2014高三10:算法初步

合集下载

高三 一轮复习 算法初步 教案

高三 一轮复习 算法初步 教案

算_法_初_步1.算法与流程图(1)算法的定义:一般而言,对一类问题的机械的、统一的求解方法称为算法.(2)流程图①流程图是由一些图框和流程线组成的,其中图框表示各种操作的类型,图框中的文字和符号表示操作内容,流程线表示操作的先后次序.②基本的图框有起止框、输入、输出框、处理框、判断框.(3)三种基本逻辑结构:名称内容顺序结构条件结构循环结构定义由若干个依次执行的步骤组成的,这是任何一个算法都离不开的基本结构算法的流程根据条件是否成立有不同的流向,条件结构就是处理这种过程的结构从某处开始,按照一定的条件反复执行某些步骤的情况,反复执行的步骤称为循环体流程图2.基本算法语句(1)输入、输出、赋值语句的格式与功能:语句一般格式功能输入语句INPUT“提示内容”;变量输入信息输出语句PRINT“提示内容”;表达式输出常量、变量的值和系统信息赋值语句变量=表达式将表达式所代表的值赋给变量(2)条件语句的格式及框图:①IF-THEN格式:②IF-THEN-ELSE格式:(3)循环语句的格式及框图:①UNTIL语句:②WHILE语句:1.易混淆处理框与输入框,处理框主要是赋值、计算,而输入框只是表示一个算法输入的信息.2.易忽视循环结构中必有条件结构,其作用是控制循环进程,避免进入“死循环”,是循环结构必不可少的一部分.3.易混淆当型循环与直到型循环.直到型循环是“先循环,后判断,条件满足时终止循环”;而当型循环则是“先判断,后循环,条件满足时执行循环”;两者的判断框内的条件表述在解决同一问题时是不同的,它们恰好相反.[试一试]1.执行如图所示的算法流程图,若输入x=2,则输出y的值为________.2.如图是一个算法流程图,则输出的k的值是________.识别算法流程图运行和完善流程图的步骤识别运行算法流程图和完善流程图是高考的热点.解答这一类问题,第一,要明确流程图的顺序结构、条件结构和循环结构;第二,要识别运行流程图,理解框图所解决的实际问题;第三,按照题目的要求完成解答.对流程图的考查常与数列和函数等知识相结合,进一步强化框图问题的实际背景.[练一练]1.(2014·深圳调研)若执行图中的框图,输入N=13,则输出的数等于________.2.运行如图所示的流程图,若输出的结果是62,则判断框中整数M的值是________.考点一算法的基本结构1.(2012·江苏高考)下图是一个算法流程图,则输出的k的值是________.2.(2013·安徽高考改编)如图所示,程序框图(算法流程图)的输出结果为________.3.(2014·南昌模拟)若如下框图所给的程序运行结果为S=20,那么判断框中应填入的关于k的条件是________.[类题通法]1.解决流程框图问题要注意几个常用变量:(1)计数变量:用来记录某个事件发生的次数,如i=i+1.(2)累加变量:用来计算数据之和,如S=S+i.(3)累乘变量:用来计算数据之积,如p=p×i.2.处理循环结构的框图问题,关键是理解并认清终止循环结构的条件及循环次数.考点二算法的交汇性问题算法是高考热点内容之一,算法的交汇性问题是新课标高考的一大亮点,归纳起来常见的命题角度有:(1)与统计的交汇问题;(2)与函数的交汇问题;(3)与概率的交汇问题.角度一与统计的交汇问题1.(2014·荆州模拟)图(1)是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到第14次的考试成绩依次记为A1,A2,…,A14.图(2)是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图.那么算法流程图输出的结果是________.角度二与函数的交汇问题2.(2014·北京海淀模拟)执行如图所示的算法流程图,输出的k值是________.角度三与概率的交汇问题3.如图是用模拟方法估计圆周率π值的流程图,P表示估计结果,则图中空白框内应填入________.[类题通法]解决算法的交汇性问题的方法(1)读懂流程图、明确交汇知识;(2)根据给出问题与流程图处理问题;(3)注意框图中结构的判断.考点三基本算法语句[典例](2013·南京、盐城一模)如图是一算法的伪代码,执行此算法,最后输出的n的值为________.n←6s←0While s<15s←s+nn←n-1End WhilePrint n[类题通法]1.输入语句、输出语句和赋值语句基本对应于算法的顺序结构.2.在循环语句中也可以嵌套条件语句,甚至是循环语句,此时需要注意嵌套格式,这些语句需要保证算法的完整性,否则就会造成程序无法执行.[针对训练]运行下面的程序时,WHILE循环语句的执行次数是________.N←0WHILE N<20N←N+1N←N*NWENDPRINT NEND[课堂练通考点]1.(2013·济南模拟)阅读算法流程图,运行相应的程序,输出的结果为________.2.(2014·福州模拟)执行如图所示的流程图,若输入的x值为2,则输出的x值为________.3.(2013·广东高考改编)执行如图所示的程序框图,若输入n的值为4,则输出s的值为________.4.(2013·惠州模拟)如图所示是一个算法的流程图,则输出S的值是________.[课下提升考能]1.(2014·大连模拟)在如图所示的流程图中,输入A=192,B=22,则输出的结果是________.2.当a=1,b=3时,执行完如图的一段程序后x的值是________.IF a<b THENx←a+bELSEx←a-bEND IF3.图中的算法伪代码运行后,输出的S为________.I←1While I<8S←2×I+3I←I+2End WhilePrint S4.按如图所示的流程图运行后,输出的结果是63,则判断框中的整数M的值是________.5.(2013·东城模拟)某算法流程图如图所示,执行该程序,若输入的x值为5,则输出的y值为________.6.(2014·南通调研)已知实数x∈[1,9],执行如图所示的流程图,则输出的x不小于55的概率为________.7.(2014·徐州摸底)已知某算法的流程图如图所示,则程序运行结束输出的结果为________.8.(2013·长春第三次调研)执行如图所示的流程图,若输出的k=5,则输入的整数p的最大值为________.9.(2014·台州模拟)按如图所示的流程图运算,若输入x=20,则输出的k=________. 10.(2013·湖南高考)执行如图所示的程序框图,如果输入a=1,b=2,则输出的a的值为________.11.(2014·湖北八校联考)执行如图所示的流程图,输出的S的值为________.12.(2014·湘潭模拟)执行如图所示的流程图,输出的结果是________.。

2014届高考数学(理)复习课件第11单元-算法初步、复数、推理与证明(共218张PPT)

2014届高考数学(理)复习课件第11单元-算法初步、复数、推理与证明(共218张PPT)
返回目录
使用建议
1.编写意图 本单元是新课标考纲中新增的内容,考查范围广,内 容多,涉及数学知识的方方面面,难易度不易把握.以教 材为根本,以考试大纲为准绳,在编写过程中突出了以下 两个特点: (1)突出主干知识.对核心知识和常考知识点进行了 重点设计,对各种基本题型进行了详细阐述.比如在算法 初步部分的编写中,突出了对学生算法思想及运用程序框 图能力的训练,对算法案例进行了弱化处理,目的是帮助 学生在繁杂的知识中构建知识体系,抓住重点,提高复习 效率.
输__入__信__息__
输出 语句
PRINT“提__示__内__容__”;表达式
输出常量、变量的值 和系统_信__息_____
赋值 语句
变量_=__表__达__式_
将表达式代表的 值赋__给__变__量__
返回目录
第65讲 算法初步

向•
六、条件语句

基•
1.程序框条图件中结构的________与条件语
据的处理框内
判断某一条件是否成立,成立时在出口 处标明“是”或“Y”;不成立时标明
“否”或“N”
流程线
连接程序框
返回目录
第65讲 算法初步

向•
三、三种基本逻辑结构

基 础
名称 内容
顺序结构
条件结构
循环结构
定义
算法的流程根 从某处开始,
由若干个_依__次__执__行_ 的步骤组成的,这 是任何一个算法都 离不开的基本结构
讲 都需要逻辑判断;结论:可得①③都需要条件语句.


[答案] (1)B (2)B
返回目录
第65讲 算法初步
[解析] (1)三种语句都有一定的格式要求,根据格式去做

(考点梳理+考点自测+真题举例)2014高考总复习数学(理)第十四章算法初步、推理与证明、复数

(考点梳理+考点自测+真题举例)2014高考总复习数学(理)第十四章算法初步、推理与证明、复数

第十四章算法初步、推理与证明、复数第1讲算法的含义及流程图对应学生用书P201考点梳理1.算法与流程图(1)算法通常是指可以用计算机来解决的某一类问题的程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.(2)设计算法要注意的问题①认真分析问题,找出解决此问题的一般方法.②借助有关的变量或参数对算法加以表述.③将解决问题的过程划分为若干步骤.④用简练的语言将各个步骤表示出来.(3)流程图是由一些图框和流程线组成的,其中图框表示各种操作的类型,图框中的文字和符号表示操作的内容,流程线表示操作的先后次序.2.三种基本逻辑结构(1)顺序结构是由若干个依次执行的处理步骤组成的,这是任何一个算法都离不开的基本结构.其结构形式为(2)选择结构是指算法的流程根据给定的条件是否成立而选择执行不同的流向的结构形式,也称为分支结构.其结构形式为(3)循环结构是指在算法中,需要重复执行同一操作的结构.反复执行的处理步骤称为循环体.循环结构又分为当型和直到型.循环结构主要用在一些有规律的重复计算的算法中,如累加求和,累乘求积等问题常常需要用循环结构来设计算法.其结构形式为【助学·微博】一个复习指导算法初步是必考内容之一,试题难度不大,属基础题,以填空题形式出现,主要考查流程图知识,但往往与其他章节知识结合,常与数列等知识融合在一起.两种循环语句的区别在当型语句中,是当条件满足时执行循环体,而在直到型语句中是当条件不满足时执行循环体,二者是有区别的,在解决问题时用两种循环语句编写应注意条件的不同.考点自测1.阅读如图所示的流程图,若输入的x是2,则输出的值为________.解析∵2>0,故输出的值为1.答案 12.如图所示的是一个算法的流程图,已知a1=3,输出的结果为7,则a2的值是________.解析已知图形是一个顺序结构的框图,表示的算法的功能是求两数a1、a2的算术平均数,已知a1=3,输出结果为7,有a1+a22=7,解得a2=11.答案113.(2012·泰州模拟)如图是一个算法的流程图,则输出a的值是________.解析a=log2256=log228=8>2;a=log28=3>2;a=log23<2,所以输出a=log23.答案log234.(2011·湖南卷)若执行如图所示的框图,输入x1=1,x2=2,x3=4,x4=8,则输出的数为________.解析解读框图可知,本题的实质是求4个数x1,x2,x3,x4的平均数,其平均数为1+2+4+84=154.答案15 45.(2011·课标全国卷改编)执行如图所示的流程图,如果输入的N是6,那么输出的p是________.解析当输入的N是6时,由于k=1,p=1,因此p=p·k=1.此时k=1,满足k<6.故k=k+1=2.当k=2时,p=1×2,此时满足k<6,故k=k+1=3.当k=3时,p=1×2×3,此时满足k<6,故k=k+1=4.当k=4时,p=1×2×3×4,此时满足k<6,故k=k+1=5.当k=5时,p=1×2×3×4×5,此时满足k<6,故k=k+1=6.当k=6时,p=1×2×3×4×5×6=720,此时k<6不再成立,因此输出p=720.答案720对应学生用书P202考向一算法的意义与设计及顺序结构的应用【例1】已知点P(x0,y0)和直线l:Ax+By+C=0,求点P(x0,y0)到直线l的距离d,写出其算法并画出流程图.解算法如下:第一步,输入x0,y0及直线方程的系数A,B,C.第二步,计算Z1←Ax0+By0+C.第三步,计算Z2←A2+B2.第四步,计算d←|Z1| Z2.第五步,输出d.该算法对应的流程图如图所示:[方法总结] 给出一个问题,设计算法应注意:(1)认真分析问题,联系解决此问题的一般数学方法;(2)综合考虑此类问题中可能涉及的各种情况;(3)将解决问题的过程划分为若干个步骤;(4)用简练的语言将各个步骤表示出来.【训练1】已知f(x)=x2-2x-3.求f(3)、f(-5)、f(5),并计算f(3)+f(-5)+f(5)的值.设计出解决该问题的一个算法,并画出流程图.解算法如下:S1x←3.S2y1←x2-2x-3.S3x←-5.S4y2←x2-2x-3.S5 x ←5.S6 y 3←x 2-2x -3. S7 y ←y 1+y 2+y 3.S8 输出y 1,y 2,y 3,y 的值. 该算法对应的流程图如图所示:考向二 算法的选择结构【例2】 已知函数y =⎩⎨⎧-2x (x >0),0 (x =0),2x (x <0),写出求该函数的函数值的算法及流程图.解 算法如下: S1 输入x ;S2 如果x >0,转S3,如果x =0,转S4,否则转S5; S3 y ←-2x ; S4 y ←0; S5 y ←2x ; S6 输出y .相应的流程图如图所示:[方法总结] 利用选择结构解决算法问题时,要引入判断框,要根据题目的要求引入一个或多个判断框.而判断框内的条件不同,对应的下一图框中的内容和操作也相应地进行变化,故应逐个分析判断框内的条件.【训练2】 (1)如图(1)是某个函数求值的流程图,则满足该程序的函数解析式为________.(2)(2010·山东卷)执行如图(2)所示的流程图,若输入x =4,则输出y 的值为________.解析 (1)依题意得当x <0时,f (x )=2x -3; 当x ≥0时,f (x )=5-4x .因此f (x )=⎩⎨⎧2x -3,x <05-4x ,x ≥0.(2)当x =4时,y =1,不满足|y -x |<1, 因此由x =y 知x =1.当x =1时,y =-12,不满足|y -x |<1, 因此由x =y 知x =-12. 当x =-12时,y =-54, 此时,⎪⎪⎪⎪⎪⎪-54+12<1成立.答案 (1)f (x )=⎩⎨⎧2x -3,x <05-4x ,x ≥0(2)-54考向三 算法的循环结构【例3】 设计算法求11×2+12×3+13×4+…+12 011×2 012的值,并画出流程图.解 算法如下: S1 S ←0,i ←1;S2 如果i ≤2 011,则转S3,否则,转S5; S3 S ←S +1i (i +1); S4 i ←i +1,转S 2; S5 输出S . 流程图:法一 当型循环流程图: 法二 直到型循环流程图:[方法总结] 利用循环结构表示算法,第一要确定是利用当型循环结构,还是直到型循环结构;第二要注意根据条件,设计合理的计数变量、累加变量等,特别要注意循环结构中条件的表述要恰当、精确,以免出现多一次循环或少一次循环的情况.【训练3】(1)(2012·江苏卷)如图(1)是一个算法流程图,则输出的k的值是________.(2)(2011·浙江卷)某流程图如图(2)所示,则该程序运行后输出的k的值是________.解析(1)∵条件语句为k2-5k+4>0,即k<1或k>4.∴当k=5时,满足此条件,此时输出5.(2)初始值:k=2,执行“k=k+1”得k=3,a=43=64,b=34=81,a>b不成立;k=4,a=44=256,b=44=256,a>b不成立;k=5,a=45=1 024,b=54=625,a>b成立,此时输出k=5.答案(1)5(2)5对应学生用书P203规范解答24算法流程图的识别与读取2014年高考,算法初步为必考知识,估计试题难度为中、低档题,一般是以流程图为考查重点,考查对算法思想和流程图的应用.【示例】(2012·山东卷改编)执行右面的程序框图,如果输入a=4,那么输出的n的值为________.[审题路线图] (1)这是一个累加求和的当型循环结构.(2)P、Q是累加变量,n是计数变量.[解答示范] n=0,P=0+40=1,Q=2+1=3;n=1,P=1+41=5,Q=6+1=7;n=2,P=5+42=21,Q=14+1=15;n=3,P>Q.故n值为3.(5分)[点评] (1)在解决循环结构问题时,一定要弄明白计数变量和累加变量是用什么字母表示的,再把这两个变量的变化规律弄明白,就能理解这个流程图的功能了,问题也就清楚了.(2)在解决带有循环结构的流程图问题时,循环结构的终止条件是至关重要的,这也是考生非常容易弄错的地方,考生一定要根据问题的情境弄清楚这点.高考经典题组训练1.(2012·福建卷)阅读如图所示的程序框图,运行相应的程序,输出的s值等于________.解析第1次s=1,k=1;第2次s=1,k=2,;第3次s=0,k=3;第4次s=-3,k=4.结束.答案-32.(2012·浙江卷)若某程序框图如图所示,则该程序运行后输出的值是________.解析第1次,T=1,第2次,T=12,第3次,T=16,第4次,T=124,第5次,T=1120,i=6结束.答案1 1203.(2012·安徽卷改编)如图所示,程序框图(算法流程图)的输出结果是________.解析答案 44.(2012·湖北卷)阅读如图所示的程序框图,运行相应的程序,输出的结果s =________.解析第1次,n=1,s=1,a=3,第2次,n=2,s=4,a=5,第3次,n=3,s=9,输出s=9.答案95.(2010·江苏卷)如图是一个算法的流程图,则输出S的值是________.解析执行过程如下表:答案63对应学生用书P377分层训练A级基础达标演练(时间:30分钟满分:40分)1.关于流程图的图形符号的理解,正确的是________(填序号).①任何一个流程图都必须有起止框;②输入框只能在开始框之后,输出框只能放在结束框之前;③判断框是唯一具有超过一个退出点的图形符号;④对于一个流程图来说,判断框内的条件是唯一的.解析任何一个程序都有开始和结束,因而必须有起止框;输入和输出可以放在算法中任何需要输入、输出的位置;判断框内的条件不是唯一的,如a>b,亦可写为a≤b.故只有①③对.答案①③2.(2011·天津卷改编)阅读如图所示流程图,运行相应的程序,若输入x的值为-4,则输出y的值为________.解析当x=-4时,|x|=4>3,x赋值为x=|-4-3|=7>3,∴x赋值为x=|7-3|=4>3,x再赋值为x=|4-3|=1<3,则y=21=2,输出2.答案 23.(2012·盐城市期末考试)执行如图所示的流程图,则输出的y的值是________.解析当x=16时,经循环得x=4,再循环得x=2,此时不满足x>2,故y=e2-2=1.答案 14.执行如图所示流程图,得到的结果是________.解析由题意,得S=12+14+18=78.答案7 85.(2013·无锡调研)某算法的流程图如图所示,若输入a=4,b=2,c=6,则输出的结果为________.(第4题图)解析 原执行程序是在输入的a ,b ,c 中,选出最大的数, ∴结果为6. 答案 66.(2012·南通调研一)如图是求函数值的算法流程图,当输入值为2时,则输出值为________.解析 本题的流程图其实是一个分段函数 y =⎩⎨⎧2x -3,x <0,5-4x ,x ≥0.当输入x =2时,y =5-4×2=-3. 答案 -37.(2011·天津卷)阅读下面的程序框图,运行相应的程序,则输出i 的值为________. 解析 第一次运行结束:i =1,a =2; 第二次运行结束:i =2,a =5; 第三次运行结束:i =3,a =16;第四次运行结束:i =4,a =65,故输出i =4. 答案 48.(2012·天津卷改编)阅读如图算法流程图,运行相应的程序,当输入x 的值为-25时,输出x 的值为________.解析 当输入x =-25时,|-25|>1成立,因此x =|-25|-1=4,x =4时,|4|>1成立,因此x =|4|-1=1;x =1时,1>1不成立,因此x =2×1+1=3,输出x 为3. 答案 3分层训练B 级 创新能力提升1.(2011·江西卷)如图是某算法的流程图,则程序运行后输出的结果是________.解析 n =1,s =0+(-1)1+1=0,n=2时,s=0+(-1)2+2=3,n=3时,s=3+(-1)3+3=5,n=4时,s=5+(-1)4+4=10>9,故运行输出结果为10.答案102.(2011·陕西卷)如图中,x1,x2,x3为某次考试三个评阅人对同一道题的独立评分,p为该题的最终得分,当x1=6,x2=9,p=8.5时,x3等于________.解析由题意知x1=6,x2=9,此时|x1-x2|=3>2,若|x3-6|<|x3-9|,则p=6+x3 2=8.5,解得x3=11,不满足|x3-6|<|x3-9|,舍去;若|x3-6|≥|x3-9|,则p=x3+9 2=8.5,解得x3=8,符合题意.答案83.(2011·辽宁卷改编)执行如图流程图,如果输入的n是4,则输出的p是________.解析由k=1,n=4,知1<4⇒p=1=0+1⇒s=1,t=1⇒k=2⇒2<4⇒p=1+1=2⇒s=1,t=2⇒k=3⇒3<4⇒p=1+2=3⇒s=2,t=3⇒k=4⇒4<4――→否输出p=3.答案 34.(2010·广东卷)某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中n位居民的月均用水量分别为x1,…,x n(单位:吨).根据如图所示的程序框图,若n=2,且x1,x2分别为1,2,则输出的结果s为________.解析当i=1时,s1=1,s2=1,s=1×(1-1)=0,当i=2时,s1=3,s2=1+4=5,s=12×⎝⎛⎭⎪⎫5-12×9=14.答案1 45.(2012·苏州调研一)如图是一个算法的流程图,则最后输出W的值是________.解析由流程图,执行过程为:故输出答案146.(2012·泰州调研二)2010年上海世博会园区每天9:00开园,20:00停止入园.在如图所示的框图中,S表示上海世博会官方网站在每个整点报道的入园总人数,a表示整点报道前1个小时内入园人数,则空白的处理框内应填________.解析框图表示的是每天入园参观的人数统计,报道的入园总人数的时间为整点,但入园的时间有整点入园和非整点入园.举例说明如11点报道的入园人数为10点钟以后到11点整入园的人数与之前入园的人数之和.答案S←S+a7.(2011·苏锡常镇调研)如图给出的是计算1+13+15+…+119的值的一个流程图,其中判断框内应填入的条件是________.解析按算法的运算本质,执行到n=19时,结束输出.即:答案i>108.(2011·湖南卷)若执行如图所示的流程图,输入x1=1,x2=2,x3=3,x=2,则输出的数为________.解析通过流程图可以看出本题的实质是求数据x1,x2,x3的方差,根据方差公式,得S=13[(1-2)2+(2-2)2+(3-2)2]=23.答案2 3第2讲基本算法语句对应学生用书P204考点梳理1.基本算法语句五种基本算法语句分别是赋值语句、输入语句、输出语句、条件语句、循环语句.2.赋值语句、输入语句、输出语句赋值语句用符号“←”表示,其一般格式是变量←表达式(或变量),其作用是对程序中的变量赋值;输入语句“Read a,b”表示输入的数据依次递给a,b,输出语句“Print x”表示输出运算结果x.3.算法的选择结构由条件语句来表达,条件语句有两种,一种是If-Then-Else另一种是If-Then语句,其格式是If A ThenBEnd If,对应的流程图为.4.算法中的循环结构,可以运用循环语句来实现.(1)当循环的次数已经确定,可用“For”语句表示“For”语句的一般形式为对应的流程图为说明:上面“For”和“End For”之间缩进的步骤称为循环体,如果省略“Step步长”,那么重复循环时,I每次增加1.(2)不论循环次数是否确定都可以用下面循环语句来实现循环结构当型和直到型两种语句结构.对应的流程图为对应的流程图为【助学·微博】关于赋值语句,有以下几点需要注意:(1)赋值号左边只能是变量名字,而不是表达式,例如3←m是错误的.(2)赋值号左右不能对换,赋值语句是将赋值号右边的表达式的值赋给赋值号左边的变量,例如Y←x,表示用x的值替代变量Y的原先的取值,不能改写为x←Y.因为后者表示用Y的值替代变量x的值.(3)在一个赋值语句中只能给一个变量赋值,不能出现多个“←”.考点自测1.(课本改编题)阅读右面伪代码,则输出的结果为________.解析a=5,b=3,c=(a+b)2=4.答案 42.(2012·南通一模)计算机执行下面的伪代码后,输出的结果是________.解析a=3+1=4,b=4-3=1.答案4,13.当a=1,b=3时,执行以下伪代码输出的结果为________.解析因为1<3满足a<b,所以x=1+3=4.答案 44.要使下面的“For”循环语句循环执行15次,“初值”应为________.For I From“初值”To 5 Step-1解析由x-5+1=15,得x=19.答案 195.(2012·南京模拟)当x =2时,下面的伪代码执行后的结果是________. 解析 当i =1时,s =0×2+1=1, 当i =2时,s =1×2+1=3, 当i =3时,s =3×2+1=7, 当i =4时,s =7×2+1=15. 答案 15i ←1s ←0While i ≤4s ←s ·x +1i ←i +1End While Print s对应学生用书P205考向一 输入、输出和赋值语句【例1】 要求输入两个正数a 和b 的值,输出a b 与b a 的值,画出流程图,写出伪代码.解 流程图: 伪代码如下: Read a ,b A ←a bB ←b aPrint A ,B[方法总结] 编写伪代码的关键在于搞清问题的算法,特别是算法结构,然后确定采取哪一种算法语句.【训练1】 编写伪代码,求用长度为l 的细铁丝分别围成一个正方形和一个圆时的面积.要求输入l 的值,输出正方形和圆的面积.(π取3.14) 解 伪代码如下:错误!【例2】 已知分段函数y =⎩⎨⎧-x +1,x <0,0,x =0,x +1,x >0.编写伪代码,输入自变量x 的值,输出其相应的函数值,并画出流程图. 解 伪代码如下: 流程图 Read xIf x <0 Then y ←-x +1ElseIf x =0 Theny ←0Else y ←x +1 End If End If Print y[方法总结] 这是一个分段函数问题,计算函数值必须先判断x 的范围,因而设计求函数值的算法必须用到选择结构,相应程序的书写应用条件语句来书写.【训练2】 已知函数f (x )=⎩⎨⎧x 2-1(x ≥0),2x 2-5(x <0),设计一个算法并用伪代码实现每输入一个x 的值,都得到相应的函数值.解 用x ,y 分别表示自变量和函数值,则相应的算法如下: S1 输入x 的值;S2 判断x 的取值范围,如果x ≥0,则y ←x 2-1,求函数值,否则y ←2x 2-5; S3 输出函数值y . 伪代码如下: Read xIf x ≥0 Then y ←x 2-1Else y ←2×x 2-5End If Print y【例3】编写伪代码,求1+12+13+…+1n>1 000的最小自然数n的值.解本题不等号的左边1+12+13+…+1n是有规律的累加,故可引入和变量S,转化为求S>1 000的最小自然数n的值,故可以用“While S≤1 000”来控制循环.伪代码如下:错误![方法总结] 通过本题掌握While语句的特点,注意与For语句的区别.在设计算法时要注意循环体的构成,不能颠倒.【训练3】某算法的伪代码如下:错误!则输出的结果是________.解析伪代码所示的算法是一个求和运算.答案50 101对应学生用书P206规范解答25算法语句的识别与读取结合江苏高考以及实施新课标省份的高考试题来看,对算法的考查深度、难度并不大.考查基本上集中在两个方面:一是流程图表示的算法;二是伪代码表示的算法.【示例】(2011·江苏卷)根据如图所示的伪代码,当输入a,b分别为2,3时,最后输出的m的值是________.[审题路线图] (1)本题是一个含条件语句的伪代码.(2)利用流程图和伪代码的关系、算法语句的意义解题.[解答示范] 由题意知,m为a,b中的最大值,故最后输出的m值为3.Read a,bIf a>b Thenm←aElsem←bEnd IfPrint m(5分)[点评] 计算机在执行条件语句时,首先对If后的条件进行判断,如果条件符合,就执行Then后的语句1,若条件不符合,对于If—Then—Else语句就执行Else后的语句2,然后结束这一条件语句.对于If—Then语句,则直接结束该条件语句.高考经典题组训练1.下列伪代码的运行结果是________.a←3b←5Print a+b答案82.(2012·无锡模拟)当x=3时,下面算法输出结果是________.解析这是一个条件语句,x=3满足x<10,所以y=2x=6.答案 63.下面伪代码运行后输出的结果为________.解析由于x=5,所以条件不满足,程序执行Else语句后面的y=y+3,所以y=-17,从而得x-y=5-(-17)=22;y-x=-17-5=-22.答案22,-224.为了在运行下面的伪代码后输出y=16,应输入的整数x的值是________.解析当x<0时,由(x+1)2=16得x=-5;当x≥0时,由1-x2=16得x2=-15,矛盾.答案-55.(2013·南京外国语学校调研)如图所示的伪代码的输出结果为________.解析S=1+1+3+5+7+9=26.答案26对应学生用书P379分层训练A级基础达标演练(时间:30分钟满分:60分)一、填空题(每小题5分,共30分)1.按照下面的算法进行操作:S1x←2.35S2y←Int(x)S3Print y最后输出的结果是________.解析Int(x)表示不大于x的最大整数.答案 22.下面是一个算法的伪代码,如果输入的x的值是20,则输出的y的值是________.解析∵x=20>5,∴执行赋值语句y=7.5x=7.5×20=150.答案150Read xIf x≤5Then y←10xElsey←7.5xEnd IfPrint y Read xIf x<3Theny←2xElseIf x>3Theny←x2-1Elsey←2End IfEnd If3.以上给出的是用条件语句编写的一个伪代码,该伪代码的功能是________. 答案 求下列函数当自变量输入值为x 时的函数值f (x ),其中f (x )=⎩⎨⎧2x ,x <32,x =3x 2-1,x >34.(2013·南通调研)根据如图的算法,输出的结果是________.S ←0For I From 1 to 10 S ←S +IEnd For Print S End解析 S =1+2+3+…+10=10×112=55.答案 555.(2012·苏州调研)根据如图所示的伪代码,最后输出的t =________. 解析 由题意,得t =1+3+5+7+9=25. 答案 256.(2012·苏北四市质检(一))根据如图所示的伪代码,可知输出的S =________. 解析 i =1时第一次循环:i =3,S =9;第二次循环:i =5,S =13;第三次循环:i =7,S =17;第四次循环:i =9,S =21,此时不满足条件“i <8”,停止循环,输出S =21. 答案 21二、解答题(每小题15分,共30分)7.已知分段函数y =⎩⎨⎧x +3(x <0),0(x =0),x +8(x >0),编写伪代码,输入自变量x 的值,输出其相应的y 值,并画出流程图.解 伪代码如下: 流程图如下: Read xIf x <0 Then y ←x +3ElseIf x =0 Theny ←0Else y ←x +8 End If End If Print y8.用伪代码写出求1+3+32+33+34的值的算法. 解S ←0For I From 0 to 4 Step 1 S ←S +3I End For Print S分层训练B 级 创新能力提升1.(2012·盐城调研)如图所示的伪代码运行的结果为________. 解析 a =1+1=2,b =2+1=3,c =2+3=5; a =2+3=5,b =5+3=8,c =5+8=13; a =5+8=13,b =13+8=21,c =13+21=34. 答案 34(第1题图) (第2题图)2.(2012·高邮模拟)根据如图所示伪代码,可知输出结果S=________,I=________.解析S=2×7+3=17,I=7+2=9.答案1793.(2012·泰州调研)如图,运行伪代码所示的程序,则输出的结果是________.a←1b←2I←2While I≤6a←a+bb←a+bI←I+2End WhilePrint b解析流程图的执行如下:当I=8时,答案344.(2012·南京调研)写出下列伪代码的运行结果.(1)图1的运行结果为________;(2)图2的运行结果为________.解析(1)图1的伪代码是先执行S←S+i,后执行i←i+1∴S=0+1+2+…+(i-1)=(i-1)i2>20,∴i的最小值为7.(2)图2的伪代码是先执行i←i+1,后执行S←S+i,∴S=0+1+2+…+i=i(i+1)2>20.∴i的最小值为6.答案(1)7(2)65.(2012·常州调研)根据下列伪代码画出相应的流程图,并写出相应的算法.S←1n←1While S<1 000S←S×nn←n+1End WhilePrint n解流程图如图:算法如下:S1S←1;S2n←1;S3如果S<1 000,那么S←S×n,n←n+1,重复S3;S4输出n.6.(2012·苏北四市调研)设计算法,求1-3+5-7+…-99+101的值,用伪代码表示.解用“For”语句表示,S ←1a ←1For I From 3 To 101 Step 2 a ←a ×(-1) S ←S +a ×I End For Print S用“While”语句表示, S ←1I ←3a ←1While I ≤101a ←a ×(-1) S ←S +a ×I I ←I +2End While Print S 第3讲 合情推理与演绎推理对应学生用书P207考点梳理1.归纳推理(1)定义:根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都有这种属性的推理.或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳). (2)归纳推理的特点①归纳推理是由部分到整体,由个别到一般的推理; ②归纳推理的结论不一定为真;③归纳的个别情况越多,越具有代表性,推广的一般性命题就越可靠. 2.类比推理(1)定义:由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征的推理,称为类比推理.类比推理是两类事物特征之间的推理.(2)类比推理的特点①类比推理是由特殊到特殊的推理;②类比推理属于合情推理,其结论具有或然性,可能为真,也可能为假;③类比的相似性越多,相似的性质与推测的性质之间越相关,类比得出的命题就越可靠.3.演绎推理(1)定义:演绎推理是根据已知的事实和正确的结论,按照严格的逻辑法则得到新结论的推理过程.(2)演绎推理的特点①演绎推理是由一般到特殊的推理;②当前提为真时,结论必然为真.(3)演绎推理的主要形式是三段论,其一般模式为:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况作出的判断.【助学·微博】一个命题解读本部分内容是新课标内容,高考考查的几率非常大.对归纳推理与类比推理仍会以填空形式考查,主要是由个别情况归纳出一般结论,或运用类比的形式给出某个问题的结论.而演绎推理以解答题出现的可能性较大,因此要求学生具备一定的逻辑推理能力.两个防范(1)合情推理是从已知的结论推测未知的结论,发现与猜想的结论都要经过进一步严格证明.(2)演绎推理是由一般到特殊的推理,它常用来证明和推理数学问题,注意推理过程的严密性,书写格式的规范性.考点自测1.(2012·盐城市第一学期摸底考试)在平面上,若两个正方形的边长的比为1∶2,则它们的面积比为1∶4;类似地,在空间内,若两个正方体的棱长的比为1∶2,则它们的体积比为________.解析 由正方体的体积之比等于棱长的立方之比可得. 答案 1∶82.给出下列三个类比结论.①(ab )n =a n b n 与(a +b )n 类比,则有(a +b )n =a n +b n ;②log a (xy )=log a x +log a y 与sin(α+β)类比,则有sin(α+β)=sin αsin β; ③(a +b )2=a 2+2ab +b 2与(a +b )2类比,则有(a +b )2=a 2+2a ·b +b 2. 其中结论正确的序号是________. 答案 ③3.“因为指数函数y =a x 是增函数(大前提),而y =⎝ ⎛⎭⎪⎫13x 是指数函数(小前提),所以函数y =⎝ ⎛⎭⎪⎫13x是增函数(结论)”,上面推理的错误在于________错误导致结论错.解析 “指数函数y =a x 是增函数”是本推理的大前提,它是错误的,因为实数a 的取值范围没有确定,所以导致结论是错误的. 答案 大前提错4.(2010·陕西卷)观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为________.解析 13+23=32=(1+2)2,13+23+33=62=(1+2+3)2,13+23+33+43=102=(1+2+3+4)2,则13+23+…+n 3=(1+2+…+n )2=⎣⎢⎡⎦⎥⎤n (n +1)22,故第五个等式即为当n =6时,13+23+33+43+53+63=⎝⎛⎭⎪⎫6×722=212. 答案 13+23+33+43+53+63=2125.(2011·盐城调研)观察下列几个三角恒等式: ①tan 10°tan 20°+tan 20°tan 60°+tan 60°tan 10°=1; ②tan 5°tan 100°+tan 100°tan(-15°)+tan(-15°)tan 5°=1; ③tan 13°tan 35°+tan 35°tan 42°+tan 42°tan 13°=1.一般地,若tan α,tan β,tan γ都有意义,你从这三个恒等式中猜想得到的一个结论为________.解析 由于三个等式中,角度之间满足10°+20°+60°=90°,5°+100°-15°=90°,13°+35°+42°=90°.于是通过类比可得.答案 当α+β+γ=90°时,tan αtan β+tan βtan γ+tan γtan α=1对应学生用书P207考向一 归纳推理【例1】 观察下列等式: 1=1,1+2=3,1+2+3=6,1+2+3+4=10,1+2+3+4+5=15, 13=1,13+23=9,13+23+33=36,13+23+33+43=100,13+23+33+43+53=225.可以推测:13+23+33+…+n 3=________(n ∈N *,用含有n 的代数式表示). 解析 第二列等式的右端分别是1×1,3×3,6×6,10×10,15×15,∵1,3,6,10,15,…第n 项a n ,与第n -1项a n -1(n ≥2)的差为:a n -a n -1=n ,∴a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,…,a n -a n -1=n ,各式相加得,a n =a 1+2+3+…+n ,其中a 1=1,∴a n =1+2+3+…+n ,即a n =n (n +1)2,∴a 2n =14n 2(n +1)2.答案 14n 2(n +1)2[方法总结] 所谓归纳,就是由特殊到一般,因此在归纳时就要分析所给条件之间的变化规律,从而得到一般结论. 【训练1】 (2011·山东)设函数f (x )=xx +2(x >0),观察: f 1(x )=f (x )=xx +2,f 2(x )=f (f 1(x ))=x3x +4, f 3(x )=f (f 2(x ))=x7x +8, f 4(x )=f (f 3(x ))=x15x +16,……根据以上事实,由归纳推理可得:当n ∈N *且n ≥2时,f n (x )=f (f n -1(x ))=________. 解析 由f (x )=x x +2(x >0)得,f 1(x )=f (x )=x x +2, f 2(x )=f (f 1(x ))=x 3x +4=x(22-1)x +22, f 3(x )=f (f 2(x ))=x 7x +8=x (23-1)x +23, f 4(x )=f (f 3(x ))=x 15x +16=x(24-1)x +24,……∴当n ≥2且n ∈N *时,f n (x )=f (f n -1(x ))=x(2n-1)x +2n.答案x(2n -1)x +2n考向二 类比推理【例2】 在平面几何里,有“若△ABC 的三边长分别为a ,b ,c ,内切圆半径为r ,则三角形面积为S △ABC =12(a +b +c )r ”,拓展到空间,类比上述结论,“若四面体ABCD 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球的半径为r ,则四面体的体积为________”.解析 三角形的面积类比为四面体的体积,三角形的边长类比为四面体四个面的面积,内切圆半径类比为内切球的半径.二维图形中12类比为三维图形中的13,得V 四面体ABCD =13(S 1+S 2+S 3+S 4)r .答案 V 四面体ABCD =13(S 1+S 2+S 3+S 4)r[方法总结] (1)类比是从已经掌握了的事物的属性,推测正在研究的事物的属性,是以旧有的认识为基础,类比出新的结果;(2)类比是从一种事物的特殊属性推测另一种事物的特殊属性;(3)类比的结果是猜测性的,不一定可靠,但它却有发现的功能.【训练2】 (2012·盐城模拟)记等差数列{a n }的前n 项和为S n ,利用倒序求和的方法,可将S n 表示成首项a 1、末项a n 与项数n 的一个关系式,即公式S n =n (a 1+a n )2;类似地,记等比数列{b n }的前n 项积为T n ,且b n >0(n ∈N *),试类比等差数列求和的方法,可将T n 表示成首项b 1、末项b n 与项数n 的一个关系式,即公式T n =________.解析 利用等比数列性质,即若m +n =p +q ,则b m ·b n = b p ·b q ,得T 2n =(b 1b 2…b n )·(b n b n -1…b 2b 1)=(b 1b n )n,即T n =(b 1b n )n 2. 答案 (b 1b n )n 2考向三 演绎推理【例3】 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n (n ∈N +),证明:(1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .证明 (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n , ∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n . ∴S n +1n +1=2·S nn ,(小前提) 故⎩⎨⎧⎭⎬⎫S n n 是以2为公比的等比数列.(结论)(大前提是等比数列的定义,这里省略了)(2)由(1)可知S n+1n+1=4·S n-1n-1(n≥2),∴S n+1=4(n+1)·S n-1n-1=4·n-1+2n-1·S n-1=4a n(n≥2)(小前提)又a2=3S1=3,S2=a1+a2=1+3=4=4a1,(小前提)∴对于任意正整数n,都有S n+1=4a n(结论)(第(2)问的大前提是第(1)问的结论以及题中的已知条件)[方法总结] 演绎推理是从一般到特殊的推理;其一般形式是三段论,应用三段论解决问题时,应当首先明确什么是大前提和小前提,如果前提是显然的,则可以省略.【训练3】已知函数f(x)=2x-12x+1(x∈R),(1)判定函数f(x)的奇偶性;(2)判定函数f(x)在R上的单调性,并证明.解(1)对∀x∈R有-x∈R,并且f(-x)=2-x-12-x+1=1-2x1+2x=-2x-12x+1=-f(x),所以f(x)是奇函数.(2)f(x)在R上单调递增,证明如下:任取x1,x2∈R,并且x1>x2,f(x1)-f(x2)=2x1-12x1+1-2x2-12x2+1=(2x1-1)(2x2+1)-(2x2-1)(2x1+1)(2x1+1)(2x2+1)=2(2x1-2x2) (2x1+1)(2x2+1).∵x1>x2,∴2x1>2x2>0,即2x1-2x2>0,又∵2x1+1>0,2x2+1>0.∴2(2x1-2x2)(2x1+1)(2x2+1)>0.∴f(x1)>f(x2).∴f(x)在R上为单调递增函数.。

2014届高三数学一轮复习 (基础知识+小题全取+考点通关+课时检测)10.4算法初步课件 新人教A版

2014届高三数学一轮复习 (基础知识+小题全取+考点通关+课时检测)10.4算法初步课件 新人教A版

[例 3]
(1)执行下列用 For 语句写出的算法,输出的
结果为________. A=1 For n=1 To 8 A A= 1+A Next 输出 A
(2)当 a=3 时,下面语句表示的算法输出的结果是( If a<10 Then
)
y=2*a Else y= a *a End 输出 If y
A.9 C.10
答案:(1)10
(2)D
程序框图的识别及应用
[例2]
(2012· 陕西高考改编)如图所示是用模拟方法
估计圆周率π值的程序框图,P表示估计结果,则图中空 白框内应填入 ( )
N A.P= 1 000 M C.P= 1 000
[自主解答]
4N B.P= 1 4M D.P= 1 000
∵xi,yi 为 0~1 之间的随机
题终止循环的条件为k2-5k+4>0,解此不等式即可确
定输出的k值.
[巧思妙解]
由程序框图知k2-5k+4>0是决定循
环是否终止的条件, 故解不等式k2-5k+4>0, 解得k>4或k<1(舍去). ∴当k=5时,满足k2-5k+4>0,故输出5.
针对训练
执行如图所示的程序框图,若输出的n=5,则输入 整数P的最小值是 ( )
(2)循环语句的格式 ①For 语句的一般形式是: For 循环变量=初始值To终值 循环体 Next ②Do Loop语句的一般形式是: Do 循环体 Loop While 条件为真
[小题能否全取] 1.(2012· 安徽模拟)如图所示,该程序运行后输出的结果

(
)
A.14 C.18
B.16 D.64
End
If
解析:∵a<b,∴x=a+b=4. 答案:4

算法初步知识点

算法初步知识点

高中数学必修3知识点总结第一章算法初步1.1.1算法的概念1、算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2. 算法的特点:(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.1.1.2程序框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。

一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。

(二)构成程序框的图形符号及其作用学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。

2、框图一般按从上到下、从左到右的方向画。

3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。

判断框具有超过一个退出点的唯一符号。

4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。

5、在图形符号内描述的语言要非常简练清楚。

(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。

1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。

高中数学《算法初步》教案新人教A版必修

高中数学《算法初步》教案新人教A版必修

高中数学《算法初步》教案新人教A版必修一、教学目标1. 理解算法的基本概念,了解算法的特点和作用。

2. 掌握算法的基本步骤,能够正确写出简单的算法。

3. 学会分析算法的效率,提高解决问题的能力。

4. 培养逻辑思维能力和编程能力。

二、教学内容1. 算法的基本概念:算法、输入、输出、步骤。

2. 算法的基本步骤:顺序结构、条件结构、循环结构。

3. 算法分析:时间复杂度、空间复杂度。

4. 简单的算法实例:求和、求积、排序等。

三、教学重点与难点1. 重点:算法的基本概念、基本步骤、算法分析。

2. 难点:算法分析中的时间复杂度和空间复杂度的计算。

四、教学方法1. 采用问题驱动的教学方法,引导学生从实际问题中提出算法需求。

2. 使用案例教学法,通过具体的算法实例讲解算法的实现过程。

3. 利用编程工具,让学生动手实践,加深对算法的理解。

4. 采用小组讨论法,培养学生的合作能力和解决问题的能力。

五、教学过程1. 导入:通过一个实际问题引入算法概念,激发学生的兴趣。

2. 讲解:讲解算法的基本概念、基本步骤和算法分析的方法。

3. 实例演示:给出一个简单的算法实例,演示算法的实现过程。

4. 练习:让学生动手编写简单的算法,巩固所学知识。

5. 总结:对本节课的内容进行总结,布置课后作业。

六、教学评估1. 课堂练习:在学习过程中,穿插一些练习题,以检查学生对算法基本概念和步骤的理解。

2. 小组讨论:通过小组合作完成一个算法实例,评估学生在合作中的沟通能力和解决问题的能力。

3. 课后作业:布置相关的编程作业,要求学生独立完成,以检验学生对算法的掌握程度。

4. 期中期末考试:设置有关算法初步的试题,全面评估学生的学习效果。

七、教学资源1. 教材:新人教A版必修《高中数学》。

2. 多媒体课件:制作与教学内容相关的多媒体课件,增加课堂的趣味性。

3. 编程工具:为学生提供编程环境,如Python、C++等。

4. 网络资源:为学生提供相关的在线学习资源,如视频教程、练习题库等。

高中数学《算法初步》教案新人教A版必修

高中数学《算法初步》教案新人教A版必修

高中数学《算法初步》教案新人教A版必修一、教材分析本节课所使用的教材为新人教A版高中数学必修教材,内容涉及算法初步。

算法初步是高中数学的重要组成部分,主要让学生了解算法的基本概念、特点和应用。

通过学习算法初步,学生能够理解算法的本质,提高解决问题的能力。

二、教学目标1. 了解算法的概念、特点和表示方法。

2. 掌握算法的基本逻辑结构,如顺序结构、条件结构和循环结构。

3. 能够分析实际问题,设计简单的算法解决问题。

4. 培养学生的逻辑思维能力和创新能力。

三、教学重点与难点1. 教学重点:算法的概念、特点和表示方法。

算法的基本逻辑结构。

设计简单算法解决问题的方法。

2. 教学难点:算法的设计和分析。

循环结构在实际问题中的应用。

四、教学方法1. 采用问题驱动的教学方法,引导学生从实际问题中认识算法的重要性。

2. 通过案例分析,让学生理解算法的基本逻辑结构。

3. 利用编程实践,培养学生设计算法解决问题的能力。

4. 采用小组讨论、合作学习的方式,提高学生的参与度和积极性。

五、教学过程1. 导入新课:通过生活中的实例,引导学生了解算法在日常生活中的应用。

提问:什么是算法?算法有什么特点?2. 讲解算法的基本概念:解释算法的定义,强调算法是解决问题的一系列步骤。

阐述算法的特点,如确定性、有穷性和可行性。

3. 学习算法表示方法:介绍算法的图形表示和伪代码表示。

举例说明不同表示方法在解决问题中的应用。

4. 掌握算法的基本逻辑结构:顺序结构:按照一定的顺序执行步骤。

条件结构:根据条件选择不同的执行路径。

循环结构:重复执行某些步骤直到满足条件。

5. 设计简单算法解决问题:分析实际问题,如计算Fibonacci 数列的前n项和。

引导学生设计算法,并利用编程工具实现。

6. 课堂小结:强调算法在解决问题中的重要性。

7. 课后作业:完成课后练习,巩固所学内容。

设计一个简单的算法,解决实际问题。

8. 课后反思:教师对本节课的教学效果进行反思,分析学生的掌握情况。

(名师伴你行)2014高考数学一轮复习课件 第十章 算法初步与算法案例

(名师伴你行)2014高考数学一轮复习课件 第十章 算法初步与算法案例
§10.4
算法初步与算法案例
[高考调研 明确考向] 考 纲 解 读 考 情 分 析
•了解算法的含义,了解算法的思想. • 循 环结 构与 条 件结 •理解算法框图的三种基本结构: 顺序 构是考查的热点. 结构、条件结构、循环结构. •题型多为选择、填空 •了解几种基本算法语句 —— 输入语 题,注重算法思想的 句、输出语句、赋值语句、条件语句、 应用,难度中低档. 循环语句的含义. • 基 本算 法语 句 与算 •了解辗转相除法,更相减损术,秦九 法案例是高考冷点. 韶算法.
答案:负数 3
5 . 将 二 进 制 数 101 101(2) 化 为 十 进 制 数 , 结 果 为 __________.再将该数化为八进制数,结果为______效 □ 3 流程图 □ 4 规定的图形 □
5 指向线 □ 6 文字说明 □ 7 流程线 □ 8 程序框 □ 9 依 □ 次执行 概括性 10 条件是否成立 □ 11 反复执行 □ 12 循环体 □ 13 □ 14 逻辑性 □ 15 有穷性 □ 16 不唯一性 □ 17 普遍性 □
(2)更相减损术的定义: 22 任给两个正整数(若是偶数,先用 2 约数),以□ __________________,接着把所得的差与较小的数比较,并 23 ____________, 以大数减小数, 直到所得的数□ 则这个数(等 数)(或这个数与约简的数的乘积)就是所求的最大公约数.
(3)秦九韶算法: 24 秦九韶算法是我国南宋数学家秦九韶在他的代表作 《□ 25 __________的方法. ________》中提出的一种用于计算□
答案:B
2.阅读下边的程序框图,运行相应的程序,若输入 x 的 值为-4,则输出 y 的值为( A.0.5 B.1 C.2 ) D.4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年高三复习十:算法初步2011.1北京各区期末数学试卷——算法初步1、 (西城理5 )阅读右面程序框图,如果输出的函数值在区间11[,]42内,则输入的实数x 的取值范围是 A.(,2]-∞- B.[2,1]-- C.[1,2]- D.[2,)+∞2、 (房山理10)如图给出的是计算191242++++ 的值的程序框图,其中判断框内应填 .3、 (房山文10)按如图所示的程序框图运算,若输入7=x ,则输出k 的值是_________.4、(大兴理11)图中所示的是一个算法的流程图,已知31=a ,输出的7b =,则2a 的值是____________。

5、 (朝阳文14)按下列程序框图运算:若5x =,则运算进行 次才停止;若运算进行3次才停止,则x 的取值范围是 .6、 (昌平理12)某程序框图如图所示,该程序运行后输出,M N 的值分别为 .7、 (丰台理7)程序框图如图所示,将输出的a 的值依次记为a 1,a 2,…,a n ,其中*n ∈N 且2010n ≤.那么数列{}n a 的通项公式为A .123n n a -=⋅ B .31nn a =-C .31n a n =-D .21(32n a n n =+8、 (丰台文7)对任意非零实数a ,b 若a b ⊗的运算原理如右图程序框图所示,则(32)4⊗⊗的值是A .0B .12C .32D .9 9、 (海淀理11)阅读下面的程序框图.若使输出的结果不大于37,则输入的整数i 的最大值为 .10、 (海淀文10)某程序的框图如图所示,执行该程序,若输入4, 则输出的S 为 .11、 (石景山理10)阅读如图所示的程序框图,运行相应的程序,如果输入100,则输出的结果为 , 如果输入2-,则输出的结果为 .2011年一模:算法初步1(2011西城一模理5). 阅读右侧程序框图, 为使输出的数据为31,则①处应填的数字为 (A )4 (B )5 (C )6 (D )72(2011西城一模文13). 阅读右侧程序框图, 则输出的数据S 为____.3(2011东城一模理5)若右边的程序框图输出的S 是126, 则条件①可为()A .5n ≤B .6n ≤C .7n ≤D .8n ≤4(2011东城一模文6)若右边的程序框图输出的S 是126(A )5n ≤ (B )6n ≤ (C )7n ≤ (D )8n ≤(2011朝阳一模理12).执行右图所示的程序框图,若输入 5.2x =-,则输出y 的值为.7(2011海淀一模理4).执行如图所示的程序框图, 若输出x 的值为23,则输入的x 值为 CA .0B .1C .2D .11 8(2011石景山一模理10). 阅读如图所示的 程序框图,运行该程序后输出的k 的值是_______________.9(2011朝阳一模文13).执行右图所示的程序框图,若输入 5.2x =,则输出y 的值为 .10(2011海淀一模文4). 执行如图所示的程序框图,若输入x 的值为2,则输出的x 值为 CA. 25 B .24 C. 23 D .2211(2011门头沟一模文11).右上图所示为一个判断直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系的程序框图的一部分,在?处应该填上 C Bb Aa ++ .12(2011石景山一模文10). 阅读如图所示的程序框图,运行该程序后输出的k 的值是_______________.2011年二模、算法初步1、(2011昌平二模理 3). 已知221)21(,2==b a ,运算原理如右图所示,则输出的值为() A.241+ B.24+11题图)C. 24D. 422、(2011丰台二模理13).如果执行右面的程序框图,那么输出的a =___.3、10.(2011海淀二模理10)运行如图所示的程序框图,若输入4n =,则输出S 的值为. 4、(2011西城二模理13).定义某种运算⊗,a b ⊗的运算原理如右图所示.设()(0)(2)f x x x x =⊗-⊗. 则(2)f =______;()f x 在区间[2,2]-上的最小值为______.5、(2011昌平二模文6)已知,221==b a 则输出的值为( ) A.22B.2C.212- D. 212+6、(2011东城二模文13)已知某程序的框图如图后,输出的y 的值分别为,,a b c ,则a b c ++= .7、(2011朝阳二模文12)右边程序框图的程序执行后输出的结果是 .8、(2011西城二模文13)定义某种运算⊗,a b ⊗的运算原理如右图所示. 则0(1)⊗-=______;设()(0)(2)f x x xx=⊗-⊗.则(1)f =______.2012年1月、算法初步1.(2012年海淀区高三期末考试理6)执行如图所示的程序框图,输出的i 值为 ( )A .5B .6C .7D .82.(2012年朝阳区高三期末考试理4)执行如图所示的程序框图,输出的S 值为( )A .1B .1-C . 2-D .03.(2012年丰台区高三期末考试理6)执行如右图所示的程序框图,输出的S 值为( ) A .252(41)3- B .262(41)3- C .5021- D . 5121-4.(2012年丰台区高三期末考试文6)执行如右图所示的程序框图,输出的S 值为( )A .650B .1250C .1352D .50005.(2012年西城区高三期末考试理4)执行如图所示的程序框图,输出的S值为( ) A .3 B .6- C .10 D .15- 6.(顺义区2012届高三尖子生综合素质展示2)某程序的框图如图所示,则运行该程序后输出的B 的值是( )A .63B .31C .15D .77.(2012年昌平区高三期末考试理12)某程序框图如图所示,则输出的S = .2012年一模、算法初步5.(2012年海淀一模理5)执行如图所示的程序框图,输出 的k 值是( )A .4B .5C .6D .72.(2012年西城一模理2)执行如图所示的程序框图,若输入2x =,则输出y 的值为( )A .2B .5C .11D .23 4.(2012年东城一模理4)右图给出的是计算1001...81614121+++++的值的一个程序框图,其中判断框内应填入的条件是( )A .50>iB .25>iC .50<iD .25<i13.(2012年丰台一模理13)执行如下图所示的程序框图,则输出的i 值为______.11.(2012年朝阳一模理11) 执行如图所示的程序框图,若输入k 的值是4,则输出S 的值是 .5.(2012年东城11校联考理5)执行如图所示的程序框图,若输出的结果是8,则判断框内m 的取值范围是( ) A.(30,42]B.(42,56]C.(56,72]D.(30,72)5.(2012年石景山一模理5)执行右面的框图,若输入的N 是6,则输出p 的值是( B ) A.120 B.720 C.1440 D.50405.(2012年房山一模理5)执行如图所示的程序框图,则输出的n 的值为( )A.5B.6C.7D.84.(2012年密云一模理4) 阅读右图所示的程序框图.若输入a =6,b =1,则输出的结果是( )A .1B .2C .3D .42012年二模算法初步(必修三)1.(2012年西城二模理2)执行如图所示的程序框图,若输入如下四个函数: ①()e x f x =; ②()e x f x =-; ③1()f x x x -=+; ④1()f x x x -=-. 则输出函数的序号为( ) A .① B.② C.③ D.④2.(2012年朝阳二模理10)执行如图所示的程序框图,输出的结果是_______.3.(2012年丰台二模理4)执行如图所示的程序框图,若输出的结果为63,则判断框中应填( D )(第10题图)A . 7n ≤B .7n >C .6n ≤D .6n >4.(2012年昌平二模理11)如图给出了一个程序框图,其作用是输入x 的值,输出相应的y 值,若要使输入的x 值与输出的y 值相等,则这样的x 值有 _______个.2013届汇编:程序框图一、选择题1 .(2013北京西城高三二模数学理科)如图所示的程序框图表示求算式“235917⨯⨯⨯⨯” 之值,则判断框内可以填入A .10k ≤B .16k ≤C .22k ≤D .34k ≤2 .(2013北京朝阳二模数学理科试题)执行如图所示的程序框图.若输出的结果是16,则判断框内的条件是( ) A .6n >? B .7n ≥? C .8n >? D .9n >?, 3 .(2013北京顺义二模数学理科试题及答案)执行如图所示的程序框图,输出的s 值为( )A .10-B .3-C .4D .54 .(2013届房山区一模理科数学)执行如图所示的程序框图.若输出15S =, 则框图中① 处可以填入( ) A .4n > B .8n > C .16n > D .16n <5 .(2013届北京丰台区一模理科)执行右边的程序框图,输出k 的值是( ) A .3 B .4 C .5 D .66 .(2013北京房山二模数学理科试题及答案)一个几何体的三视图如图所示,则这个几何体的表面积为俯视图侧(左)视图( ) A .9+B .18+C .18+D .97 .(2013届北京海滨一模理科)某程序的框图如图所示,执行该程序, 若输入的x 值为5,则输出的y 值为A.2- B .1-C.12D .28 .(2013届北京西城区一模理科)执行如图所示的程序框图.若输出y ==θ A .π6 B .π6- C .π3 D .π3-9 .(北京市石景山区2013届高三一模数学理试题)执行右面的框图,输出的结果s 的值为A .-3B .2C .12-D .1310.(2013北京东城高三二模数学理科)阅读程序框图,运行相应的程序,当输入x 的值为25-时,输出x 的值为A .1B .2C .3D .411.(2013届北京大兴区一模理科)执行如图所示的程序框图.若5n=,则输出s的值是()A.-21 B.11C.43 D.86二、填空题12.(2013北京昌平二模数学理科试题及答案)执行如图所示的程序框图,若①是6i<时,输出的S值为_________;若①是2013i<时,输出的S值为_________.13.(2013届北京市延庆县一模数学理)执行如图的程序框图,如果输入6=p,则输出的S= .14.(北京市顺义区2013届高三第一次统练数学理科试卷(解析))执行如图所示的程序框图,输出的s值为________.15.(北京市朝阳区2013届高三第一次综合练习理科数学)执行如图所示的程序框图,输出的结果S= ______.。

相关文档
最新文档