174287368-Electrochemical-Lab-Report
蓝晓生物科技 Q Large Scale HP 层析介质说明书

Q Large Scale HP说明书1.产品介绍Q Large Scale HP层析介质是蓝晓科技自主研发的一种新型高度交联的琼脂糖层析介质,是将三甲胺基烷基季铵基团键合在小粒度高流速琼脂糖微球上形成的一种强阴离子交换介质,其具有高流速、高分辨率、高动态载量、良好的化学稳定性和机械性能,非特异性吸附低,回收率高,方便进行规模放大,可缩短生产时间,提高生产效率。
广泛用于生物制药和生物工程下游蛋白质、核酸及多肽的离子交换制备。
2.性能介绍产品牌号Q Large Scale HP外观白色球状,无臭无味种类强阴离子交换填料基质Large Scale HP微球配基三甲胺基烷基季铵基团形态氯型粒径d50v(μm)~36-44pH稳定性2~12(长期),2~14(短期,在位清洗[CIP])在以下液体中稳定:所有常用的水相缓冲液;1mol/L 氢氧化钠;化学稳定性8mol/L 尿素;6mol/L 盐酸胍;70% 乙醇;30%异丙醇;1M 醋酸动态载量,Q B,10% >50mgBSA /ml离子交换量(mmol /ml)0.15~0.18Cl-工作温度4~30℃耐热性121℃,水中30min流速*柱床高20cm,压力0.3MPa,流速大于220cm/h应用用于生物制药和生物工程下游蛋白质、核酸及多肽的离子交换层析纯化3.使用方法3.1 装柱装柱按照标准操作规程操作。
必须保证每种材料都处于工作温度,凝胶装柱前需要脱气。
3.2平衡使用2~5倍柱床体积的上样平衡液平衡柱子,务必使流出液的电导和pH同上样缓冲液的电导和pH完全一致。
平衡液是低浓度的缓冲溶液,如T ris、PBS等。
3.3上样(1)样品用平衡液配制,浑浊的样品要离心和过滤后上样。
盐浓度太大的样品处理后再配。
(2)一般情况是让目标产品结合在柱子上,用平衡液洗去杂质,再选择一种洗脱液洗下目标产品。
(3)介质对样品组分吸附的程度取决于样品的带电性质、流动相的离子强度和pH值。
钨掺杂镍铁水滑石高效电催化析氧反应

物 理 化 学 学 报Acta Phys. -Chim. Sin. 2024, 40 (1), 2303055 (1 of 9)Received: March 30, 2023; Revised: May 24, 2023; Accepted: May 25, 2023; Published online: June 5, 2023.*Correspondingauthors.Emails:******************(Y.K.);***************(X.S.);Tel.:+86-10-64448751(X.S.).The project was supported by the National Key R&D Program of China (2021YFA1502200), the National Natural Science Foundation of China (21935001, 22075013, 22179029), the Key Beijing Natural Science Foundation (Z210016), the S&T Program of Hebei (21344601D), the Fundamental Research Funds for the Central Universities.国家重点研发计划项目(2021YFA1502200), 国家自然科学基金项目(21935001, 22075013, 22179029), 北京市自然科学重点基金项目(Z210016), 河北省科技计划项目(21344601D)及中央高校基本科研业务费专项资金资助 © Editorial office of Acta Physico-Chimica Sinica[Article] doi: 10.3866/PKU.WHXB202303055 Tungsten-Doped NiFe-Layered Double Hydroxides as Efficient Oxygen Evolution CatalystsXinxuan Duan 1, Marshet Getaye Sendeku 2, Daoming Zhang 3, Daojin Zhou 1, Lijun Xu 4, Xueqing Gao 5, Aibing Chen 5, Yun Kuang 2,*, Xiaoming Sun 1,*1 State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.2 Ocean Hydrogen Energy R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518071,Guangdong Province, China.3 China Institute of Nuclear Industry Strategy, Beijing 100048, China.4 Xinjiang Coal Mine Mechanical and Electrical Engineering Technology Research Center, Xinjiang Institute of Engineering, Urumchi 830023, China.5 College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.Abstract: Electrochemical water splitting proves critical tosustainable and clean hydrogen fuel production. However, the anodicwater oxidation reaction—the major half-reaction in water splitting—has turned into a bottleneck due to the high energy barrier of thecomplex and sluggish four-electron transfer process. Nickel-ironlayered double hydroxides (NiFe-LDHs) are regarded as promisingnon-noble metal electrocatalysts for oxygen evolution reaction (OER)catalysis in alkaline conditions. However, the electrocatalytic activityof NiFe-LDH requires improvement because of poor conductivity, asmall number of exposed active sites, and weak adsorption of intermediates. As such, tremendous effort has been made to enhance the activity of NiFe-LDH, including introducing defects, doping, exfoliation to obtain single-layer structures, and constructing arrayed structures. In this study, researchers controllably doped NiFe-LDH with tungsten using a simple one-step alcohothermal method to afford nickel-iron-tungsten layered double hydroxides (NiFeW-LDHs). X-ray powder diffraction analysis was used to investigate the structure of NiFeW-LDH. The analysis revealed the presence of the primary diffraction peak corresponding to the perfectly hexagonal-phased NiFe-LDH, with no additional diffraction peaks observed, thereby ruling out the formation of tungsten-based nanoparticles. Furthermore, scanning electron microscopy (SEM) showed that the NiFeW-LDH nanosheets were approximately 500 nm in size and had a flower-like structure that consisted of interconnected nanosheets with smooth surfaces. Additionally, it was observed that NiFeW-LDH had a uniform distribution of Ni, Fe, and W throughout the nanosheets. X-ray photoelectron spectra (XPS) revealed the surface electronic structure of the NiFeW-LDH catalyst. It was determined that the oxidation state of W in NiFeW-LDH was +6 and that the XPS signal of Fe in NiFeW-LDH shifted to a higher oxidation state compared to NiFe-LDH. These results suggest electron redistribution between Fe and W. Simultaneously, the peak area of surface-adsorbed OH increased significantly after W doping, suggesting enhanced OH adsorption on the surface of NiFeW-LDH. Furthermore, density functional theory (DFT) calculations indicated that W(VI) facilitates the adsorption of H 2O and O *-intermediates and enhances the activity of Fe sites, which aligns with experimental results. The novel NiFeW-LDH catalyst displayed a low overpotential of 199 and 237 mV at 10 and 100 mA ∙cm −2 in 1 mol ∙L −1KOH, outperforming most NiFe-based colloid catalysts. Furthermore, experimental物理化学学报 Acta Phys. -Chim. Sin.2024,40 (1), 2303055 (2 of 9)characterizations and DFT+U calculations suggest that W doping plays an important role through strong electronic interactions with Fe and facilitating the adsorption of important O-containing intermediates.Key Words: Oxygen evolution reaction; Layered double hydroxide; Tungsten doping; Electronic interaction;Electrocatalysis钨掺杂镍铁水滑石高效电催化析氧反应段欣漩1,Marshet Getaye Sendeku 2,张道明3,周道金1,徐立军4,高学庆5,陈爱兵5,邝允2,*,孙晓明1,*1北京化工大学,化工资源有效利用国家重点实验室,北京软物质科学与工程高精尖创新中心,北京 1000292清华大学深圳研究院,海洋氢能研发中心,广东深圳 5180713中核战略规划研究总院,北京 1000484新疆工程学院,新疆煤矿机电工程技术研究中心,乌鲁木齐 8300235河北科技大学化学与制药工程学院,石家庄 050018摘要:电解水对制备可持续和清洁的氢气能源至关重要。
固态电解质LiZr2(PO4)3的掺杂及其在电极中的应用

第28卷㊀第4期2023年8月㊀哈尔滨理工大学学报JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY㊀Vol.28No.4Aug.2023㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀固态电解质LiZr 2(PO 4)3的掺杂及其在电极中的应用刘少鹏,㊀王基任,㊀拓沅辛,㊀周春山,㊀周㊀爽,㊀张永泉(哈尔滨理工大学电气与电子工程学院工程电介质及其应用教育部重点实验室,哈尔滨150080)摘㊀要:NASICON 型固态电解质磷酸锆锂(LZP )具有优异的结构稳定性和性能可靠性,但其在室温下的锂离子电导率较低,限制锂离子的传输㊂针对上述问题,采用溶胶凝胶法对磷酸锆锂电解质材料进行阳离子掺杂,提高材料的电导率,进而提升锂离子在材料中的输运能力㊂同时,将掺杂的磷酸锆锂电解质对电极进行修饰,提升电极本身的锂离子输运性能㊂探究了离子掺杂电解质对电极的锂离子扩散动力学性能的影响机理㊂实验结果表明,LiTi 0.25Zr 1.75(PO 4)3对电极的锂离子扩散动力学性能提高最为显著,锂离子扩散系数达到3.25ˑ10-14cm 2㊃S -1,是未修饰电极的2.95倍,同时在5C 倍率下,LiTi 0.25Zr 1.75(PO 4)3修饰的电极比未修饰电极比容量提高了25.48mAh ㊃g -1㊂关键词:固态电解质;磷酸锆锂;掺杂;离子输运;电化学DOI :10.15938/j.jhust.2023.04.002中图分类号:TM911.3文献标志码:A文章编号:1007-2683(2023)04-0008-06Doping Modification of Solid Electrolyte LiZr 2(PO 4)3and Its Application in ElectrodesLIU Shaopeng,㊀WANG Jiren,㊀TUO Yuanxin,㊀ZHOU Chunshan,㊀ZHOU Shuang,㊀ZHANG Yongquan(Key Laboratory of Engineering Dielectrics and Its Application,Ministry of Education,School of Electric and Engineering,Harbin University of Science and Technology,Harbin 150080,China)Abstract :NASICON type solid electrolyte LiZr 2(PO 4)3has excellent structural stability and performance reliability,but its lowconductivity of lithium ions at room temperature limits the transport of lithium ions.In view of the above problems,cationic doping of LiZr 2(PO 4)3electrolyte material was studied by sol-gel method and thus improve the transport capacity of lithium ions in the material.Meanwhile,modified the electrode with doped LiZr 2(PO 4)3electrolyte to improve the lithium ion transport performance of the electrode itself.The influence mechanism of ion-doped electrolyte on lithium ion diffusion kinetics of electrode was investigated.The experimental results show that LiTi 0.25Zr 1.75(PO 4)3improves the lithium ion diffusion kinetics most significantly,and the lithium iondiffusion coefficient reaches 3.25ˑ10-14cm 2㊃S -1,which is 2.95times of that of the unmodified electrode.At 5C rate,the specific capacity of LiTi 0.25Zr 1.75(PO 4)3modified electrode is 25.48mAh g -1higher than that of the unmodified electrode.Keywords :solid-state electrolyte;LiZr 2(PO 4)3;doping;ionic transport;electrochemistry㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀收稿日期:2022-06-03基金项目:黑龙江省自然科学基金(LH2020E093);黑龙江省留学回国人员择优资助;哈尔滨理工大学大学生创新创业训练计划项目(202110214218).作者简介:刘少鹏(2001 ),男,本科生;王基任(2001 ),男,本科生.通信作者:张永泉(1987 ),男,博士,副教授,E-mail:yqzhang@.0㊀引㊀言移动电子设备㊁智能电网市场㊁电动汽车等的快速发展极大地提高了人们对高能量密度锂电池的需求[1-2],然而传统的锂离子电池采用液体有机电解质,其存在一定的局限性以及安全隐患,如腐蚀㊁爆炸㊁漏液等问题[3-5]㊂在锂离子电池中,采用无机固态电解质代替易燃易爆炸的液态电解质,可以很大程度地规避以上问题,而固态电解质与金属锂做负极组成的锂金属电池也被称为下一代高能电池[6-9]㊂在无机固态电解质中,Li x M2(PO4)3化合物的NASICON型结构因其具有较高的离子电导率和较好的稳定性而被广泛关注[10-11]㊂NASICON型结构框架由一个共角的MO6八面体和PO4四面体组成,形成间隙隧道的3D网络,锂离子通过该网络扩散变得容易[12]㊂固体电解质LiTi2(PO4)3和LiGe2(PO4)3具有较高的离子导电性[13],但是,经过研究表明金属锂或石墨作为阳极材料时Ti4+和Ge4+的还原性能降低,含有该离子的固体电解质在强还原的环境当中化学稳定性存在着严重的问题,电池在进行充放电过程中伴随着氧化还原反应的发生,而还原性能的降低势必会导致脱嵌锂离子受到一定程度的影响,同时也会影响充放电过程中氧化还原反应的可逆性,限制了其在可充电电池中的应用[14]㊂Zr4+具有高度稳定性,LiZr2(PO4)3(LZP)对于锂金属和锂化石墨是稳定的[15],然而在室温下,LZP的离子电导率较差,仅为10-8~10-5S㊃cm-1,其主要原因是相对较高的体相阻抗和晶界阻抗[16],为此可以在LZP 晶格中进行阳离子掺杂来调节Li+的传输路径,进而提高LZP材料的离子电导率[17-19]㊂针对于阳离子掺杂LZP的结构和电化学性能前人已经进行了一些研究,2016年,Sunil Kumar 等[20]通过溶胶-凝胶法合成Li1.2Zr1.9Sr0.1(PO4)3,研究Sr2+取代对LZP陶瓷结构㊁微结构和导电性的影响,LZP样品的离子电导率得到显著改善,室温下的最高离子电导率达到0.34ˑ10-4S㊃cm-1㊂2017年,A Cassel等[21]合成Li1.2Zr1.9Ca0.1(PO4)3,其在室温下的离子电导率比LZP高约20倍,达到7.17ˑ10-7 S㊃cm-1㊂2020年,Neelakanta Reddy等[22]通过Al3+的掺杂提高了LZP的结构稳定性,降低了材料的界面电阻,同时加入了更多的Li+,整体提高了材料的离子电导率,Maho Harada等[23]通过Ca2+和Y3+的掺杂对LZP中Li+的迁移起到了俘获作用,促进Li+的传输,在室温下离子电导率提高到2.6ˑ10-5 S㊃cm-1㊂由此表明,元素的掺杂可以提高LZP的离子电导率,进而可提高其电化学性能㊂本文采用溶胶-凝胶法制备Zn2+㊁Fe3+㊁Ti4+掺杂的LZP固体电解质材料,通过离子掺杂调控LZP 电解质材料的晶体结构,降低阻抗;同时采用掺杂的LZP固体电解质修饰电极,探究其提高电极材料的Li+输运性能的机理㊂1㊀样品的制备与测试采用溶胶-凝胶法制备ZnSO4掺杂的LZP固体电解质材料Li1+2x Zn x Zr2-x(PO4)3(LZZP)㊁FeN3O9㊃9H2O掺杂的LZP固体电解质材料Li1+x Fe x Zr2-x(PO4)3(LZFP)和TiO2掺杂的LZP固体电解质材料LiTi x Zr2-x(PO4)3(LZTP),其中x均为0.25,LZP由LiNO3㊁NH4H2PO4㊁ZrOCl2㊃8H2O配制而成,除LiNO3的用量超过化学计量比的10%外,其余原料均按化学计量比进行配制形成溶胶,在80ħ下加热搅拌6h形成凝胶后再烘干箱内保持180ħ干燥12h形成干凝胶,将所得的干凝胶放在坩埚中在高温箱式电炉中保持500ħ高温烧结12h,待降温后取出坩埚,将物料放于研钵中研磨成粉末备用㊂将经过掺杂后的得到的无机固体电解质粉末LZZP㊁LZFP㊁LZTP分别对电极活性材料LiFePO4 (LFP)进行修饰,得到新的电极材料(LFP-LZZP㊁LFP-LZFP㊁LFP-LZTP),按照7ʒ1ʒ1ʒ1的质量比准确称量电极活性材料LFP㊁配制好的无机固体电解质粉末㊁聚偏氟乙烯(PVDF)和导电炭黑(SP),分别将上述4种物料缓慢加入适量的N-甲基吡咯烷酮(NMP)溶液里面,使用磁力搅拌器将这5种物料于室温下800r/min的速率进行充分搅拌,搅拌时间6h㊂将搅好的电极浆料涂覆到铝箔上然后将涂覆好的铝箔放入真空干燥箱中在80ħ进行干燥,经过12h取出,得到掺杂固态电解质的复合正极,并在圆柱形冲压机上压制成直径为12mm的电极片㊂按照8ʒ1ʒ1的质量比准确称量LFP㊁PVDF㊁SP,重复进行以上步骤,得到无掺杂的电极片㊂在氩气手套箱中组装CR2032型纽扣电池,首先将弹片放于负极壳上,然后将用作负极的金属锂片置于弹片上,然后在锂片上放置隔膜并且滴加几滴电解液将隔膜润湿,放上上述制作好的正极电极片,最后盖上正极电极壳㊂将装好的电池从手套箱中取出,用压力机对组装好的电池进行压制封装,得到电池㊂采用X光电子能谱分析掺杂材料的结构;采用X 衍射仪对涂覆的极片进行结构表征,步长为0.2ʎ,扫描速度为0.75s/步,扫描范围10ʎ~90ʎ;采用扫描电子显微镜在10kV的工作电压下对电极片的微观形貌进行表征;室温下,对电池进行循环及电化学阻抗测量,循环测试电压范围在3~4V,在阻抗测试中,电压微扰为5mV,频率范围为0.01Hz~0.1MHz㊂9第4期刘少鹏等:固态电解质LiZr2(PO4)3的掺杂及其在电极中的应用2㊀实验结果与讨论为了确定锌㊁铁㊁钛元素成功地掺杂到了磷酸锆锂材料当中,对所制备的样品进行了XPS 测试,对所测得的XPS 数据在Avantage 上进行数据拟合处理㊂图1(a)为3种元素掺杂后磷酸锆锂材料的XPS 测试全谱图㊂3个图谱中分别在结合能为1018.41eV㊁726.72eV 和456.22eV 左右出现了Zn2p㊁Fe2p㊁Ti2p,但是全谱图中的峰强变化不太明显,因此对其精细谱进行了拟合作图处理,图1(b)为3种掺杂元素精细谱,可以看出每个图谱中均出现两个明显的峰,表明元素成功掺杂到了磷酸锆锂材料当中㊂图1㊀3种元素掺杂LZP 的XPS 全谱图和Zn2p ㊁Fe2p ㊁Ti2p 的精细图谱Fig.1㊀XPS full spectrum of LZP doped with threeelements ,fine maps of Zn2p ,Fe2p ,Ti2p为了探究掺杂结果的测试值与理论值的关系,我们在Avantage 上进行碳位校正后又对掺杂元素与Zr 元素进行了半定量分析,拟合结果如表1㊁2㊁3所示㊂表1㊀LZZP 的半定量分析数据Tab.1㊀Data from semiquantitative analysis of LZZP 元素BE FWHM 面积原子Zn 2p 1022.07 2.953667.850.69Zr 2p184.082.4117171.18 4.60表2㊀LZFP 的半定量分析数据Tab.2㊀Data from semiquantitative analysis of LZFP 元素BE FWHM 面积原子Fe 2p 726.71 3.51987.010.59Zr 2p183.942.1611923.91 4.75表3㊀LZTP 的半定量分析数据Tab.3㊀Data from semiquantitative analysis of LZTP.元素BE FWHM 面积原子Ti 2p459.45 2.172377.620.98Zr 2p 183.051.4513901.47 6.48㊀㊀所制得的锌掺杂磷酸锆锂Li 1.5Zn 0.25Zr 1.75(PO 4)3㊁铁掺杂磷酸锆锂Li 1.25Fe 0.25Zr 1.75(PO 4)3㊁钛掺杂磷酸锆锂LiTi 0.25Zr 1.75(PO 4)3,计算得到掺杂元素占锆的理论原子数百分比均为14.29%㊂对半定量分析得到的实验数据进行分析计算,锌占锆的测试原子数百分比为15%,铁占锆的测试原子数百分比为12.42%,钛占锆的测试原子数百分比为15.12%㊂可以看出测试结果与理论结果较为接近,也可以表明元素成功地掺杂到了磷酸锆锂材料中,实验结果是较为可靠的㊂图2分别给出了3种掺杂后的电解质修饰的电极及纯磷酸铁锂电极材料的XRD 图谱㊂由图可见,掺杂Zn 2+,Fe 3+,Ti 4+后的LZP 电解质修饰的LFP 电极材料在20ʎɤ2θɤ35ʎ和50ʎɤ2θɤ70ʎ有多个衍射峰,在经过3种不同元素掺杂后修饰的LFP 电极材料XRD 图谱的峰位基本一致,各样品的衍射峰尖锐,峰位强度高,说明所制备样品的结晶性好,成功制备了3种电极材料㊂在2θ=65.32ʎ时达到峰值,并在2θ=78.46ʎ也产生了衍射峰,与标准卡片的结果不符,这是所涂覆铝箔产生的衍射峰,与掺杂的元素无关㊂同时图像中没有电解质材料的峰,也可以说明电解质材料没有对正极材料的结构产生影响㊂为了观察4种电极片的微观形貌,我们对其进行了扫描电子显微镜(SEM)的测试,图3(a),(d)为Fe01哈㊀尔㊀滨㊀理㊀工㊀大㊀学㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀掺杂电解质修饰磷酸铁锂电极,图3(b),(e)为Ti 掺杂电解质修饰磷酸铁锂电极,图3(c),(f)为Zn 掺杂电解质修饰磷酸铁锂电极,图3(g)-(i)为纯磷酸铁锂电极㊂显然,这些图像显示了一系列团聚粒子,并且所有样品都具有近似球形的形态㊂此外,Fe 和Ti 掺杂电解质修饰磷酸铁-电极主要为纳米尺寸,颗粒的直径大都约为300nm,而Zn 掺杂电解质修饰磷酸铁锂电极的最大颗粒直径可以达到1.5μm 左右,如图3(f)所示㊂从整体上看晶粒尺寸都相对均匀,与纯磷酸铁锂的图像没有明显的区别㊂图2㊀4种电极材料的XRD 图谱Fig.2㊀XRD patterns of four electrodematerials图3㊀电极材料的SEM 图像(其中(a )㊁(d )为LZFP 修饰电极材料,(b )㊁(e )为LZTP 修饰的电极材料,(c )㊁(f )为LZZP 修饰的电极材料,(g )㊁(h )㊁(i )为纯LFP 电极材料)Fig.3㊀SEM images of electrode materials.(where (a )and (d )are LZFP -modified electrode materials ,(b )and (e )are LZTP -modified electrode materials ,(c )and (f )are LZZP -modified electrode materials ,and (g ),(h )and (i )are pure LFP electrode materials )图4为3种电极材料的交流阻抗图,所有3个电极的交流阻抗谱均在高频范围内呈现一个半圆形,而在低频范围内呈现出一条倾斜的直线㊂其中,截距对应电池欧姆电阻,高频区的半圆弧的直径表示的是活性材料嵌脱锂离子对应电荷转移电阻(Rct),低频区的直线部分为锂离子在电极材料中的扩散电阻,表示有锂离子在电极材料中扩散㊂此外可以看出LFP-LZTP 具有较小的半圆直径,表明该材料具有较低的电荷转移电阻㊂图4㊀3种电极材料的交流阻抗图(a 为循环前㊁b 为循环后)Fig.4㊀AC impedance diagrams of three electrode materials(a is before cycling ,and b is after cycling )电荷转移电阻被认为是决定充放电过程中速率性能的关键因素㊂如图4中插图所示,通过ZView 软件创建了本文所述电池体系的等效电路模型以计算各部分电阻值,拟合结果如表4所示㊂从表中可以看出,经过电解质材料修饰后电极的电荷转移电阻都要比纯LFP 电极小,有利于锂离子的扩散,从而提高电解质材料的电化学倍率性能㊂而经过钛掺杂电解质修饰磷酸铁锂电极的电荷转移电阻要比铁掺杂和锌掺杂的电解质小,锂离子扩散更容易,具有更好的电化学倍率性能㊂表4㊀4种电极材料的阻抗拟合参数Tab.4㊀Impedance fitting parameters for fourelectrode materials电极材料Rs /ΩRct /ΩLFP-LZTP 2.44351.74LFP-LZFP 2.99553.02LFP-LZZP 3.00470.17纯LFP2.347111.9㊀㊀为了进一步分析锂离子在电极材料中的扩散性能,通过如下两个公式计算锂离子的扩散系数:Zᶄ=R s +R ct +A w ω-1/2D Li =0.5(RTn 2F 2AC Li A w)2式中:R 为气体常数;T 为绝对温度;F 为法拉第常数;n 为转移的电子数;A 为电极材料与电解液的有11第4期刘少鹏等:固态电解质LiZr 2(PO 4)3的掺杂及其在电极中的应用效接触面积;C Li 为锂离子的浓度;A w 为Zᶄ相对于ω-1/2的曲线的斜率㊂Zᶄ可以用上面公式计算得到㊂通过计算得到3种掺杂的电极材料中锂离子的扩散系数分别为LFP-LZFP:2.47ˑ10-14cm 2㊃s -1,LFP-LZTP:3.25ˑ10-14cm 2㊃s -1,LFP-LZZP:7.52ˑ10-15cm 2㊃s -1,而纯的LFP 锂离子的扩散系数为1.10ˑ10-14cm 2㊃s -1㊂由此可以看出,掺杂Fe 和Ti 元素的LZP 修饰后的电极材料要比纯的LFP 材料具有更大的锂离子扩散系数,其中掺杂Ti 元素的锂离子扩散系数最大㊂而掺杂Zn 元素的锂离子扩散系数比纯的LFP 锂离子扩散系数小㊂因此,可以得出LZZP 的掺杂效果不够理想,而经过LZFP 和LZTP 修饰的电极材料则具有较好的电化学倍率性能㊂图5为4种电极材料倍率性能对比测试结果㊂从图中可以看出,在不同的电流密度下,它们的放电比容量均呈现出逐渐减小的趋势,但掺杂之后的电极材料要比纯磷酸铁锂材料放电比容量要高㊂而放电比容量呈现减小趋势的原因是由于倍率的升高影响了锂离子在电极材料表面的扩散系数㊂在所得到的4种电极材料中锂离子在经过LZTP 修饰的电极材料的扩散系数最大,在5C 倍率下,比容量达到了29.44mAh ㊃g -1,而纯的LFP 电极材料在5C 倍率下只有3.96mAh ㊃g -1㊂因此可以看出,经过LZTP 修饰的电极材料中锂离子扩散更容易,在高电流密度下它具有更优异的电化学性能㊂但同时发现LZZP 修饰的电极材料的放电比容量要比LFP 低,这样的结果与锂离子的扩散系数结果一致,进一步说明锌的掺杂效果不够理想㊂另外,可以发现掺杂后电极材料的放电库仑效率接近100%,比纯磷酸铁锂电极材料具有更好的库仑效率,这主要归功于掺杂之后其具有较大的离子扩散系数㊂图5㊀3种电极材料与LFP 倍率性能Fig.5㊀Rate performance of three electrodematerials with LFP㊀㊀图6为4种电极材料在1000mA ㊃g -1电流密度下恒流充放电循环性能对比测试结果㊂从图中可以看出,经过钛掺杂磷酸锆锂修饰的磷酸铁锂材料放电比容量最高,并且在经过200次充放电循环后其放电比容量仍为116.67mAh ㊃g -1,表现出较好的循环稳定性㊂经过铁和锌掺杂磷酸锆锂修饰的磷酸铁锂材料在200次循环充放电后其放电比容量分别为96.56mAh ㊃g -1和91.67mAh ㊃g -1,而纯磷酸铁锂材料经过200次循环充放电后比容量为72.65mAh ㊃g -1,3种修饰后的电极材料相较于纯磷酸铁锂材料都表现出更好的循环性能㊂此外,从图中可以看出LZTP 修饰的磷酸铁锂材料的放电库伦效率非常平稳,具有较好的库伦效率㊂必须指出的是,LZTP 修饰的磷酸铁锂材料中锂离子扩散系数最大,电极材料的比表面积最大,为其良好的电化学性能提供了非常有利的条件㊂图6㊀3种电极材料与LFP 循环性能图Fig.6㊀Cycling performance of three electrodematerials with LFP3㊀结㊀论本文通过溶胶-凝胶法制备了钛㊁铁㊁锌掺杂的LZP 固态电解质材料,并且采用电解质材料修饰电极材料形成复合电极,表征了电解质材料及复合电极结构㊁形貌,通过掺杂增大了晶格体积,使得晶粒之间接触更为紧密,主体结构上掺杂离子的取代,很大程度的降低了晶界阻抗,使得Li +扩散更为容易,可以有效提高离子电导率㊂对复合电极进行了电化学性能测试,LZFP 修饰电极的Li +扩散系数为2.47ˑ10-14cm 2㊃s -1,LZTP 修饰电极的Li +扩散系数为3.25ˑ10-14cm 2㊃s -1,LZZP 修饰电极的Li +扩散系数为7.52ˑ10-15cm 2㊃s -1,可以看出LZTP 修饰的电极材料具有更高的锂离子扩散系数,并且LZTP 修饰的电极材料具有更好的循环稳定性,因此钛掺杂的LZP 固体电解质具有较好的电化学性能㊂21哈㊀尔㊀滨㊀理㊀工㊀大㊀学㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀参考文献:[1]㊀Van Noorden R.The Rechargeable Revolution:A BetterBattery[J].Nature,2014,507(7490):26. [2]㊀NUERNBERG R B,RODRINGUES A C M.A New NA-SCION Lithium Ion-conducting Glass-ceramic of the Li1+xCr x(Ge y Ti1-y)2-x(PO4)3System[J].Solid State Ion-ics,2017,301:1.[3]㊀KNAUTH P.Inorganic Solid Li Ion Conductors:An O-verview[J].Solid State Ionics,2009,180(3):911.[4]㊀YUAN C F.All-solid-state Lithium Ion Battery:Researchand Industrial Progress[J].Aeta Chimica Sinica,2013,71(1):869.[5]㊀岳昕阳,马萃,包戬,等.金属锂负极失效机制及其先进表征技术[J].物理化学学报,2021,37(2):2005012.YUE Xinyang,MA Cui,BAO Jian,et al.Failure Mech-anisms of Liyhium Metal Anode and Their AdvancedCharacterization Technologies[J].Acta Physi-co-ChimicaSinica,2021,37(2):2005012.[6]㊀KAMAYA N,HOMMA K,YAMAKAWA Y,et al.ALithium Superionic Conductor[J].Nature Materials,2011,10(9):682.[7]㊀BACHMAN J C,MUY S,GRIMAUD A,et al.Inorgan-icsolid-state Electrolytes for Lithium Batteries:Mecha-nisms and Properties Governing Ion Conduction[J].Chemical Reviews,2016,116(1):140.[8]㊀李文俊,徐航宇,杨琪,等.高能量密度锂电池开发策略[J].储能科学与技术,2020,9(2):448.LI Wenjun,XU Hangyu,YANG Qi,et al.Developmentof Strategies for High-energy-density Lithium Batteries[J].Energy Storage Science and Technology,2020,9(2):448.[9]㊀杨建锋,李林艳,吴振岳,等.无机固态锂离子电池电解质的研究进展[J].储能科学与技术,2019,8(5):829.YANG Jianfeng,LI Linyan,WU Zhenyue,et al.Pro-gress of Inorganic Solid Electrolyte for Lithium Ion Batter-ies[J].Energy Storage Science and Technology,2019,8(5):829.[10]ARBI K,HOELZEL M,KUHN A,et al.Structural Fac-tors that Enhance Lithium Mobility in Fast-ion Li1+x Ti2-xAl x(PO4)3(0ɤxɤ0.4)Conductors Investigated byNeutron Diffraction in the Temperature Range100-500K[J].Inorganic Chemistry,2013,52(16):9290. [11]ANANTHARAMULU N,RAO K K,RAMBABU G,etal.A Wide-ran-ging Review on NASICON Type Materials[J].Journal of Materials Science,2001,46(9):2821.[12]LANG B,ZIEBARTH B,ELSÄSSER C.Lithium IonConduction in LiTi2(PO4)3and Related CompoundsBased on the Environment[J].Journal Library Adminis-tration,2021,104(3):711.[13]ZHANG P,WANG H,SI Q,et al.High Lithium IonConductivity Solid Electrolyte of Chromium and Alumi-num Co-doped NASICON-type LiTi2(PO4)3[J].SolidState Ionics,2015,272(4):101.[14]HASEGAWA S,IMANISHI N,ZHANG T,et al.Studyon Lithium/Air Secondary Batteries-stability of NASI-CON-type Lithium Ion Conducting Glass-ceramics withWater[J].Journal of Power Sources,2009,189(1):371.[15]BRUMMELL A,DRURY D E,KITAHARA A R,et al.Temperature and Processing Effects on Lithium Ion Con-ductivity of Solution-deposited Lithium Zirconium Phos-phate(LiZr2P3O12)Thin Films[J].Journal of the Amer-ican Ceramic Society,2021,104(3):711. [16]吕晓娟,杨东昱.NASICON型无机固态锂离子电解质的研究进展[J].化工新型材料,2019,47(1):47.LÜXiaojuan,YANG Dongyu.Review on NASICON typeInorganic Solid Lithium Ion Electrolyte[J].New Chemi-cal Materials,2019,47(1):47.[17]XIE H,LI Y,GOODENOUGH J B.NASICON-typeLi1+2x Zr2-x Ca x(PO4)3with High Ionic Conductivity atRoom Temperature[J].RSC Advances,2011,1(9):1728.[18]ZHOU Q Y,XU B Y,CHIEN P,et al.NASICON Li1.2Mg0.1Zr1.9(PO4)3Solid Electrolyte for an All-Solid-StateLi-Metal Battery[J].Small Methods,2020,4(12):2000764.[19]YAZDANI S,SADABAD R K,M.D.MORALES-ACOS-TA,R D,et al.Thermal Transport in Phase-stabilizedLithium Zirconate Phosphates[J].Applied Physics Let-ters,2020,117(1):011903.[20]KUMAR S,BALAYA P.Improved Ionic Conductivity inNASICON-type Sr2+Doped LiZr2(PO4)3[J].Solid StateIonics,2016,296(11):1.[21]CASSEL A,FLEUTOT B,COURTY M.Sol-gel Synthesisand Electrochemical Properties Extracted by Phase Inflec-tion Detection Method of NASICON-type Solid ElectrolytesLiZr2(PO4)3and Li1.2Zr1.9Ca0.1(PO4)3[J].SoliedState Ionics,2017,309(10):63.[22]REDDY N,AKKINEPALLY B,REDDY C V,et al.ASystematic study of Annealing Environment and Al DopantEffect on NASICON-type LiZr2(PO4)3Solid Electrolyte[J].lonics,2020,26(6):4287.[23]HARADA M,TAKEDA H,SUZUKI S,et al.Bayesian-o-ptimization-guided Experimental Search of NASICON-type Solid Electrolytes for All-solid-state Li-ion Batteries[J].Journal of Materials Chemistry A,2020,8(27):15103.(编辑:温泽宇)31第4期刘少鹏等:固态电解质LiZr2(PO4)3的掺杂及其在电极中的应用。
四川大学科技特派员

主要从事高性能聚酰亚胺材料、低介电常数聚 合物纳米多孔材料以及高性能聚合物复杂纳米 孔材料方面的研究
第2页,共4页
四川大学候选科技特派员汇总表
26 李子成 化工学院制药与生 副教授 物工程系 13678019184 sculzc@
药物及中间体的合成工艺研究,先后为企业完 详细资料查看 成了唑来膦酸、佐芬普利、安曲南、舒尼替尼 《科技特派员 、氢溴酸达非那新、(3S)-羟基吡咯烷、哌库溴铵 推荐表》 等药物及中间体的合成工艺研究。
副教授
13398198896
xian.chen@
主要从事高分子材料的改性及成型加工研究。 在材料改性方面研究热塑性材料的增强增韧, 详细资料查看 软硬质PVC,长纤增强PP、PA、PPS等;成型加 《科技特派员 工方面研究异型材、片材的成型工艺及模具的 推荐表》 设计,PVA薄膜的成型等。 研究方向包括高性能聚芳硫醚类树脂的合成、 放大、结构与性能研究以及聚芳硫醚类树脂、 纤维、薄膜和复合材料的改性与加工研究两大 部分,形成了从聚芳硫醚类树脂的分子设计、 聚合物合成、产业化生产到加工与应用这样全 面而系统的研究领域。
jdw0958@
专长:长期在精细有机合成、植物活性物分离 纯化和结构修饰、塑料橡胶加工助剂合成、表 面活性剂的合成和应用、保健品设计和产业领 域从事科学研究和产业化专业化 多年从事化学纤维的开发与研究工作,主要方 向为微胶囊、高性能纤维及功能纤维的研究与 应用。 主要从事高分子材料的改性以及高分子材料的 成型加工。在高分在材料的改性方面主要研究 材料的增强增韧以及工程塑料的纤维增强和阻 燃;在材料的成型加工方面,主要研究材料的 成型方式以及成型设备的设计。
yunqingkang@163.co 生物医学材料,组织再生修复材料,药物载体 材料 m
高效电解二氧化锰电化学分析研究

第14卷第5期2023年10月有色金属科学与工程Nonferrous Metals Science and EngineeringVol.14,No.5Oct. 2023高效电解二氧化锰电化学分析研究裴启飞1, 卢文鹏1, 郭孟伟2, 邵伟春2, 王恩泽2, 张启波*2(1.云南驰宏锌锗股份有限公司,云南 曲靖 655011; 2.昆明理工大学冶金与能源工程学院, 昆明 650093)摘要:采用循环伏安、线性伏安、电化学阻抗谱等分析测试手段并结合电解实验,系统地研究了硫酸体系下Mn 2+的电化学氧化行为。
结果表明,Mn 2+ → MnO 2的电氧化过程存在钝化现象,为实现MnO 2的高效电解,需合理控制阳极电位,从而避免析氧和生成MnO 4‒。
升高电解温度可有效改善电解MnO 2过程的界面钝化;通过控制合理的阳极电流可获得更高的电流效率。
在50 g/L H 2SO 4 + 25 g/L Mn 2+电解液中,80 ℃下,当阳极电流密度为6 mA/cm 2时,电流效率可达到96.6%。
关键词:二氧化锰;阳极钝化;阳极电位;电流效率;高效电解中图分类号:TF803.27 文献标志码:AElectrochemical analysis for highly efficient manganese dioxide electrolysisPEI Qifei 1, LU Wenpeng 1, GUO Mengwei 2, SHAO Weichun 2, WANG Enze 2, ZHANG Qibo *2(1. Yunnan Chihong Zn & Ge Co., Ltd., Qujing 655011, Yunnan , China ;2. Faculty of Metallurgical and Energy Engineering ,Kunming University of Science and Technology , Kunming 650093, China )Abstract: In this work, the electrochemical oxidation behavior of Mn 2+ ions in sulfuric acid solutions was systematically studied via cyclic voltammetry, linear voltammetry, electrochemical impedance spectroscopy, and electrolytic experiments. The results show that a passivation phenomenon is present in the electro-oxidation process of Mn 2+ to MnO 2, suggesting that the applied current should be reasonably controlled to reduce the side reactions caused by polarization. To achieve high-efficient MnO 2 electrolysis, the anodic potential should be controlled within an appropriate range to avoid oxygen evolution and the generation of MnO 4- ions. Increasing the electrolytic temperature can significantly relieve the passivation on the interface during the electrolysis of MnO 2, and combined with reasonable anodic current control, a higher current efficiency can be obtained. The optimum current efficiency of 96.6% for MnO 2 electrolysis is achieved when the anodic current is 6 mA/cm 2 and at 80 ℃ in 50 g/L H 2SO 4 solution containing 25 g/L Mn 2+.Keywords: manganese dioxide ; anodic polarization ; anodic potential ; current efficiency ; high-efficient electrolysis二氧化锰(MnO 2)具有多种晶体结构和良好的电化学活性等[1-3],在电催化/光电催化、污染物降解、储能材料等领域有着广泛应用[4-7]。
大麦VQ_基因家族鉴定及表达分析

54卷大麦VQ基因家族鉴定及表达分析倪守飞1,母景娇1,耿梓瀚1,王孜逸2,丛钰莹1,王月雪1,刘梦迪1,蔡倩1,赵彦宏1*,王艳芳2*(1鲁东大学农学院,山东烟台264025;2鲁东大学生命与科学学院,山东烟台264025)摘要:【目的】鉴定大麦VQ基因家族成员并进行表达分析,为大麦VQ基因的功能挖掘提供理论依据。
【方法】从大麦基因组中鉴定VQ基因家族成员,利用生物信息学方法对其结构特征及编码蛋白序列进行分析,基于转录组测序数据及实时荧光定量PCR方法进行大麦组织表达模式、盐胁迫和生物胁迫分析。
【结果】在大麦基因组中鉴定出29个HvVQ 基因(HvVQ1~HvVQ29),HvVQ蛋白序列平均长度较短(214aa),多数HvVQ蛋白为碱性或偏中性蛋白,HvVQ基因不均地分布在大麦染色体上,定位于细胞核中。
29个HvVQ蛋白均含有保守基序FxxxVQxhTG,近90%的HvVQ基因不含内含子。
进化分析将大麦、拟南芥与水稻的VQ基因家族成员分为7个亚族(Ⅰ~Ⅶ),HvVQs基因不均地分布在Ⅱ~Ⅶ亚族中。
大麦与水稻的共线性基因对数(17对)远多于与拟南芥的共线性基因对数(1对),种内共线性分析发现1对共线性基因对,非同义替换率/同义替换率(Ka/Ks)计算发现HvVQ蛋白主要处于纯化选择状态。
HvVQ基因启动区富含生长发育作用元件、非生物胁迫反应元件和激素反应元件,种类及分布均呈多样性。
对蛋白网络预测分析推断其与HvWRKY的2类亚族(Ⅱ-c和Ⅲ)存在互作关系。
大多数HvVQ基因在组织中表达,HvVQ19在受到盐胁迫时表达量明显上调,在根尖和根伸长区表达量分别上调1.40和1.10倍;对其中10个HvVQ基因进行实时荧光定量PCR检测,HvVQ2基因在蚜虫和黄矮病毒胁迫下表达量均显著下调(倍数变化<0.5为显著抑制,>2.0为显著诱导),HvVQ7和HvVQ15基因在蚜虫和黄矮病毒胁迫下表达量上调最显著,其他7个HvVQ基因也均表现出差异表达。
荧光素@UiO-66金属有机框架材料荧光检测曲利苯蓝

第41卷第6期2023年12月沈阳师范大学学报(自然科学版)J o u r n a l o f S h e n y a n g N o r m a lU n i v e r s i t y(N a t u r a l S c i e n c eE d i t i o n)V o l.41N o.6D e c.2023文章编号:16735862(2023)06048806荧光素@U i O-66金属有机框架材料荧光检测曲利苯蓝刘丽艳1,乔丹1,刘珂帆1,2,刘笑言1,史建军1,于湛1(1.沈阳师范大学化学化工学院,沈阳110034;2.大连市一一七中学,辽宁大连116100)摘要:采用水热法制备了荧光素@U i O-66(F N@U i O-66)金属有机框架材料,借助X射线衍射和红外光谱技术确定了其物相结构,并利用扫描电子显微镜㊁动态光散射等技术表征了其形貌特征㊂结果表明,F N@U i O-66大小均匀,平均水合粒径为380.4n m㊂随后进行了F N@U i O-66对典型染料曲利苯蓝的荧光检测研究,实验结果表明,曲利苯蓝可以猝灭F N@U i O-66的荧光发射,其S t e r n-V o l m e r系数K S V为3593L㊃m o l-1,说明F N@U i O-66材料对曲利苯蓝具有良好的选择性,且曲利苯蓝的检出限为0.06μm o l㊃L-1㊂由此可见,F N@U i O-66可以高效地识别曲利苯蓝,且具有良好的选择性和检测灵敏度,可实现对曲利苯蓝的快速荧光检测㊂关键词:F N@U i O-66;合成;曲利苯蓝;荧光探针中图分类号:O657.3文献标志码:Ad o i:10.3969/j.i s s n.16735862.2023.06.002F l u o r e s c e n c e d e t e c t i o n o f t r y p a nb l u e b a s e d o n t h e f l u o r e s c e i n@U i O-66m e t a l-o r g a n i c f r a m e w o r km a t e r i a lL I U L i y a n1,Q I A O D a n1,L I U K e f a n1,2,L I U X i a o y a n1,S H I J i a n j u n1,Y UZ h a n1(1.C o l l e g e o fC h e m i s t r y a n dC h e m i c a lE n g i n e e r i n g,S h e n y a n g N o r m a lU n i v e r s i t y,S h e n y a n g110034,C h i n a;2.D a l i a nN o.117M i d d l eS c h o o l,D a l i a n116100,C h i n a)A b s t r a c t:I nt h i s w o r k,t h ec o m p o s i t ef l u o r e s c e i n@U i O-66(F N@U i O-66)m e t a l-o r g a n i cf r a m e w o r km a t e r i a lw a s s y n t h e s i z e db y ah y d r o t h e r m a l p r o t o c o l.T h es t r u c t u r a l c h a r a c t e r i s t i c so fF N@U i O-66w e r ed e t e r m i n e dw i t h t h eh e l p o fX-r a y d i f f r a c t i o na n d i n f r a r e ds p e c t r o s c o p y a sw e l la s t h em o r p h o l o g i c a l c h a r a c t e r i s t i c sw e r e i n v e s t i g a t e db y sc a n n i n g e l e c t r o nm i c r o s c o p y(S E M)a n dd y n a m i c l i g h t s c a t te r i n g(D L S).E x p e r i m e n t a l r e s u l t s s h o wt h a tF N@U i O-66i su n if o r mi ns i z e,w i t h a na v e r a g eh y d r o d y n a m i cd i a m e t e ro f380.4n m.S u b s e q u e n t l y,af l u o r e s c e n c es t u d y o fF N@U i O-66o n t r y p a nb l u e(T B)w a s c a r r i e do u t,a n d f u r t h e r e x p e r i m e n t s s h o wt h a t t h eS t e r n-V o l m e r c o e f f i c i e n t o fT B,K S V,i s3593L㊃m o l-1,w h i c h i n d i c a t e s t h a t t h eF N@U i O-66h a sag o o de f f e c t o nT B.T h e s e l e c t i v i t y o f F N@U i O-66f o rT B i s g o o d,a n d t h e d e t e c t i o n l i m i t o fT B i s0.06μm o l㊃L-1,s h o w i n g t h a t F N@U i O-66c a n r e c o g n i z eT Be f f i c i e n t l y.F N@U i O-66h a s a g o o ds e l e c t i v i t y a n dd e t e c t i o n s e n s i t i v i t y t oT B,a n d i t c a n r e a l i z e t h e r a p i d f l u o r e s c e n c e d e t e c t i o no fT B.K e y w o r d s:F N@U i O-66;s y n t h e s i s;t r y p a nb l u e;f l u o r e s c e n t p r o b e金属有机框架(m e t a l-o r g a n i c f r a m e w o r k s,MO F s)材料因其在结构上具有规律性㊁刚性㊁多变性㊁收稿日期:20230920基金项目:辽宁省教育厅高等学校基本科研项目(L J C202009)㊂作者简介:刘丽艳(1977 ),女,辽宁沈阳人,沈阳师范大学副教授,博士㊂可设计性,成为一类具有广泛应用前景的新型材料[1]㊂MO F s 具有可调控的多孔通道,可以容纳多种极性㊁体积不同的客体分子,因而常作为探针载体用于荧光传感中[2]㊂2008年,挪威奥斯陆大学的C a v k a 研究组[3]首次报道了一类以金属Z r 为中心㊁对苯二甲酸(H 2B D C )为有机配体的刚性金属有机框架材料,命名为U i O -66㊂与其他MO F s 材料相比,U i O -66具有特别的热稳定性和化学稳定性[4],晶体结构可在500ħ下保持稳定,其框架结构可承受1.0M P a 的机械压力㊂U i O -66在水㊁苯或丙酮等溶剂中可以保持结构稳定,并且还具有很强的耐酸性和一定的耐碱性[5]㊂曲利苯蓝(t r y pa nb l u e ,T B )是一种常见的偶氮类染料,可用于给棉㊁麻㊁蚕丝㊁化纤制品染色,并可作为纸张㊁皮革等材料的染色剂[6]㊂由于死细胞的细胞膜不完整,短时间T B 染色可将其染成蓝色,而具有完整细胞膜的活细胞会排斥染料,因而在生物学实验中,T B 也常用于区分正常细胞与死亡细胞㊂但是有文献[7]证实,经过5m i n 染色,T B 就会对细胞产生毒性,5~30m i n 染色会导致T B 染料渗透健康细胞的细胞膜,细胞会随着时间的推移而死亡,最终健康细胞也会被T B 染色,因而使用T B 进行细胞染色的最终结果是降低细胞活性[8]㊂本文成功制备了一种荧光素(f l u o r e s c e i n ,F N )与U i O -66的复合材料F N@U i O -66,表征了其结构并研究了其在水溶液中对T B 的荧光检测性能㊂实验研究表明,F N@U i O -66对T B 具有良好的选择性和灵敏度,可用于荧光检测T B ㊂1 材料与方法1.1 试剂与仪器四氯化锆㊁荧光素(F N )㊁曲利苯蓝(T B )㊁对苯二甲酸(H 2B D C )㊁N ,N -二甲基甲酰胺(D M F )㊁盐酸㊁甲醇㊁冰乙酸㊁醋酸钠㊁乙腈㊁乙酸乙酯㊁三氯甲烷㊁二甲基亚砜(D M S O )等试剂均为分析纯或更高纯度,实验中未进行纯化而直接使用;实验用水为超纯水(18.2MΩ㊃c m )㊂采用日本日立公司的S U 8010型扫描电子显微镜(s c a n n i n g e l e c t r o n m i c r o s c o p e ,S E M )对样品的表面形貌特征进行检测,工作距离为3.8mm ,加速电压为3.0k V ;采用日本理学公司的X 射线粉末衍射仪测定样品的X 射线衍射(X -r a y d i f f r a c t i o n ,X R D )图谱,铜靶K α线波长为0.15405n m ,扫描速度为10ʎ㊃m i n -1,扫描范围为5ʎ~50ʎ,管电压为40k V ,管电流为40m A ;采用英国马尔文公司的N a n o -Z S 90型纳米粒度分析仪测试样品的平均粒度;采用美国赛默飞公司的N i c o l e t i S5型傅里叶变换红外光谱仪测试样品的红外光谱;采用美国瓦里安公司的C a r y E c l i p s e 型荧光光谱仪对悬浮液样品进行荧光测试㊂1.2 F N @U i O -66的制备F N@U i O -66的合成方法参照文献[9]㊂首先准确称取0.4514g Z r C l 4,0.3289g H 2B D C ,0.0338g F N ,34.0m LD M F 和0.34m LH C l 于250m L 烧杯中,混合搅拌1h 后使全部反应物完全溶解在D M F 中,得到均匀的反应液㊂随后将反应液转移至装有50m L 聚四氟乙烯内衬的不锈钢反应釜中,在120ħ烘箱中连续加热24h ,待其自然冷却后,将得到的黄色粉末用D M F 和甲醇溶液洗涤4次并抽滤,得到粗产物㊂将粗产物在80ħ下烘干12h 后,自然冷却并研磨,得到黄色固体粉末,即为F N@U i O -66㊂1.3 荧光实验将F N@U i O -66粉末(30m g)加入30m L 超纯水中,室温下静置24h ,然后将此样品进行30m i n 超声处理后得到稳定的悬浮液㊂分别准确移取多份2.5m L 的悬浮液,加入不同体积的5ˑ10-4m o l ㊃L -1T B 水溶液,并测试其光致发光(ph o t o l u m i n e s c e n c e ,P L )谱图㊂进行重复性实验时,将F N@U i O -66粉末从悬浮液中高速离心出,经无水乙醇充分洗涤后晾干即可重复使用㊂2 结果与讨论2.1 F N @U i O -66的表征图1分别给出了文献[10]报道的U i O -66单晶数据模拟㊁本文合成的F N@U i O -66及在T B 溶液984第6期 刘丽艳,等:荧光素@U i O -66金属有机框架材料荧光检测曲利苯蓝图1 U i O -66单晶模拟㊁F N @U i O -66及在T B 溶液中浸泡24h 后的F N @U i O -66的X R D 图F i g .1 S i m u l a t e da n de x pe r i m e n t a l (b ef o r ea n da f t e r s o a k i ng i n t r y pa nb l u es o l u t i o n f o r 24h )X R D pa t t e r n s o f F N @U i O -66中浸泡24h 后的F N@U i O -66的X R D 谱图㊂由图1可以看出,U i O -66在2θ为7.36ʎ和8.50ʎ处有明显的特征衍射峰,在14.76ʎ,17.06ʎ,25.72ʎ,30.72ʎ等处也有相对较强的衍射峰㊂本文合成的F N@U i O -66材料衍射峰与单晶数据模拟的U i O -66特征峰峰位相同且强度较高,未出现其他杂峰,这表明已经成功获得F N@U i O -66材料,并且其纯度和结晶度良好㊂当F N@U i O -66在T B 溶液中浸泡24h 后,其峰位和峰强并没有发生变化,也没有出现明显的杂峰,表明在荧光检测T B过程中,F N@U i O -66材料结构稳固,没有发生变化㊂图2给出30000倍和60000倍放大倍率下的F N@U i O -66样品的S E M 照片㊂可以看出,F N@U i O -66样品晶化程度良好,晶体颗粒大小均匀,晶粒呈正四面体,粒径范围约为150~300n m ,与文献[10]报道相一致,表明成功地合成出F N@U i O -66样品,样品纯度比较高,并且F N 的引入并不会导致U i O -66的结构发生变化㊂(a )放大倍率30000倍(b )放大倍率60000倍图2 F N @U i O -66的S E M 照片F i g .2 S E Mi m a ge s of F N @U i O -66图3为纯水介质中U i O -66与F N@U i O -66的水合粒径分布图㊂由图3可见,U i O -66与F N@U i O -66的粒径分布较为均匀,平均粒径分别为334.5n m 和380.4n m ,尤其是当F N 与U i O -66形成F N@U i O -66复合材料后,复合材料的平均粒径稍稍增大,证明了F N@U i O -66复合材料的成功合成㊂图3 (a )U i O -66与(b )F N @U i O -66的粒径分布图F i g .3 A v e r a ge p a r t i c l es i z ed i s t r i b u t i o n p l o t of (a )U i O -66a n d (b )F N @U i O -66图4为U i O -66,F N 与F N@U i O -66的红外光谱图㊂如图4(a )所示,3430c m -1处的宽峰可归属为O H 键伸缩振动,1398c m -1处强吸收峰可归属为配体中羧基伸缩振动,1505c m -1和1583c m -1094沈阳师范大学学报(自然科学版) 第41卷图4 (a )U i O -66,(b )F N ,(c )F N @U i O -66的红外光谱图F i g .4 I Rs pe c t r aof (a )U i O -66,(b )F Na n d (c )F N @U i O -66处的特征峰是配体分子中苯环的骨架振动引起的,550c m -1处的吸收峰对应Z r O C 键,这个吸收峰的存在证明了金属有机框架结构的建立,表明成功地合成了U i O -66㊂图4(c )给出F N@U i O -66材料的红外光谱图,由图4(c )可见,复合F N 后U i O -66的红外谱图变化不明显,一些强吸收峰出现几个波数的红移,例如,1398c m -1处吸收峰红移至1401c m -1处,1583c m -1处吸收峰红移至1584c m -1处,但并未出现F N 如1598c m -1,1112c m -1处的特征吸收峰,推测其原因可能是U i O -66中复合的F N 量较少㊂由图5(a )可以看出,U i O -66及F N@U i O -66的氮气吸附脱附等温曲线均呈现典型的Ⅰ类吸附等温线特点,即在P /P 0比较低时吸附量快速上升,随着P /P 0的增加,吸附量达到一个饱和值,当接近饱和压力(P /P 0接近1.0)时,曲线上扬㊂这表明U i O -66及F N@U i O -66都是典型的微孔结构㊂复合F N 后,U i O -66的氮气吸附量明显下降,比表面积由1005.3452m 2㊃g -1下降至873.5886m 2㊃g -1,这也从另一方面证明了F N@U i O -66的成功合成㊂图5(b )给出U i O -66及F N@U i O -66的孔分布情况,复合F N 后U i O -66的孔体积显著减小,只有0.86n m 大小的孔体积变大,本文推测这可能是复合F N后,U i O -66表面部分孔的孔径发生改变所致㊂(a )(b)图5 U i O -66与F N @U i O -66的(a )氮气吸附脱附等温曲线和(b)孔分布曲线F i g .5 (a )N 2a d s o r p t i o n /d e s o r p t i o na n d (b )po r es i z ed i s t r i b u t i o no f U i O -66a n dF N @U i O -66图6 F N @U i O -66的荧光发射光谱(λe x =320n m )F i g .6 F l u o r e s c e n c es pe c t r aof U i O -66a n d F N @U i O -66(λe x=320n m )图6为U i O -66及F N@U i O -66悬浊液的荧光光谱图㊂由图6可见,U i O -66在369n m 处有发射峰,对应B D C 配体的π-π*跃迁[11]㊂而与之相比,F N@U i O -66复合材料除了369n m 处峰外,在523n m 处存在强度更大的发射峰,此峰对应于F N 分子的特征发射㊂2.2 F N @U i O -66对T B 的荧光检测图7(a )为不同浓度T B 存在下F N@U i O -66悬浊液的发光情况㊂可以看出,随着T B 浓度的增加,体系的发光强度逐渐降低,发生荧光猝灭现象,并且主发射峰发生蓝移,由523n m 变为520n m ,表明T B 的194第6期 刘丽艳,等:荧光素@U i O -66金属有机框架材料荧光检测曲利苯蓝引入降低了体系F N 分子周围的极性,增加了环境的疏水性㊂一般来说,荧光猝灭包括静态猝灭和动态猝灭,可使用S t e r n -V o l m e r 方程(式(1))分析㊂F 0F=1+K S V [Q ](1)其中:F 与F 0分别为有无猝灭剂时体系的荧光发射强度;[Q ]是猝灭剂浓度;K S V 是S t e r n -V o l m e r 常数㊂利用式(1)对图7(a )中荧光发射数据进行计算[1213],可以看出,T B 浓度在0~3.0ˑ10-4m o l㊃L -1时F 0/F 与T B 浓度呈现良好的线性关系,线性方程为y =1.02+3593x ,R 2为0.9973㊂根据3δ/S(δ为空白样品标准偏差,S 为线性方程斜率)计算可知,T B 检出限为0.06μm o l ㊃L -1,表明F N@U i O -66能够较灵敏地检测T B㊂(a )(b)(从1到8,T B 浓度分别为0.0,0.25ˑ10-4,0.5ˑ10-4,1.0ˑ10-4,1.5ˑ10-4,2.0ˑ10-4,2.5ˑ10-4和3.0ˑ10-4m o l㊃L -1)图7 (a )不同浓度T B 存在条件下F N @U i O -66荧光发射光谱(λe x =320n m )和(b )S t e r n -V o l m e r 图F i g .7 (a )F l u o r e s c e n c ee m i s s i o n s p e c t r ao f U i O -66@F l u o r e s c ew i t hd i f f e r e n t c o n c e n t r a t i o n s o f T B (λe x =320n m )a n d (b )S t e r n -V o l m e r p l o t (a 归一化的T B 可见吸收光谱;b 归一化的F N@U i O -66荧光发射光谱)图8 光谱重叠谱图F i g .8 Sc h e m a t i z ed s pe c t r a l o v e r l a ps 根据F ör s t e r 共振能量传递理论[14],当荧光体与物质距离较近时,如果荧光体的发射光谱与物质的吸收光谱之间存在重叠,二者之间会发生能量传递,这是引起荧光猝灭的原因之一㊂图8给出了室温下F N@U i O -66荧光发射光谱与T B 紫外可见光谱的重叠谱图㊂由图8可见,二者之间存在较大程度的重叠,导致F N@U i O -66荧光发射能量向T B 转移,F N@U i O -66则出现明显的猝灭现象㊂本文还考察了F N@U i O -66识别T B 的重复性㊂设第1次实验中F N@U i O -66的发光强度为100%,则第2次至第5次实验中F N @U i O -66的发光强度分别为98.83%,94.12%,90.86%和90.82%㊂可以看出,经过5次循环,F N@U i O -66的荧光强度仍旧维持在较高水平,F N@U i O -66的使用重复性较好㊂3 结 论本文采用水热法成功制备了金属有机框架材料F N@U i O -66,并通过X 射线衍射㊁红外光谱等手段表征了材料的结构㊂同时,将F N@U i O -66用作传感器,使用荧光猝灭方法识别检测T B ㊂实验结果显示,T B 可以有效地猝灭F N@U i O -66发光,并且随着T B 加入量的增加,F N@U i O -66的猝灭越来越显294沈阳师范大学学报(自然科学版) 第41卷著,F N@U i O -66对T B 的检出限为0.06μm o l ㊃L -1㊂因此,F N@U i O -66对T B 具有良好的选择性和灵敏度,可实现T B 的快速发光检测㊂参考文献:[1]F R E U N DR ,Z A R E M B A O ,A R N A U T S G ,e ta l .T h ec u r r e n ts t a t u so f MO Fa n dC O Fa p p l i c a t i o n s [J ].A n g e w C h e mI n tE d ,2021,60(45):2397524001.[2]WA N G G D ,L IY Z ,S H I W J ,e t a l .Ar o b u s t c l u s t e r -b a s e dE u -MO Fa s m u l t i -f u n c t i o n a l f l u o r e s c e n c es e n s o r f o r d e t e c t i o no f a n t i b i o t i c s a n d p e s t i c i d e s i nw a t e r [J ].S e n sA c t u a t o r sBC h e m ,2021,331:129377.[3]C A V K A J ,J A K O B S E N S ,O L S B Y E U ,e ta l .A n e w z i r c o n i u m i n o r g a n i cb u i l d i n g b r i c kf o r m i n g m e t a lo r g a n i c f r a m e w o r k sw i t he x c e p t i o n a l s t a b i l i t y [J ].JA m C h e mS o c ,2008,130(42):1385013851.[4]K A N D I A H M ,N I L S E N M H ,U S S E G L I O S ,e t a l .S y n t h e s i sa n ds t a b i l i t y o f t a g g e d U i O -66Z r -MO F s [J ].C h e m M a t e r ,2010,22(24):66326640.[5]P I S C O P O CG ,P O L Y Z O I D I SA ,S C HWA R Z E R M ,e t a l .S t a b i l i t y o fU i O -66u n d e r a c i d i c t r e a t m e n t :O p p o r t u n i t i e s a n d l i m i t a t i o n s f o r p o s t -s y n t h e t i cm o d i f i c a t i o n s [J ].M i c r o p o rM e s o p o rM a t ,2015,208:3035.[6]R A V I S HA N K A R T N ,MA N J U N A T HA K ,R AMA K R I S HN A P P A T ,e ta l .C o m p a r i s o no ft h e p h o t o c a t a l yt i c d e g r a d a t i o n o f t r y p a n b l u e b y u n d o p e d a n d s i l v e r -d o pe d z i n c o x i d e n a n o p a r t i c l e s [J ].M a t S c i S e m i c o nP r o c ,2014,26:717.[7]T S A O U S I S K T ,K O P S A C H I L I S N ,T S I N O P O U L O SIT ,e ta l .T i m e -d e p e n d e n t m o r p h o l o g i c a la l t e r a t i o n sa n d v i a b i l i t y o f c u l t u r e dh u m a n t r a b e c u l a r c e l l s a f t e r e x p o s u r e t o t r y p a nb l u e [J ].C l i nE x p O p h t h a l m o l ,2013,41(5):484490.[8]KWO K A K H ,Y E U N GCK ,L A I TYY ,e t a l .E f f e c t s o f t r y p a n b l u e o n c e l l v i a b i l i t y a n d g e n e e x p r e s s i o n i n h u m a n r e t i n a l p i g m e n t e p i t h e l i a l c e l l s [J ].B r i t JO ph t h a l m o l ,2004,88(12):15901594.[9]S HA N A HA NJ ,K I S S E L D S ,S U L L I V A N E .P A N I @U i O -66a n d P A N I @U i O -66-N H 2p o l y m e r -MO F h y b r i d c o m p o s i t e s a s t u n a b l e s e m i c o n d u c t i n g m a t e r i a l s [J ].A C SO m e g a ,2020,5(12):63956404.[10]L IJ ,D A IY ,C U IJ ,e ta l .D y e -e n c a p s u l a t e dZ r -b a s e d MO F sc o m p o s i t e sa sas e n s i t i v e p l a t f o r m f o rr a t i o m e t r i c l u m i n e s c e n t s e n s i n g of a n t i b i o t i c s i nw a t e r [J ].T a l a n t a ,2023,251:123817.[11]S U N Z ,L IJ ,WA N G X ,e ta l .R h B -e n c a p s u l a t e d MO F -b a s e dc o m p o s i t ea ss e l f -c a l i b r a t i ng s e n s o rf o rs e l e c t i v e d e t e c t i o no f 4-n i t r o a n i l i n e [J ].JL u m i n ,2022,241:118480.[12]Z HA OD ,L I U X H ,Z HA O Y ,e t a l .L u m i n e s c e n t C d (Ⅱ)-o r g a n i c f r a m e w o r k sw i t h c h e l a t i n g N H 2s i t e s f o r s e l e c t i v e d e t e c t i o no fF e (Ⅲ)a n da n t i b i o t i c s [J ].JM a t e rC h e m A ,2017,5(30):1579715807.[13]L I UZQ ,Z HA O Y ,Z HA N GXD ,e t a l .M e t a l -o r g a n i c f r a m e w o r k sw i t h 1,4-d i (1H -i m i d a z o l -4-y l )b e n z e n e a n d v a r i e d c a r b o x y l a t e l i g a n d sf o rs e l e c t i v e l y s e n s i n g Fe (Ⅲ)i o n sa n dk e t o n e m o l e c u l e s [J ].D a l t o n T r a n s ,2017,46(40):1394313951.[14]R OW L A N DC E ,B R OWN C W ,M E D I N T ZIL ,e t a l .I n t r a c e l l u l a rF R E T -b a s e d p r o b e s :Ar e v i e w [J ].M e t h o d sA p pl F l u o r e s c ,2015,3(4):042006.394第6期 刘丽艳,等:荧光素@U i O -66金属有机框架材料荧光检测曲利苯蓝。
PHD-4螺簇泄漏螺簇辅助仪器说明书

Advanced Test Equipment Rentals 800-404-ATEC (2832)®E s t a b l i s h e d 1981The Agilent AdvantageGlobal Application SupportExpertise When & Where You Need It• Thousands of portable SIPD sniffing heliumdetectors are in daily use worldwide • Helium leak testing is the preferred solution in a broad range of applications and industries • Native language application specialistsavailable locallyHigh Performance InstrumentsWide Range, PHD-4 Portable Helium Detector• High Sensitivity to Helium • Easy to Use • Truly Portable • Versatile • DependableIndustry Leading Service & SupportGet The Most From Your Investment• The system is designed to allow easy replacement ofsampling line components in the field• Exchange units are available for rapid field replacement•Support programs can be tailored to meet your most demanding needsMaximizing Productivity and UptimeFeatures and BenefitsVersatile - Suitable for many different applications• Wide range of uses: replaces or can be used with existing methods such as bubble test or pressure decay• Able to detect both very small and large leaks• Can operate either on battery power or connected to a mains power supply• Displayed messages can be viewed in several languages (English, French, German, Italian) •Standard Analog and RS232 Serial I/ODependable - Long term operation• Automatic backflow valve helps prevent helium saturation, ensuring fast recovery time aswell as long life of sensing element.•CE, CSA/US approved for global standardizationHigh Sensitivity to Helium - Can detect very small leaks• High Sensitivity (2 ppm) to helium, three orders of magnitude better than industry standard, due to SIPD (proprietary and patented Selective Ion Pump Detection)• Excellent selectivity for helium allows you to read helium leaks and ignore all other gases • Two levels of sensitivity are available for application dependent use•Autozero function allows leak detection even in unstable helium background environmentsEasy to Use - No training required• State-of-the-art microprocessor control allows great simplicity of operation • Fully automatic start-up with auto-diagnostics • Ready for test in less than 3 minutes • Intuitive display screen• Visual and audio indicators (standard headphone connection)• No tuning requiredTruly Portable - Compact and light• The PHD-4 weighs only 2,6 Kg (5.7 lbs) including the battery • Its compact size allows it to be easily carried anywhere• Its ergonomic design allows comfortable use for extended periodsThe New PHD-4 Portable Helium Detector 2133Large Vessels and BioreactorsThe PHD-4 offers unmatched accuracy and repeatability, presenting a unique solution that it is cost effective and very well suited for the leak range specifications of this application.Biotech and pharmaceutical industries used to rely on pressure decay and bubble test methods for finding leaks in their large bioreactors. The PHD-4 has established a new standard of quality, significantly increasing production yields.• Fermenters • Sterilizers •Freeze DryersUnderground Pipes and Storage TanksThe portability and light weight of the PHD-4 plays a major role in this application. Underground pipes and storage tanks (UST) are slightly pressurized with helium which, due to its high mobility, can escape through small leaks and migrate to the surface, where it can be easily detected by the PHD-4.The accuracy, portability and light weight of this unit greatly simplifies this process, particularly in difficult construction sites or rough terrain.• Gas distribution lines •Under and above ground containers and storage tanks •Telecommunication and high voltage underground cablesWater Heating and Cooling PipesThe PHD-4 allows leak location without interruption of the normal operation, by mixing helium with the water in the circuit. Until recently, the precise and rapid location of leaks in buried pipes has been very difficult.In the event of a leak, helium desorbs from the fluid and diffuses to the surface, where it is easily detected. Leaks in pipeline systems such as district heating systems, drinking or chilled water systems and steam pipe networks incur high costs due to losses and corrosion damage.• Heater exchangers and steam condensation lines •Water pipes •Radiant heating systemsAirplane Fuel Tanks and LinesPHD-4 technology is approved worldwide by airplane manufacturers and operators as the standard for the location of leaks in aircraft fuel tanks and in oxygen distribution lines. Agilent works with an exclusive distributor for aircraft applications. Please contact your local Agilent office for more information.•Fuel tanks •Oxygen distribution linesOther ApplicationsThe PHD-4 is in daily use in many other applications. Its portability makes it ideal for factory and field maintenance. Here is a partial list of other applications:• Components and systems for the Chemical and Petrochemical Industries • Compressed air components and delivery systems•Process gas delivery lines in Semiconductor fabrication industryCourtesy of Fraunhofer UMSICHT, GermanyApplicationThis information is subject to change without notice © Agilent Technologies, Inc. 2012Published February 29, 2012VPD-0112ENAgilent TechnologiesUSAAgilent Technologies 121 Hartwell Avenue,Lexington MA 02421, USA Tel: +1 781 861 7200Fax: +178****5437Toll free: +1 800 882 7426 ITALYAgilent Technologies Italia SpA via F.lli Varian 5410040 Leini, (Torino), Italy Tel: +39 011 9979 111Fax: +39 011 9979 350Toll free: 00 800 234 234 00BENELUXAgilent Technologies Netherlands B.V.Groenelaan 51186 AA Amstelveen Tel. +31 23 5377033Fax. +31 23 5382400Toll free: 00 800 234 234 00Agilent Technologies Belgium SA/NVPegasus Park, De Kleetlaan 5 bus 91831 Diegem - Belgium Tel. +31 23 5377033Fax +31 23 5382400Toll free: 00 800 234 234 00FRANCEAgilent Technologies France 7 avenue des TropiquesZ.A. de Courtaboeuf - B.P. 1291941 Les Ulis cedex, France Tel: +33 (0) 1 69 86 38 84Fax: +33 (0) 1 69 86 29 88Toll free: 00 800 234 234 00GERMANY and AUSTRIA Agilent TechnologiesSales & Services GmbH& Co. KG Lyoner Str. 2060 528 Frankfurt am Main, GERMANY Tel: +49 69 6773 43 2230Fax: +49 69 6773 43 2250Toll free: 00 800 234 234 00UK and IRELANDAgilent Technologies UK Ltd.6 Mead Road, Oxford Industrial Park Yarnton, Oxford OX5 1QU, UK Tel: +44 (0) 1865 291570Fax: +44 (0) 1865 291571Toll free: 00 800 234 234 00INDIAAgilent Technologies India Pvt. Ltd.G01. Prime corporate Park, 230/231,Sahar Rd., Opp. Blue Dart Centre,Andheri (East), Mumbai, 400 099 India Tel: +91 22 30648287/8200Fax: +91 22 30648250Toll free: 1800 113037CHINAAgilent Technologies (China) Co. LtdNo.3, Wang Jing Bei Lu,Chao Yang District,Beijing, 100102, China Tel: +86 (0)10 64397888Fax: +86 (0)10 64391318Toll free: 800 820 3278TAIWANAgilent Technologies Taiwan Limited20 Kao-Shuang Road Ping-Chen City, 32450Taiwan, R.O.C.Tel: +88 6 34959281Toll free: 0800 051 342JAPANAgilent Technologies Japan, Ltd.8th Floor Sumitomo Shibaura Building 4-16-36 Shibaura Minato-ku Tokyo 108-0023, Japan Tel: +81 3 5232 1253Fax: +81 3 5232 1710Toll free: 0120 655 040KOREAAgilent Technologies Korea Ltd.Shinsa 2nd Bldg. 1F 966-5 Daechi-dongKangnam-gu, Seoul, Korea 135-280Tel: +82 (0)2 2194 9449Fax: +82 (0)2 3452 3947Toll free: 080 222 2452SINGAPOREAgilent Technologies Singapore (Sales) Pte Ltd 1 Yishun Avenue 7Singapore 768923Tel : (65) 6377 1688DID: (65) 6215 8045Fax: (65) 6754 0574TollFree:180****2622SEAAgilent Technologies Sales (Malaysia) Sdn Bhd Unit 201 Level 2 Uptown 2,2 Jalan SS 21/37 Damansara Uptown 47400 Petaling Jaya, Selangor Malaysia.Tel: (60) 3 7727 8808Fax: (60) 3 7727 1209TollFree:180****2622The PHD-4 Portable Helium DetectorThe PHD-4 is a portable compact leak detector which includes a battery for autonomous use in the field and uses helium as a tracer gas. It allows detection of very small leaks in objects where a slight helium pressure has been introduced.Principle of operationThe PHD-4 principle of operation is based on a Varian patented technology, Selective Ion Pump Detection (SIPD).The sensor incorporates a quartz capillary tube maintained under high vacuum by an ion pump. The quartz tube is heated with a platinum filament and becomes permeable to helium. As the partial pressure of helium in the ion pump increases, so does the current drawn by the ion pump, proportional to the pressure, indicating the helium concentration present in the test probe of the PHD-4.WHY USE HELIUM AS A TRACER GAS?Helium is a superior choice as tracer gas for a number of reasons: • It is inert, non-toxic and non-flammable• It can pass easily through leaks due to its small atomic size, allowing the detection of very small leaks • It is present in the atmosphere at only 5 ppm, thus reducing the possibility of false readings • It is highly mobile, allowing rapid desorption and short measurement times•When used properly, it is the most economical and allows the highest sensitivity, of all trace gases。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Lab Report
Electrochemistry: Voltaic and Electrolytic
cells
by Josiah Richardson
Lab Partners: Kenny Nguyen
Professor David Haas
Lab Day and Start Time: Tuesdays 1:40pm
Date Experiment Performed: April 23rd, 2013
Date Lab Report Submitted: May 2nd, 2013
Introduction
In this lab, we created an electrochemical cell using a 9-volt battery to cause the electrolysis of a sodium iodide solution. Using the nernst equation, we will determine the cell potential for various concentrations and determine whether our experimental results coincide with the actual experiment. The nernst equation is as follows:
E = E o– RT ln Q where E is the potential of the cell.
nF E o is the potential of the cell at standard conditions
R is the gas constant 8.314 J/mol-K
T is the temperature in Kelvin
n are the moles of electrons transNirred
F is
Faraday’s constant (96500 Coulombs/mole)
and Q is the reaction quotient (products/reactants)
At standard condtions (25 C, 1 ATM, 1 Mol) we will use the nearst equation which is as follows:
E cell = E˚cell - 0.05916 log [products]p
n [reactants]r
We will use these aforementioned equations and the forthcoming materials to accomplish our goal of creating and analyzing our electrochemical cell.
Materials
black and red coated wire with alligator clips copper strip, nickel strip
pipet DC voltmeter
zinc strip, lead strip Phenolphthalein
0.50 M KNO3, 0.10 M ZnSO4, 0.10M NiSO4, 0.10 M
9-Volt battery with terminal Pb(NO3)2, 0.0020 M ZnSO4, and 0.10 M CuSO4
plastic cups Safety glasses
Procedure“Electrochemistry: Voltaic and Electrolytic cells”, CHEM 102 General Chemistry Lab Experiment April 2013. The laboratory procedure in the worksheet was followed without modification.
Data
PART 1:
1. Zn / Zn+2(0.10M) // Cu+2(0.10M) / Cu without the salt bridge 0.00 V
2. Zn /Zn+2(0.10M) // Cu+2(0.10M) / Cu with the salt bridge
1.07 V
3. Pb / Pb+2(0.10M) // Cu+2(0.10M) / Cu with the salt bridge
0.85mV
4. Ni / Ni+2(0.10M) // Cu+2(0.10M) / Cu with the salt bridge
0.02 V
5.Zn / Zn+2(0.0020M) // Cu+2(0.10M) / Cu with the salt bridge 1.07 V
Table 1. Voltage of compounds data
Figure 2. An Electrolytic Electrochemical Cell
Results and Discussion
We observed many amazing chemical reactions in this laboratory experiment. We watched as one of the metal alligator clips fizzed when we hooked it up to the 9-volt battery and the other corroded as if it was rusting at an exponential rate. When we added the phenolphthalein to the solution it changed the solution to a pink color coming from one of the alligator clips, telling us that the clip that was corroding was being reduced and the other clip that fizzed was being oxidized.
Conclusion
In this lab, we learned how to draw an electrolytic cells and determine what is being oxidized and what is being reduced. We also learned how to write the shorthand notation for the
electrochemical cells. We used various solutions with their compounds and hooked them up to
a 9 volt battery and recorded our observations. To solve equations where we needed to find the standard potentials of the cells, we used the nearst equation and the nearnst equation, respectively. Out of all the laboratory experiements that we have been a part of, this one was the most pre-knowledge based. My overall experience was an enjoyable one and I look forward to future labs of the same magnitude.。