图,用 A表B示桥拱, A所B 在圆的圆心为O,半径为Rm,
经过圆心O作弦AB的垂线OD,D为垂足,与 A相B交于点C.根
据 由垂题径设定 得理A,DB是A7B.的2,中CD点,C2是.4,A HN的B 中1点M,NCD就 1是.5拱. 高.
AD 1 AB 1 7.2 3.6, 2
A
O
┌E
D
D
600
C
B
在直径为650mm的圆柱形油槽内装入一些油后,截面的油面宽 AB = 600mm,求油的最大深度.
④⑤ ①②③ 平分弦所对的两条弧的直线经过圆心,并且垂直平分弦.
一、判断是非:
(1)平分弦的直径,平分这条弦所对的弧。
(2)平分弦的直线,必定过圆心。
(3)一条直线平分弦(这条弦不是直径),
那么这 条直线垂直这条弦。
A
C
C
C
OD
(1) B
•O
A
Байду номын сангаас
B
(2) D
•O
A
B
(3) D
(4)弦的垂直平分线一定是圆的直径。
B
M
OM⊥AB,ON⊥AC,垂足分别为M,
A
N,且OM=2,0N=3,则A6B= , AC=4 ,OA= 13
ON C
练习:5.在⊙O中,AB、AC为互相垂直且相等的两条弦, OD⊥AB于D,OE⊥AC于E.
求证:四边形ADOE是正方形.
C
E
O
D
A
B
1.在直径为650mm的圆柱形油槽内装入一些油后,截面如图所示.
(5)平分弧的直线,平分这条弧所对的 弦。 (6)弦垂直于直径,这条直径就被弦平分。 (7)平分弦的直径垂直于弦
•O ACB
(4)
B
•O D
C
A
(5)
C
•O A EB
D (6)
填空:
1、如图:已知AB是⊙O的直径,弦CD与AB相交于点E,若 _______A_B__⊥__C_D__(__或__A_C__=_A_D__,__或__B_C_=__B_D_)_________________, 则CE=DE(只需填写一个你认为适当的条件)
中的一个为条件,另两个为结论构成三个命题,其中真命题的
个数为 ( A )
A
A、3 B、2 C、1 D、0
。 O
C
D
B
1. 平分已知弧 AB .
你会四等分弧AB吗? A
B
(1)如图,已知⊙O的半径为 6 cm,弦 AB与半径 OA的夹角为
30 °,求弦 AB 的长.
O
6O
A 30°
B
E
M
A
B
C
(2)如图,已知⊙O的半径为 6 cm,弦 AB与半径 OC互相平分,
D
⑤ 平分弦所对的劣弧
那么,由五个条件中的任何两个条件都可以推出其他
三个结论。
推论:平分弦(不是直径)的直径垂直于弦,并且 平分弦所对的两条弧。
C
垂径定理及推论 A M└ B
条件 结论
●O
命题
①② ③④⑤ 垂直于弦的直径平分弦,并且平分弦所的两条弧. ①③ ②④⑤ 平分弦(不是直径)的直径垂直于弦,并且平 分弦所对的两D条弧.
2
2
E 根据勾股定理,得 OC 2 CF 2 OF 2,即
F
●
O
R2 3002 R 902.
D 解这个方程,得R 545. 这段弯路的半径约为545m.
(3).如图,有一圆弧形桥拱,拱形的半径为10米,
桥拱的跨度AB=16米,则拱高为 4
米。
C
A
·D B O
练习:半径为5的圆中,有两条平行弦 AB 和CD,并且AB =6,CD=8,求AB 和CD间的距离.
交点为 M , 求 弦 AB 的长.
• 例1、如图,一条公路的转弯处是一段圆弧(即图中弧CD,点O 是弧CD的圆心),其中CD=600m,E为弧CD上的一点,且 OE⊥CD垂足为F,EF=90m.求这段弯路的半径.
解:连接OC.
设弯路的半径为Rm,则OF (R 90)m.
OE CD,
C
CF 1 CD 1 600 300(m).
2
2
OD OC DC R 2.4.
在Rt△OAD中,由勾股定理,得
OA2 AD2 OD2 ,
即R2 3.62 (R 2.4)2.
解得 R≈3.9(m). 在Rt△ONH中,由勾股定理,得
OH ON 2 HN 2 , 即OH 3.92 1.52 3.6. DH 3.6 1.5 2.1 2. ∴此货船能顺利通过这座拱桥.
1.过⊙o内一点M的最长的弦长为10㎝,最短弦长为8 ㎝,那么⊙o的半径是 5㎝ 2.已知⊙o的弦AB=6㎝,直径CD=10㎝,且AB⊥CD, 那么C到AB的距离等1于㎝或9㎝
3.已知⊙O的弦AB=4㎝,圆心O到AB的中点C的距离为1 ㎝,那么⊙O的半径为 5 Cm
4.如图,在⊙O中弦AB⊥AC,
C
.E
D
O
A FB (1)
A FB
C
.E D
O
(2)
做这类问题是,思考问题一定要 全面,考虑到多种情况.
挑战自我
1. 如图,⊙O 与矩形 ABCD 交于 E , F ,G ,H , AH=4, HG=6,BE=2.求EF的长.
A4H 6 G
D
M
2
BE
·N
F
C
0
船能过拱桥吗?
例3.如图,某地有一圆弧形拱桥,桥下水面宽为7.2米,拱顶高出水 面2.4米.现有一艘宽3米、船舱顶部为长方形并高出水面2米的 货船要经过这里,此货船能顺利通过这座拱桥吗?
①④ ②③⑤ 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的 ①⑤ ②③④ 另一条弧.
②③ ①④⑤ 弦的垂直平分线经过圆心,并且平分这条弦所对的两条弧.
②④ ②⑤ ③④ ③⑤
①③⑤ 垂直于弦并且平分弦所对的一条弧的直线经过圆心,并且
①③④ 平分弦和所对的另一条弧.
①②⑤ 平分弦并且平分弦所对的一条弧的直线经过圆心,垂直于 ①②④ 弦,并且平分弦所对的另一条弧.
2、如图:已知AB是⊙O的弦,OB=4cm,∠ABO=300,则O
到AB的距离是____2_______cm,AB=___4______cm.
A
C
D
E
。
O
B 第1题图
。
O
A
H
B
第2题图
选择:
如图:在⊙O中,AB为直径,CD为非直径的弦,对于(1) AB⊥CD (2)AB平分CD (3)AB平分CD所对的弧。若以其
垂径定理
定理 垂直于弦的直径平分弦,并且平分弦所对的两条弧.
C
A M└ ●O
如图∵ CD是直径, CD⊥AB,
B
∴AM=BM, A⌒C =B⌒C, A⌒D=B⌒D.
D
根据垂径定理与推论可知:对于一个圆和一条直 线来说,如果具备:
C
① 经过圆心
A M└
B ② 垂直于弦
●O
③ 平分弦
④ 平分弦所对的优弧
船能过拱桥吗
解:如图,用 A表B示桥拱, A所B 在圆的圆心为O,半径为Rm,
经过圆心O作弦AB的垂线OD,D为垂足,与 A相B交于点C.根
据 由垂题径设定 得理A,DB是A7B.的2,中CD点,C2是.4,A HN的B 中1点M,NCD就 1是.5拱. 高.
AD 1 AB 1 7.2 3.6, 2